17. Classes

Encapsulation, Classes, Member Functions, Constructors

560

...Should be in a Library!

rational .h:

m Definition of a struct rational
m Function declarations

rational.cpp:

m arithmetic operators (operator+, operator+=, ...)
m relational operators (operator==, operator>, ...)
m in/output (operator >>, operator <<, ...

562

A new Type with Functionality...

struct rational {

int n;

int d4; // INV: d != 0
};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

561

Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer

We found a startup: RAT PACK®!

m Selling the rational library to customers
m ongoing development according to customer’s demands

563

The Customer is Happy

...and programs busily using rational.

m output as double-value (2 — 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;

return result / r.d;

}

564

New Version of RAT PACK®

QE’ It sucks, nothing works any more!
m What is the problem?

‘%’g —2 js sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to double
is the problem, our library is correct.

de)
‘“%’ Up to now it worked, therefore the new
version is to blame!

The Customer Wants More
“Can we have rational numbers with an extended value range?”

m Sure, no problem, e.g.:

striet rational

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

565

Liability Discussion

// POST: double approximation of r

double to_double (rational r){
double result = r.n;
return result / r.d;

3

r.is_positive and result.is_positive
do not appear.

correct using. not correct using

struct ratiomal {
int n;: unsigned int n;
int d; unsigned int d;

}: bool is_positive;
I

};

struct rational {

567

We are to Blame!! Idea of Encapsulation (Information Hiding)

m Customer sees and uses our representation of rational numbers

(initially r.n, r.d) m A type is uniquely defined by its value range and its functionality
m When we change it (r.n, r.d, r.is_positive), the customer’s m The representation should not be visible.

programs do not work anymore. _ m = The customer is not provided with representation but with
m No customer is willing to adapt the programs when the version of functionality!

the library changes. T
= RAT PACK® is history. .. str.length(),

v.push_back(1),...

568 569

Classes Encapsulation: public/private

clm is used instead of struct if anything at all

. shall be “hidden”
int n;

int d; // INV: d != 0

m provide the concept for encapsulation in C++)

m are a variant of structs

m are provided in many object oriented programming languages _
only difference

m struct: by default nothing is hidden
m class : by default everything is hidden

Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rationmal { any more by accident.

int n;
int d; // INV: 4 !=0
};

Bad news: the customer cannot do any-
thing any more .. .
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: 4 is private
int i = r.n; // error: n is private

572

Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational r;_ member access

int n =
int d

// Zaehler
// Nenner

r.numerator () ;
r.denominator () ;

574

public area

Member Functions: Declaration

class rational {
public:
f// POST: return value is the numerator of this instance

int numerator () comnst member function
return nj
< }
// POST: return value is the denominator of this instance
int denominator () const { :
member functions have ac-
return d; <= .
. cess to private data
& N
private: ~ .
int n: N the scope of members in a
’ N . -
int d; // INV: di= 0 <= class is the whole class., inde-
3. pendent of the declaration or-
)

der

573

Member Functions: Definition

// POST: returns
int numerator ()

{

numerator of this instance
const

return n;

3

m A member function is called for an expression of the class. in the function, this
is the name of this implicit argument. this itself is a pointer to it.

m const refers to the instance this, i.e., it promises that the value associated with
the implicit argument cannot be changed

m nis the shortcut in the member function for this->n (precise explanation of

“~>” next week)
575

const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)

{n=0N;}

rational x;
x.set_numerator(10); // ok;
const rationmal y = x;

int n = y.numerator(); // ok;
y.set_numerator(10); // error;

}

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.

Member-Definition: In-Class vs. Out-of-Class

class rational { class rational {

int n; int n;
public: public:

int numerator () const int numerator () const;

{

return n; };

}

s int rational: :numerator () const
}; {

) return n;

m No separation between }

declaration and definition (bad

for libraries) m This also works.

Comparison
Roughly like this it were ...

class rational {
int n;

public:
int numerator () const

{

return this->n;
}
};

rational r;

std: :cout << r.numerator();

Constructors

... without member functions

struct bruch {
int n;

};
int numerator (const bruch& dieser)

{

return dieser.n;

bruch r;

std::cout << numerator(r);

m are special member functions of a class that are named like the

class

m can be overloaded like functions, i.e. can occur multiple times with

varying signature

m are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.

m if there is no matching constructor, the compiler emits an error

message.

Initialisation? Constructors!

class rational

{
public:
rational (int num, int den) o
. n (num), d (den) In|t|al|zat|on. of the
L member variables
assert (den != 0); +—— function body.
}
}

r.;tional r (2,3); //r =2/3

580

Initialisation “rational = int”?

class rational
{
public:
rational (int num)
: n (num), 4 (1)
{} +—— empty function body

}

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

582

Constructors: Call

m directly

rational r (1,2); // initialisiert r mit 1/2

m indirectly (copy)

rational r = rationmal (1,2);

User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) <—— rational. values of type int can now

:n (num), d (1) be converted to rational.
{3

rational r = 2; // implizite Konversion

583

The Default Constructor

class rational

{

public: empty list of arguments

r.;tional ()/

:n (0), 4 (1)
{3

1
rational r; // =0

= There are no uninitiatlized variables of type rational any more!

584

The Default Constructor

m is automatically called for declarations of the form
rational r;

m is the unique constructor with empty argmument list (if existing)
m must exist, if rational r; is meant to compile

m if in a struct there are no constructors at all, the default
constructor is automatically generated

586

Alterantively: Deleting a Default Constructor

class rational

{
public:
:;z'a'tional () = delete;
¥
Ii.a.tional T; // error: use of deleted function ’rational::rational()

= There are no uninitiatlized variables of type rational any more!

RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)

{
double result = r.numerator();
return result / r.denominator();

}

m We can adapt the member functions together with the
representation v’

RAT PACK® Reloaded ...

class rational { int numerator () const

{

g private: return n;
?B int n; }
o] int d;
};
class rational { int numerator () const{
ce if (is_positive)
private: return n;
— unsigned int n; else {
ég unsigned int d; int result = n;
(4] bool is_positive; return —result;
}; }
}

588

Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of xthis
int numerator () const;

private:
// none of my business

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.

590

RAT PACK® Reloaded ?

int numerator () comnst

class rational { p
private: if (is_positive)
i i return n;

unsigned int n;
else {

unsigned int d;

. R int result = n;
bool is_positive; ’

return —result;

}; }
}

m value range of nominator and denominator like before
m possible overflow in addition

589

Fix: “our” type rational: :integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.g:

m implicit conversion int — rational::integer
m function double to_double (rational::integer)

591

RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
}

592

Separate Declaration and Definition

class rational {

public:
rational (int num, int denum);
using integer = long int;
integer numerator () comnst;

rational.h

private:

};
rational::rational (int num, int den):
n (num), d (dem) {}

rational::integer rational: :numeratcg () const rational. cpp
{ PN
return n; class name :: member name

} 593

