
Computer Science

Course for Computational Sciences and Engineering
at D-MATH of ETH Zurich

Felix Friedrich, Malte Schwerhoff

AS 2018

1

Welcome

to the Course Informatik
for CSE at the MAVT departement of ETH Zürich.

Place and time:

Monday 08:15 - 10:00, CHN C 14.
Pause 9:00 - 9:15, slight shift possible.

Course web page

http://lec.inf.ethz.ch/math/informatik_cse

2

http://lec.inf.ethz.ch/math/informatik_cse

Team

chef assistant Francois Serre

back office Lucca Hirschi

assistants Manuel Kaufmann
Robin Worreby
Roger Barton
Sebastian Balzer

lecturers Dr. Felix Friedrich / Dr. Malte Schwerhoff

3

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

V Ü V Ü

4

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

Issuance

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until the day before the next recitation session.
Dicussion of the exercise in the next recitation session.

4

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

Issuance Preliminary Discussion

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until the day before the next recitation session.
Dicussion of the exercise in the next recitation session.

4

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

Issuance Preliminary Discussion Submission

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until the day before the next recitation session.
Dicussion of the exercise in the next recitation session.

4

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

Issuance Preliminary Discussion Submission

Discussion

V Ü V Ü

Exercises availabe at lectures.
Preliminary discussion in the following recitation session
Solution of the exercise until the day before the next recitation session.
Dicussion of the exercise in the next recitation session.

4

Exercises
The solution of the weekly exercises is thus voluntary but stronly
recommended.

5

Exercises
The solution of the weekly exercises is thus voluntary but stronly
recommended.

5

Exams

The exam (in examination period 2019) will cover

Lectures content (lectures, handouts)
Exercise content (exercise sessions, exercises).

8

Exams

Written exam that most probably takes place at a computer (for the
CSE students).

We will test your practical skills (programming skills) and theoretical
knowledge (background knowledge, systematics).

8

Offer

During the semester we offer weekly programming exercises that
are graded. Points achieved will be taken as a bonus to the exam.
The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of 0.25.
The admission to specially marked bonus depends on the
successful completion of other exercises. The achieved mark
bonus expires as soon as the lecture is given anew.

9

Offer (Concretely)

3 bonus exercises in total; 2/3 of the points suffice for the exam
bonus of 0.25 marks
You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...
Bonus exercises must be unlocked (→ experience points) by
successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises completely
in order to unlock a bonus exercise
Details: course website, exercise sessions, online exercise
system (Code Expert)

10

Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
invite you to interviews.

Should you be invited to an interview: don’t panic. Primary we
presume your innocence and want to know if you understood what
you have submitted.

11

Exercise group registration I
Visit http://expert.ethz.ch/enroll/AS18/infcse
Log in with your nethz account.

12

http://expert.ethz.ch/enroll/AS18/infcse

Exercise group registration II
Register with the subsequent dialog for an exercise group.

13

Overview

14

Programming Exercise

15

Programming Exercise

A: compile
B: run
C: test

15

Programming Exercise

D: description
E: History

15

Test and Submit

16

Test and Submit

Test

16

Test and Submit

Test

Submission

16

Where is the Save Button?

The file system is transaction based and is saved permanently
(“autosave”). When opening a project it is found in the most recent
observed state.
The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.
The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.

17

Snapshots

18

Snapshots

Look at snapshot

18

Snapshots

Look at snapshot

Submission

Go Back

18

1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C++Program and its Syntactic and Semantic Ingredients

21

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

22

What is Computer Science?

The science of systematic processing of informations,. . .

. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

22

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

22

Computer Science vs. Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

23

Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .

. . . but not as an end in itself but for the systematic processing
of informations.

24

Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing
of informations.

24

Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .

25

Computer Science 6= Computer Literacy

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?

25

This course

Systematic problem solving with algorithms and the programming
language C++.
Hence:

not only
but also programming course.

26

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step

Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

27

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)

according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)

27

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)
27

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b

a b a b a b

28

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b

a b a b

28

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b a b

a b

28

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b a b a b
28

Live Demo: Turing Machine

29

Euklid in the Box

0 1 2 3 4 5 6 7 8 9

Speicher

Links Rechts

Register
30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8 9

Speicher

Programmcode

Links Rechts

Register
30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links Rechts

Register
30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links Rechts

Register

Daten

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links

b

Rechts

a

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Links Rechts

Register

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Ergebnis: a.

30

Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing
31

Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann
32

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)

34

Memory for data and program

Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.

34

Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
35

Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m

a contemporary desktop PC can process more than 100

millions
instructions 1

1Uniprocessor computer at 1 GHz.
35

Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
35

Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890
36

Why programming?

Do I study computer science or what ...

There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

37

Why programming?

Do I study computer science or what ...
There are programs for everything ...

I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

37

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...

because computer science is a mandatory subject here,
unfortunately...
. . .

37

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...

. . .

37

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

37

Mathematics used to be the lingua franca of the natural sci-
ences on all universities. Today this is computer science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics)

38

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)

Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

39

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.

Programming is fun (and is useful)!

39

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

39

Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be subdivided into (extremely) many
single steps
The machine language varies between computers.

40

Higher Programming Languages

can be represented as program text that

can be understood by humans
is independent of the computer model
→ Abstraction!

41

Why C++?

Other popular programming languages: Java, C#, Objective-C,
Oberon, Javascript, Go, Python, . . .

General consensus:

„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

42

Why C++?

Other popular programming languages: Java, C#, Objective-C,
Oberon, Javascript, Go, Python, . . .

General consensus:

„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

42

Why C++?

Over the years, C++’s greatest strength and its greatest
weakness has been its C-Compatibility – B. Stroustrup

43

Deutsch vs. C++
Deutsch

Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

C++

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

44

Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

45

Syntax and Semantics

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

45

Syntax and Semantics of C++

Syntax

When is a text a C++ program?

I.e. is it grammatically correct?

Semantics

What does a program mean?

Which algorithm does a program implement?

47

Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language

49

Programming Tools

Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.

49

The first C++ program
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
51

Most important ingredients. . . Statements
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Do something (read in a)!

51

Most important ingredients. . . Expressions
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Compute a value (a2)!

51

“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
53

“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

comments

53

Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

55

Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

55

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
56

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

include directive

56

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration of the main function

56

Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

59

Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

expression statements

59

Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
return statement

59

Statements – Effects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

effect: output of the string Compute ...

Effect: input of a number stored in a

Effect: saving the computed value of a*a into b

Effect: saving the computed value of b*b into b

Effect: output of the value of a and the computed value of b*bEffect: return the value 0

63

Statements – Variable Definitions
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration statement

type
names

65

Literals

represent constant values
have a fixed type and value
are "syntactical values"

Examples:

0 has type int, value 0.

1.2e5 has type double, value 1.2 · 105.

69

Variables

represent (varying) values
have

name
type
value
address

Example

int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler (and linker, runtime)

70

Variables

represent (varying) values
have

name
type
value
address

Example

int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler (and linker, runtime)

70

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

73

Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

74

Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

variable name, primary expression (+ name and address)

variable name, primary expression (+ name and address)

literal, primary expression
74

Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

composite expression

74

Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

Two times composed expression

Four times composed expression
74

L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

77

L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)

77

L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

R-Value

R-Value

77

L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address

Value is the content at the memory location according to the
type of the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name

78

L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address

Value is the content at the memory location according to the
type of the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name

78

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value

79

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value

79

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

Every E-Bike can be used as normal bike, but not the other way
round

An R-Value cannot change its value

79

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value

79

L-Value and R-Value

80

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

81

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

81

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (input stream)

right operand (variable name)
input operator

81

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

assignment operator

multiplication operator

81

2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int

89

Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit

90

Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit

90

9 * celsius / 5 + 32

Arithmetic expression,

91

9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols

91

9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols

91

9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols

91

9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols

How to put the expression in parentheses?

91

Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

92

Precedence

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)

92

Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

93

Associativity

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of
same precedence evaluate from left to right

93

Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.

-3 - 4

means

(-3) - 4

94

Parentheses

Any expression can be put in parentheses by means of

associativities

precedences

arities

of the operands in an unambiguous way.

95

Expression Trees
Parentheses yield the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

96

Expression Trees
Parentheses yield the expression tree

(9 * celsius) / 5 + 32

+

/

*

9 celsius 5 32

96

Expression Trees
Parentheses yield the expression tree

((9 * celsius) / 5) + 32

+

/

*

9 celsius 5 32

96

Expression Trees
Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32

96

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

97

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32

98

Expression Trees – Notation
Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32

99

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.

100

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.

100

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.

100

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.

100

Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.

100

Evaluation Order – more formally

E

K1 K2

C++: the valid order to be
used is not defined.

"Good expression": any valid evaluation order leads to the same
result.

100

Evaluation Order – more formally

E

K1 K2

C++: the valid order to be
used is not defined.

Example for a “bad expression”: a*(a=2)

100

Evaluation order

Guideline

Avoid modifying variables that are used in the same expression
more than once.

101

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a : R-value→ R-value

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

a+b : R-value × R-value→ R-value

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a+b+c = ((-a) + b) + c
R-value × R-value × R-value→ R-value

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a+b+c = ((-a) + b) + c
R-value × R-value × R-value→ R-value

102

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a+b+c = ((-a) + b) + c
R-value × R-value × R-value→ R-value

102

Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value

What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0

103

Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value
What does a = b = c mean?

Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0

103

Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0

103

Interlude: Assignment expression – in more detail

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0

103

Division

Operator / implements integer division

5 / 2 has value 2

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .

104

Division

Operator / implements integer division

5 / 2 has value 2
In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
9 / 5 * celsius + 32

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
1 * celsius + 32

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
15 + 32

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
47

104

Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!
9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit

104

Loss of Precision

Guideline

Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”

105

Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.

106

Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.

106

Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)

107

Increment and decrement

expr = expr + 1.

Disadvantages

relatively long

expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)

107

Increment and decrement

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”

expr could have an effect (but should not, cf. guideline)

107

Increment and decrement

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)

107

In-/Decrement Operators

Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned
(as R-value)

108

In-/Decrement Operators

Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned
(as L-value)

108

In-/Decrement Operators

Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned
(as R-value)

108

In-/Decrement Operators

Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned
(as L-value)

108

In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n";
std::cout << a++ << "\n";
std::cout << a << "\n";

110

In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n";
std::cout << a << "\n";

110

In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n";

110

In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9

110

C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C

while C++ returns the old C.

112

C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C
while C++ returns the old C.

112

Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %

113

Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %

113

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 21 + b0 · 20

Example: 101011

115

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011

115

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011

115

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 32+8+2+1.

115

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.

115

Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.

Most Significant Bit (MSB)

Least Significant Bit (LSB)

115

Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.

116

Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

117

Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

117

Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

118

Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

118

Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)

118

Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles
hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15

119

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.

“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.
“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.
“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.
“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.
“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.
“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”

120

Why Hexadecimal Numbers?
“For programmers and technicians”
(user manual chess computer Mephisto II, 1981)

121

Example: Hex-Colors

#00FF00
r g b

122

Example: Hex-Colors

#FFFF00
r g b

122

Example: Hex-Colors

#808080
r g b

122

Example: Hex-Colors

#FF0050
r g b

122

Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...

123

Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
}

Minimum int value is -2147483648.
Maximum int value is 2147483647.

Where do these numbers come from?

124

Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.

Where do these numbers come from?

124

Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.

Where do these numbers come from?
124

Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

125

Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

On most platforms B = 32

125

Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

For the type int C++ guarantees B ≥ 16

125

Over- and Underflow

Arithmetic operations (+,-,*) can lead to numbers outside the
valid domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

power20.cpp: 320 = −808182895

There is no error message!

126

The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .

127

Mixed Expressions

Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u
Such mixed expressions are of the “more general” type
unsigned int.
int-operands are converted to unsigned int.

128

Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x+ 2B

129

Computing with Binary Numbers (4 digits)

Simple Addition

2 0010

+3 +0011

5 0101

132

Computing with Binary Numbers (4 digits)

Simple Subtraction

5 0101

−3 −0011

2 0010

132

Computing with Binary Numbers (4 digits)

Addition with Overflow

7 0111

+9 +1001

16 (1)0000

133

Computing with Binary Numbers (4 digits)

Negative Numbers?

5 0101

+(−5) ????

0 (1)0000

133

Computing with Binary Numbers (4 digits)

Simpler -1

1 0001

+(−1) 1111

0 (1)0000

134

Computing with Binary Numbers (4 digits)

Utilize this:

3 0011

+? +????

−1 1111

134

Computing with Binary Numbers (4 digits)

Invert!

3 0011

+(−4) +1100

−1 1111=̂ 2B − 1

135

Computing with Binary Numbers (4 digits)

a a

+(−a− 1) ā

−1 1111=̂ 2B − 1

135

Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

−a =̂ ā+ 1

136

Computing with Binary Numbers (4 digits)

Wrap around semantics (calculating modulo 2B

−a =̂ 2B − a

136

Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
137

Negative Numbers (3 Digits)

a −a
0 000

000 0

1 001

-1

2 010

-2

3 011

-3

4 100
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001

-1

2 010

-2

3 011

-3

4 100
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010

-2

3 011

-3

4 100
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011

-3

4 100
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

138

Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most significant bit decides about the sign and it contributes to
the value.

138

3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

140

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

141

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

141

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

141

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”

142

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”

142

The Type bool in C++

represents logical values

Literals false and true
Domain {false, true}

bool b = true; // Variable with value true

143

The Type bool in C++

represents logical values
Literals false and true

Domain {false, true}

bool b = true; // Variable with value true

143

The Type bool in C++

represents logical values
Literals false and true
Domain {false, true}

bool b = true; // Variable with value true

143

Relational Operators

a < b (smaller than)

arithmetic type × arithmetic type→ bool

R-value × R-value→ R-value

144

Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b =

144

Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b = true

144

Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b =

144

Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b = false

144

Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b =

144

Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b = true

144

Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2∗a−1); // b =

144

Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2∗a−1); // b = false

144

Boolean Functions in Mathematics
Boolean function

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

146

AND(x, y) x ∧ y
“logical And”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

147

Logical Operator &&

a && b (logical and)

int n = −1;
int p = 3;
bool b = (n < 0) && (0 < p); //

148

Logical Operator &&

a && b (logical and)

int n = −1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true

148

OR(x, y) x ∨ y
“logical Or”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y OR(x, y)

0 0 0

0 1 1

1 0 1

1 1 1

149

Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); //

150

Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); // b = false

150

NOT(x) ¬x
“logical Not”

f : {0, 1} → {0, 1}

0 corresponds to “false”.
1corresponds to “true”.

x NOT(x)

0 1

1 0

151

Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); //

152

Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); // b = true

152

Precedences

!b && a

m
(!b) && a

153

Precedences

!b && a
m

(!b) && a

153

Precedences

a && b || c && d

m
(a && b) || (c && d)

153

Precedences

a && b || c && d
m

(a && b) || (c && d)

153

Precedences

a || b && c || d

m
a || (b && c) || d

153

Precedences

a || b && c || d
m

a || (b && c) || d

153

Precedences

The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || ! b

Some parentheses on the previous slides were actually redundant.

155

Precedences
The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || (!b)

Some parentheses on the previous slides were actually redundant.

155

Precedences
The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

(7 + x) < y && y != (3 * z) || (!b)

Some parentheses on the previous slides were actually redundant.

155

Precedences
The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

((7 + x) < y) && (y != (3 * z)) || (!b)

Some parentheses on the previous slides were actually redundant.

155

Precedences
The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

((7 + x) < y) && (y != (3 * z)) || (!b)

Some parentheses on the previous slides were actually redundant. 155

Completeness

AND, OR and NOT are the boolean
functions available in C++.

Any other binary boolean function can
be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

156

Completeness: XOR(x, y) x⊕ y

AND, OR and NOT are the boolean
functions available in C++.
Any other binary boolean function can
be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

156

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

157

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

157

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

157

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

158

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

158

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

158

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

158

Completeness Proof

Step 1: generate the fundamental functions f0001, f0010, f0100, f1000

f0001 = AND(x, y)

f0010 = AND(x,NOT(y))

f0100 = AND(y,NOT(x))

f1000 = NOT(OR(x, y))

159

Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.

160

Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.

160

bool vs int: Conversion

bool can be used whenever int is expected

Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

161

bool vs int: Conversion

bool can be used whenever int is expected

Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

161

bool vs int: Conversion

bool can be used whenever int is expected
– and vice versa.

Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

161

bool vs int: Conversion

bool can be used whenever int is expected
– and vice versa.

Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

161

bool vs int: Conversion

bool can be used whenever int is expected
– and vice versa.
Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

161

DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162

DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162

DeMorgan Rules

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162

Application: either ... or (XOR)

(x || y) && !(x && y)

x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y)

x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y)

not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y)

not: both or none

163

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x != 0 && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ x != 0 && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ true && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ true && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ x != 0 && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ false && z / x > y

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ false

⇒ No division by 0

164

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ x != 0 && z / x > y

⇒ No division by 0

164

4. Defensive Programming

Constants and Assertions

165

Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors

Errors that the compiler cannot find:
runtime errors (always semantical)

166

Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors
Errors that the compiler cannot find:
runtime errors (always semantical)

166

The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

167

The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

167

The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

167

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”

168

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”

168

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”

168

Constants: Variables behind Glass

169

The const-guideline

const-guideline

For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a
constant.

A program that adheres to this guideline is called const-correct.

170

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

� It’s not a bug, it’s a feature! �

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track

3. Question the (seemingly) obvious, there could be a typo in the
code

171

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false

requires #include <cassert>
can be switched off (potential performance gain)

172

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>

can be switched off (potential performance gain)

172

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>
can be switched off (potential performance gain)

172

Assertions for the gcd(x, y)
Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Input arguments for calcula-
tion

Precondition for the ongoing computation

173

Assertions for the gcd(x, y)
Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Precondition for the ongoing computation

173

Assertions for the gcd(x, y)
... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Precondition for the ongoing computation

Properties of the
gcd

174

Assertions for the gcd(x, y)
... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Properties of the
gcd

174

Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

...
assert(x > 0 && y > 0); // Ignored

... // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
...

175

Fail-Fast with Assertions

Real software: many C++
files, complex control flow

Errors surface late(r)→
impedes error localisation
Assertions: Detect errors
early

176

Fail-Fast with Assertions

Real software: many C++
files, complex control flow

Errors surface late(r)→
impedes error localisation
Assertions: Detect errors
early

176

Fail-Fast with Assertions

Real software: many C++
files, complex control flow
Errors surface late(r)→
impedes error localisation

Assertions: Detect errors
early

🕱🕱

176

Fail-Fast with Assertions

Real software: many C++
files, complex control flow
Errors surface late(r)→
impedes error localisation
Assertions: Detect errors
early

🕱🕱

176

5. Control Structures I

Selection Statements, Iteration Statements, Termination, Blocks

177

Control Flow

Up to now: linear (from top to bottom)
Interesting programs require “branches” and “jumps”

178

Selection Statements

implement branches

if statement

if-else statement

179

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool

180

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool

180

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool

180

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool

180

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

181

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

181

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

181

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

181

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

182

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Indentation

Indentation

182

Iteration Statements

implement “loops”

for-statement
while-statement
do-statement

183

Compute 1 + 2 + ... + n

// input
std::cout << "Compute the sum 1+...+n for n=?";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i)

s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";

184

Compute 1 + 2 + ... + n

// input
std::cout << "Compute the sum 1+...+n for n=?";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i)

s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";

184

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 i <= 2?

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 i <= 2?

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 i <= 2?

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

185

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

s == 3

185

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

186

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement

condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

186

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool

expression: any expression
body statement: any statement (body of the for-statement)

186

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression

body statement: any statement (body of the for-statement)

186

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

186

Gauß as a Child (1777 - 1855)

Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

Gauß finished after one minute.

188

Gauß as a Child (1777 - 1855)

Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

Gauß finished after one minute.

188

Gauß as a Child (1777 - 1855)

Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

Gauß finished after one minute.

188

The Solution of Gauß

The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of

1 + 2 + · · · + 99 + 100
+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050

189

The Solution of Gauß

The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of

1 + 2 + · · · + 99 + 100
+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050

189

The Solution of Gauß

The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of

1 + 2 + · · · + 99 + 100
+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050
189

for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:

expression changes its value that appears in condition .

190

for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:

After a finite number of iterations condition becomes false:
Termination

190

Infinite Loops

Infinite loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no effect.
Die null statement has no effect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;

191

Infinite Loops

Infinite loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no effect.
Die null statement has no effect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;

191

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C++-Program P and each input I if the program P terminates with
the input I.

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing
machine.

192

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C++-Program P and each input I if the program P terminates with
the input I.

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing
machine.

192

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

193

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

193

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

(body is the null statement)

193

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)

Exit: n%d != 0 evaluates to false as soon as a divisor is found
— at the latest, once d == n
Progress guarantees that the exit condition will be reached

194

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is found
— at the latest, once d == n

Progress guarantees that the exit condition will be reached

194

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is found
— at the latest, once d == n
Progress guarantees that the exit condition will be reached

194

Example: Correctness

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

195

Blocks

Blocks group a number of statements to a new statement

{statement1 statement2 ... statementN}

196

Blocks

Blocks group a number of statements to a new statement

Example: body of the main function

int main() {
...

}

196

Blocks

Blocks group a number of statements to a new statement

Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cout << "partial sum is " << s << "\n";

}

196

Blocks

Blocks group a number of statements to a new statement

Beispiel: if / else

if (d < n) // d is a divisor of n in {2,...,n−1}
std::cout << n << " = " << d << " ∗ " << n / d << ".\n";

else {
assert (d == n);
std::cout << n << " is prime.\n";

}

196

6. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

197

Visibility

Declaration in a block is not visible outside of the block.

int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”

198

Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

200

Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope

200

Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Potential Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

201

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << −−k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

205

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

205

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5

, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16

, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8

, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4

, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2

, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1

, 4, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4

, 2, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2

, 1, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1

, ... (repetition at 1)

208

The Collatz-Sequence

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

210

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

213

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

213

Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
220

Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
221

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered

224

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow

Their use is thus controversial, and should be carefully considered

224

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered

224

Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
225

Control Flow if else

condition

statement1

statement2

true

false

if (condition)
statement1

else
statement2

228

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

228

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

228

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression
break

continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue

230

Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue

230

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)

BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

236

Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true

237

Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true

237

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements

few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code

simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow

simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}

239

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}

240

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

243

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

243

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious

244

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious

244

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Fall-through

Exit switch

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable

245

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
245

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

246

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

246

7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

249

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

250

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4

250

“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.

250

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages

Value range is getting even smaller than for integers.

251

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Representability depends on the position of the decimal point.

third place truncated

251

Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

252

Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

252

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics

have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Arithmetic Operators

Analogous to int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operator, i.e. no %

254

Literals
are different from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23

e-7f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23

e-7

f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7

f

integer part

fractional part

exponent

255

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

255

Computing with float: Example

Approximating the Euler-Number

e =
∞∑
i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.

256

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i−th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i−th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i−1)! −> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}

257

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

258

Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point
numbers.

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

Typ float, value 28

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

252.0f / 5 + 32

is converted to float : 5.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

50.4f + 32

is converted to float : 32.0f

259

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

82.4f

259

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

output 0

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

260

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

W
ha

ti
s

go
in

g
on

he
re

?

260

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

261

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

261

8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers

262

Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

β ≥ 2, the base,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:

F (β, p, emin, emax)

264

Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

β ≥ 2, the base,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:

F (β, p, emin, emax)

264

Floating-point number Systems
F (β, p, emin, emax) contains the numbers

±
p−1∑
i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.

represented in base β:

± d0•d1 . . . dp−1 × βe,

265

Floating-point number Systems
F (β, p, emin, emax) contains the numbers

±
p−1∑
i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.

represented in base β:

± d0•d1 . . . dp−1 × βe,

265

Floating-point Number Systems

Representations of the decimal number 0.1 (with β = 10):

1.0 · 10−1, 0.1 · 100, 0.01 · 101, . . .

Different representations due to choice of exponent

266

Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 1

The normalized representation is unique and therefore prefered.

267

Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 1

The normalized representation is unique and therefore prefered.

267

Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 2

The number 0, as well as all numbers smaller than βemin, have no
normalized representation (we will come back to this later)

267

Set of Normalized Numbers

F ∗(β, p, emin, emax)

268

Normalized Representation

Example F ∗(2, 3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

269

Normalized Representation

Example F ∗(2,3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

269

Normalized Representation

Example F ∗(2, 3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

269

Normalized Representation

Example F ∗(2, 3,−2,2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

269

Normalized Representation

Example F ∗(2, 3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7

269

Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)

270

Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)

270

Conversion (0 < x < 2)

Computation of the binary representation:

x =
∞∑
i=0

bi2
−i

= b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒

2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
(x− b0) = 0•b1b2b3b4 . . .

2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

272

Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

for (int b_0; x != 0; x = 2 * (x - b_0)) {
b_0 = (x >= 1);
std::cout << b_0;

}
272

Example (binary)

x = 1•01011

= 1 + 0•01011

=⇒
2 · (x− 1) = 0•1011

273

Example (binary)

x = 1•01011

= 1 + 0•01011

=⇒
2 · (x− 1) = 0•1011

273

Example (binary)

x = 0•1011

= 0 + 0•1011

=⇒
2 · (x− 0) = 1•011

273

Example (binary)

x = 0•1011

= 0 + 0•1011

=⇒
2 · (x− 0) = 1•011

273

Example (binary)

x = 1•011

= 1 + 0•011

=⇒
2 · (x− 1) = 0•11

273

Example (binary)

x = 1•011

= 1 + 0•011

=⇒
2 · (x− 1) = 0•11

273

Example (binary)

x = 0•11

= 0 + 0•11

=⇒
2 · (x− 0) = 1•1

273

Example (binary)

x = 0•11

= 0 + 0•11

=⇒
2 · (x− 0) = 1•1

273

Example (binary)

x = 1•1

= 1 + 0•1

=⇒
2 · (x− 1) = 1

273

Example (binary)

x = 1•1

= 1 + 0•1

=⇒
2 · (x− 1) = 1

273

Example (binary)

x = 1

= 1 + 0

=⇒
2 · (x− 1) = 0

273

Example (binary)

x = 1

= 1 + 0

=⇒
2 · (x− 1) = 0

273

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1

0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0

0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0

0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0

0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1

0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1

0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite

276

Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite
276

Binary Number Representations of 1.1 and 0.1

are not finite⇒ conversion errors
1.1f und 0.1f: Approximations of 1.1 and 0.1

In diff.cpp: 1.1− 1.0 6= 0.1

277

Binary Number Representations of 1.1 and 0.1

are not finite⇒ conversion errors
1.1f und 0.1f: Approximations of 1.1 and 0.1

In diff.cpp: 1.1− 1.0 6= 0.1

277

Binary Number Representations of 1.1 and 0.1

are not finite⇒ conversion errors
1.1f und 0.1f: Approximations of 1.1 and 0.1

In diff.cpp: 1.1− 1.0 6= 0.1

277

Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178 . . .

1.1f = 1.1000000238418 . . .

278

Computing with Floating-point Numbers

is nearly as simple as with integers.

1.111 · 2−2

+ 1.011 · 2−1

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 1.011 · 2−1

1. adjust exponents by denormalizing one number

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2X

1. adjust exponents by denormalizing one number

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

2. binary addition of the significands

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 100.101 · 2−2X

2. binary addition of the significands

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 100.101 · 2−2

3. renormalize

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.00101 · 20X

3. renormalize

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.00101 · 20

4. round to p significant places, if necessary

279

Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.001 · 20X

4. round to p significant places, if necessary

279

The IEEE Standard 754

defines floating-point number systems and their rounding behavior
is used nearly everywhere

280

The IEEE Standard 754

defines floating-point number systems and their rounding behavior
is used nearly everywhere

280

The IEEE Standard 754

Single precision (float) numbers:

F ∗(2, 24,−126, 127) (32 bit) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) (64 bit) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

280

The IEEE Standard 754

Single precision (float) numbers:

F ∗(2, 24,−126, 127) (32 bit) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) (64 bit) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

280

Example: 32-bit Representation of a Floating Point
Number

31 30 29 28 27 26 25 24 23 012345678910111213141516171819202122

± Exponent Mantisse

2−126, . . . , 2127±
0,∞, . . .

1.00000000000000000000000. . .
1.11111111111111111111111

283

Floating-point Rules Rule 1

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

284

Floating-point Rules Rule 1

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

284

Floating-point Rules Rule 1

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

284

Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

285

Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

285

Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

285

Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

285

Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

Addition of 1 does not have any effect! 285

Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i

≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

287

Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i
≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

287

Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i
≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

287

Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";

288

Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";

Input: 10000000

forwards: 15.4037

backwards: 16.686

288

Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";

Input: 100000000

forwards: 15.4037

backwards: 18.8079

288

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

290

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

290

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25

290

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25

290

Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25

290

Floating-point Guidelines Rule 3

Rule 4

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

291

Literature

David Goldberg: What Every
Computer Scientist Should Know
About Floating-Point Arithmetic
(1991)

Randy Glasbergen, 1996
292

9. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the
Type void

293

Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << result << ".\n";

"Funktion pow"

295

Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << result << ".\n";

"Funktion pow"

295

Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << pow(a,n) << ".\n";

"Funktion pow"

295

Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

296

Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

double pow(double b, int e){...}

296

Function to Compute Powers
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()
{

std::cout << pow(2.0, −2) << "\n"; // outputs 0.25
std::cout << pow(1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(−2.0, 9) << "\n"; // outputs −512

return 0;
}

297

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN)
block

function name

return type

body

formal arguments

argument types

298

Xor

// post: returns l XOR r
bool Xor(bool l, bool r)
{

return l != r;
}

300

Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{

float res = 0;
for (unsigned int i = n; i >= 1; −−i)

res += 1.0f / i;
return res;

}

301

min

// POST: returns the minimum of a and b
int min(int a, int b)
{

if (a<b)
return a;

else
return b;

}

302

Function Calls

fname (expression1, expression2, . . . , expressionN)

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function.

Example: pow(a,n): Expression of type double

303

Function Calls

fname (expression1, expression2, . . . , expressionN)

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function.

Example: pow(a,n): Expression of type double

303

Function Calls

fname (expression1, expression2, . . . , expressionN)

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function.

Example: pow(a,n): Expression of type double

303

Function Calls

For the types we know up to this point it holds that:

Call arguments are R-values
↪→ call-by-value (also pass-by-value), more on this soon

The function call is an R-value.

fname: R-value × R-value × · · ·× R-value −→ R-value

304

Function Calls

For the types we know up to this point it holds that:

Call arguments are R-values
↪→ call-by-value (also pass-by-value), more on this soon

The function call is an R-value.

fname: R-value × R-value × · · ·× R-value −→ R-value

304

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

b=2.0,e=-2

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

b=2.0,e=-2
// ok

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

result=1.0

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

e == -2

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

b=0.5

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

e=2

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

i=0

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

i=0
result=0.5

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

i=1

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

i=1
result=0.25

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

i=2

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

result=0.25

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

result=0.25

Return

306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

Return

value: 0.25
306

Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

value: 0.25
306

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}

Not the formal arguments b and e of pow but the variables
defined here locally in the body of main

308

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}

Not the formal arguments b and e of pow but the variables
defined here locally in the body of main

308

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}
Not the formal arguments b and e of pow but the variables
defined here locally in the body of main

308

The type void

// POST: "(i, j)" has been written to standard output
???? print_pair(int i, int j) {

std::cout << "(" << i << ", " << j << ")\n";
}

int main() {
print_pair(3,4); // outputs (3, 4)
return 0;

}

309

The type void

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {

std::cout << "(" << i << ", " << j << ")\n";
}

int main() {
print_pair(3,4); // outputs (3, 4)
return 0;

}

309

The type void

Fundamental type with empty value range

Usage as a return type for functions that do only provide an effect

310

The type void

Fundamental type with empty value range
Usage as a return type for functions that do only provide an effect

310

void-Functions

do not require return.
execution ends when the end of the function body is reached or if
return; is reached

311

10. Functions II

Pre- and Postconditions Stepwise Refinement, Scope, Libraries and
Standard Functions

312

Preconditions

precondition:

what is required to hold when the function is called?

defines the domain of the function

0e is undefined for e < 0

// PRE: e >= 0 || b != 0.0

314

Preconditions

precondition:

what is required to hold when the function is called?

defines the domain of the function

0e is undefined for e < 0

// PRE: e >= 0 || b != 0.0

314

Postconditions

postcondition:

What is guaranteed to hold after the function call?

Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e

315

Postconditions

postcondition:

What is guaranteed to hold after the function call?

Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e

315

Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0

316

Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0

316

Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0

316

White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

Overflow if e or b are too large
be potentially not representable as a double (holes in the value
range!)

319

White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

Overflow if e or b are too large
be potentially not representable as a double (holes in the value
range!)

319

White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

Mathematical conditions as a compromise between formal
correctness and lax practice

320

Checking Preconditions. . .

Preconditions are only comments.

How can we ensure that they hold when the function is called?

321

Checking Preconditions. . .

Preconditions are only comments.
How can we ensure that they hold when the function is called?

321

. . . with assertions

#include <cassert>
...
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e) {

assert (e >= 0 || b != 0);
double result = 1.0;
...

}

322

Postconditions with Asserts
The result of “complex” computations is often easy to check.

Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}

324

Postconditions with Asserts
The result of “complex” computations is often easy to check.
Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}

324

Postconditions with Asserts
The result of “complex” computations is often easy to check.
Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}

324

Stepwise Refinement

A simple technique to solve complex problems

326

Example Problem

Find out if two rectangles intersect!

328

Top-Down Approach

Formulate a coarse solution using

comments
ficticious functions

Repeated refinement:

comments −→ program text
ficticious functions −→ function definitions

329

Top-Down Approach

Formulate a coarse solution using

comments
ficticious functions

Repeated refinement:

comments −→ program text
ficticious functions −→ function definitions

329

Coarse Solution

int main()
{

// input rectangles

// intersection?

// output solution

return 0;
}

331

Refinement 1: Input Rectangles

(x1, y1) w1

h1

(x2, y2) w2

h2

x

y

332

Refinement 1: Input Rectangles

(x1, y1) w1

h1

(x2, y2) w2

h2

x

y

332

Refinement 1: Input Rectangles

(x1, y1, w1, h1)

(x2, y2, w2, h2)
(x1, y1) w1

h1

(x2, y2) w2

h2

x

y

332

Refinement 1: Input Rectangles

Width w and height h may be negative.

(x, y, w, h)

(x, y)w < 0

h ≥ 0

333

Refinement 1: Input Rectangles
int main()
{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?

// output solution

return 0;
}

334

Refinement 2: Intersection? and Output
int main()
{

input rectangles X

bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";

else
std::cout << "no intersection!\n";

return 0;
}

335

Refinement 3: Intersection Function. . .
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return false; // todo
}

int main() {

input rectangles X

intersection? X

output solution X

return 0;
}

336

Refinement 3: Intersection Function. . .

bool rectangles_intersect(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)

{
return false; // todo

}

Function main X

337

Refinement 3: . . . with PRE and POST

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles,
// where w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1) and
// (x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return false; // todo
}

338

Refinement 4: Interval Intersection

Two rectangles intersect if and only if their x and y-intervals
intersect.

(x1, y1) w1

h1

(x2, y2) w2

h2

[x1, x1 + w1]

[x2, x2 + w2]

[y1, y1 + h1]

[y2, y2 + h2]

339

Refinement 4: Interval Intersections

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2);

X

}

340

Refinement 4: Interval Intersections

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2); X

}

340

Refinement 4: Interval Intersections

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return false; // todo
}

Function rectangles_intersect X

Function main X

341

Refinement 5: Min and Max

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return max(a1, b1) >= min(a2, b2)
&& min(a1, b1) <= max(a2, b2);

X

}

342

Refinement 5: Min and Max

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return max(a1, b1) >= min(a2, b2)
&& min(a1, b1) <= max(a2, b2); X

}

342

Refinement 5: Min and Max
// POST: the maximum of x and y is returned
int max(int x, int y){

if (x>y) return x; else return y;
}

// POST: the minimum of x and y is returned
int min(int x, int y){

if (x<y) return x; else return y;
}

Function intervals_intersect X

Function rectangles_intersect X

Function main X

343

Refinement 5: Min and Max
// POST: the maximum of x and y is returned
int max(int x, int y){

if (x>y) return x; else return y;
}

// POST: the minimum of x and y is returned
int min(int x, int y){

if (x<y) return x; else return y;
}

Function intervals_intersect X

Function rectangles_intersect X

Function main X

already exists in the standard library

343

Back to Intervals

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return std::max(a1, b1) >= std::min(a2, b2)
&& std::min(a1, b1) <= std::max(a2, b2); X

}

344

Look what we have achieved step by step!

#include <iostream>
#include <algorithm>

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return std::max(a1, b1) >= std::min(a2, b2)
&& std::min(a1, b1) <= std::max(a2, b2);

}

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2);

}

int main ()
{

std::cout << "Enter two rectangles [x y w h each]\n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;
bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);
if (clash)

std::cout << "intersection!\n";
else

std::cout << "no intersection!\n";
return 0;

}

345

Result

Clean solution of the problem
Useful functions have been implemented
intervals_intersect
rectangles_intersect

Intersection

346

Result

Clean solution of the problem
Useful functions have been implemented
intervals_intersect
rectangles_intersect

Intersection

346

Result

Clean solution of the problem
Useful functions have been implemented
intervals_intersect
rectangles_intersect

Intersection

346

Where can a Function be Used?
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}G

ül
tig

ke
it

f

347

Scope of a Function

is the part of the program where a function can be called

Extension by declaration of a function: like the definition but without
{...}.

double pow(double b, int e);

348

Scope of a Function

is the part of the program where a function can be called

Extension by declaration of a function: like the definition but without
{...}.

double pow(double b, int e);

348

This does not work. . .
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}G

ül
tig

ke
it

f

349

. . . but this works!
#include <iostream>
int f(int i); // Gueltigkeitsbereich von f ab hier

int main()
{

std::cout << f(1);
return 0;

}

int f(int i)
{

return i;
}

350

Forward Declarations, why?
Functions that mutually call each other:

int g(...); // g valid from here

int f(...) // f valid from here
{

g(...) // g undeclared
}

int g(...) // g valid from here!
{

f(...) // ok
}

G
ül

tig
ke

it
f

G
ül

tig
ke

it
g

351

Forward Declarations, why?
Functions that mutually call each other:

int g(...); // g valid from here

int f(...) // f valid from here
{

g(...) // ok
}

int g(...)
{

f(...) // ok
}

G
ül

tig
ke

it
f

G
ül

tig
ke

it
g

351

Reusability

Functions such as rectangles_intersect and pow are useful in
many programs.

“Solution”: copy-and-paste the source code

352

Reusability

Functions such as rectangles_intersect and pow are useful in
many programs.
“Solution”: copy-and-paste the source code

352

Level 1: Outsource the Function
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

353

Level 1: Outsource the Function
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

double pow(double b, int e); in
separate file mymath.cpp

353

Level 1: Include the Function
// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp"

int main()
{

std::cout << pow(2.0, −2) << "\n";
std::cout << pow(1.5, 2) << "\n";
std::cout << pow(5.0, 1) << "\n";
std::cout << pow(−2.0, 9) << "\n";

return 0;
}

in working directory

354

Level 1: Include the Function
// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp"

int main()
{

std::cout << pow(2.0, −2) << "\n";
std::cout << pow(1.5, 2) << "\n";
std::cout << pow(5.0, 1) << "\n";
std::cout << pow(−2.0, 9) << "\n";

return 0;
}

in working directory

354

Disadvantage of Including

#include copies the file (mymath.cpp) into the main program
(callpow2.cpp).

The compiler has to (re)compile the function definition for each
program

355

Disadvantage of Including

#include copies the file (mymath.cpp) into the main program
(callpow2.cpp).
The compiler has to (re)compile the function definition for each
program

355

Level 2: Separate Compilation

double pow(double b,
int e)

{
...

}

mymath.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion powg++ -c mymath.cpp

356

Level 2: Separate Compilation

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e);

mymath.h

357

Level 2: Separate Compilation

#include <iostream>
#include "mymath.h"
int main()
{

std::cout << pow(2,−2) << "\n";
return 0;

}

callpow3.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!

358

The linker unites...

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!

359

... what belongs together

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!

=

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010
001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

Funktion pow

Funktion main

rufe addr auf!

Executable callpow3
360

Availability of Source Code?

Observation

mymath.cpp (source code) is not required any more when the
mymath.o (object code) is available.

Many vendors of libraries do not provide source code.

Header files then provide the only readable informations.

361

Availability of Source Code?

Observation

mymath.cpp (source code) is not required any more when the
mymath.o (object code) is available.

Many vendors of libraries do not provide source code.

Header files then provide the only readable informations.

361

Availability of Source Code?

Observation

mymath.cpp (source code) is not required any more when the
mymath.o (object code) is available.

Many vendors of libraries do not provide source code.

Header files then provide the only readable informations.

361

Open-Source Software

Source code is generally available.

Only this allows the continued development of code by users and
dedicated “hackers”.

362

Open-Source Software

Source code is generally available.
Only this allows the continued development of code by users and
dedicated “hackers”.

362

Open-Source Software

Source code is generally available.
Only this allows the continued development of code by users and
dedicated “hackers”.

362

Libraries

Logical grouping of similar functions

pow

exp

log

sin

cmath

363

Name Spaces. . .

// cmath
namespace std {

double pow(double b, int e);

....
double exp(double x);
...

}

364

. . . Avoid Name Conflicts

#include <cmath>
#include "mymath.h"

int main()
{

double x = std::pow(2.0, −2); // <cmath>
double y = pow(2.0, −2); // mymath.h

}

365

Functions from the Standard Library

help to avoid re-inventing the wheel (such as with std::pow);
lead to interesting and efficient programs in a simple way;

guarantee a quality standard that cannot easily be achieved with
code written from scratch.

367

Functions from the Standard Library

help to avoid re-inventing the wheel (such as with std::pow);
lead to interesting and efficient programs in a simple way;
guarantee a quality standard that cannot easily be achieved with
code written from scratch.

367

Example: Prime Number Test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , n− 1}
dividing n .

unsigned int d;
for (d=2; n % d != 0; ++d);

368

Prime Number test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , b
√
nc}

dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

This works because std::sqrt rounds to the next
representable double number (IEEE Standard 754).

369

Prime Number test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , b
√
nc}

dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

This works because std::sqrt rounds to the next
representable double number (IEEE Standard 754).

369

Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2);

}

372

Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // fail!

}

372

Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2);

}
373

Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // ok!

}
373

Sneak Preview: Reference Types

We can enable functions to change the value of call arguments.

Not a new concept specific to functions, but rather a new class of
types

Reference types (e.g. int&)

374

Sneak Preview: Reference Types

We can enable functions to change the value of call arguments.
Not a new concept specific to functions, but rather a new class of
types

Reference types (e.g. int&)

374

Sneak Preview: Reference Types

We can enable functions to change the value of call arguments.
Not a new concept specific to functions, but rather a new class of
types

Reference types (e.g. int&)

374

11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References

375

Swap!
// POST: values of x and y are exchanged
void swap (int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap (a, b);
assert (a == 1 && b == 2); // ok!

}
376

Reference Types

We can make functions change the values of the call arguments

no new concept for functions, but a new class of types

Reference Types

377

Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types

377

Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types

377

Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.

378

Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...

but initialization and assignment work differently.

378

Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.

378

Anakin Skywalker alias Darth Vader

379

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9

darth_vader

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9

anakin_skywalker

darth_vader

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9

anakin_skywalker darth_vader

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

22

anakin_skywalker darth_vader

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

22

anakin_skywalker darth_vader

assignment to the L-value behind the alias

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalker

darth_vader

darth_vader

380

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalker

darth_vader

darth_vader

380

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;

A variable of reference type (a reference) can only be initialized
with an L-Value .

The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

381

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).

Assignment to the reference is to the object behind the alias.

381

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

381

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address

382

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address

382

Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

5

j i

383

Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

5

j

i

383

Pass by Reference

void increment (int& i)
{ // i becomes an alias of the call argument

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

5

j i

initialization of the formal arguments

383

Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j i

383

Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j

i

383

Pass by Reference

Formal argument has reference type:

⇒ Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

384

Pass by Value

Formal argument does not have a reference type:

⇒ Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.

385

References in the Context of intervals intersect
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect (int& l, int& h,

int a1, int b1, int a2, int b2) {
sort (a1, b1);
sort (a2, b2);

a1 b1

a2 b2l = std::max (a1, a2); // Assignments
h = std::min (b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
386

References in the Context of intervals intersect
// POST: a <= b
void sort (int& a, int& b) {

if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect (int& l, int& h,
int a1, int b1, int a2, int b2) {

sort (a1, b1); // Initialization
sort (a2, b2); // Initialization
l = std::max (a1, a2);
h = std::min (b1, b2);
return l <= h;

}
387

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)

In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

388

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

388

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

388

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

388

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

388

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

i is returned as reference

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

value of the actual parameter is
pushed onto the call stack

...and disappears from the stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

j

value of the actual parameter is
pushed onto the call stack

j becomes alias to released memory

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

j

value of the actual parameter is
pushed onto the call stack

value of j is output

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

389

The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must “stay alive”
at least as long as the reference.

390

Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

391

Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (efficient)

391

Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)

391

When const T& ?

Rule

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

392

When const T& ?

Rule

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

392

What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n;
i = 6;

The compiler detects our attempt to cheat

393

What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n; // error: const-qualification is discarded
i = 6;

The compiler detects our attempt to cheat

393

What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6

394

What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6

394

12. Vectors and Strings I

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code

395

Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...

... but not yet over data!
Vectors store homogeneous data.

396

Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...
... but not yet over data!

Vectors store homogeneous data.

396

Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...
... but not yet over data!
Vectors store homogeneous data.

396

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 232

Cross out all real factors of 2 ...

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 232 4 6 8 10 12 14 16 18 20 22

Cross out all real factors of 2 ...

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222

... and go to the next number

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 3

cross out all real factors of 3 ...

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 3 6 9 12 15 18 21

cross out all real factors of 3 ...

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 213

... and go to the next number

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 2132 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 2132 3 5 7 11 13 17 19 23

Question: how do we cross out numbers ??

397

Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 2132 3 5 7 11 13 17 19 23

Question: how do we cross out numbers ??
Answer: with a vector.

397

Erathostenes with Vectors: Initialization

...

#include <vector>

...

std::vector<bool> crossed_out (n, false);

element type in triangular brackets

Initialization with n elements
initial value false.

398

Erathostenes with Vectors: Computation

for (unsigned int i = 2; i < crossed_out.size(); ++i)
if (!crossed_out[i]) { // i is prime

std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)

crossed_out[m] = true;
}

399

Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

401

Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

401

Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

401

Random Access
The L-value

a [expr]

has type T and refers to the i-th element of the vector a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]

402

Random Access
The L-value

a [expr]

has type T and refers to the i-th element of the vector a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]

402

Random Access

a [expr]

The value i of expr is called index.
[]: subscript operator

403

Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a, i.e. address of the first memory cell

p+ s · i: address of a[i]

a[i]

404

Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a p+ s · i: address of a[i]

a[i]

404

Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)

std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.

405

Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)
std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.

405

Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)
std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.

405

Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)
std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.

405

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30;

406

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30; // runtime error: access to arr[10]!

406

Attention

Bound Checks

When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.

407

Consequences of illegal index accesses

408

Consequences of illegal index accesses

409

Vectors are Comfortable

std::vector<int> v (10);
v.at(5) = 3; // with bound check
v.push_back(8); // 8 is appended
std::vector<int> w = v; // w is initialized with v
int sz = v.size(); // sz = 11

410

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

411

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

411

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts?

Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

411

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

411

The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

412

The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

412

The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

literal of type char

412

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int

values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

413

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

413

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

413

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

413

The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int

is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

414

The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int
is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

414

The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int
is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

414

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.

ASCII can be encoded with 7 bits. An eighth bit can be used

415

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used

415

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
encode further 128 characters – this is history

415

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

415

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

415

Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

416

Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

416

Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

416

Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)

417

Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}

418

Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}
"- 32" transforms interval [32, 126] to [0, 94]
"32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of x(mod95) in interval [0, 94]

418

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

spaces and newline characters
shall not be ignored

419

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Conversion to bool: returns false if and
only if the input is empty.

419

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

} shifts only printable characters.

419

Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)

420

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin
to std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY

421

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin
to std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY

421

Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream
is an generic input/output
stream of chars

Function is called with specific
streams, e.g.: Console
(std::cin/cout), Files
(std::i/ofstream), Strings
(std::i/ostringstream)

422

Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream
is an generic input/output
stream of chars

Function is called with specific
streams, e.g.: Console
(std::cin/cout), Files
(std::i/ofstream), Strings
(std::i/ostringstream)

422

Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to
std::cout

423

Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file

424

Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>
...

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to std::cout

425

13. Vectors and Strings II

Strings, Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments

426

Texts

Text “to be or not to be” could be represented as
vector<char>

Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

427

Texts

Text “to be or not to be” could be represented as
vector<char>
Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

427

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

428

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

428

Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

428

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

429

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

429

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

429

Using std::string

Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string

430

https://en.cppreference.com/w/cpp/string

Multidimensional Vectors

For storing multidimensional structures such as tables, matrices,
...

... vectors of vectors can be used:
std::vector<std::vector<int>> m; // An empty matrix

431

Multidimensional Vectors

In memory: flat

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

432

Multidimensional Vectors

In memory: flat

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

432

Multidimensional Vectors: Initialisation Examples

Using literals:
// A 3−by−5 matrix
std::vector<std::vector<std::string>> m = {

{"ZH", "BE", "LU", "BS", "GE"},
{"FR", "VD", "VS", "NE", "JU"},
{"AR", "AI", "OW", "IW", "ZG"}

};

assert(m[1][2] == "VS");

433

Multidimensional Vectors: Initialisation Examples

Fill to specific size:
unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

434

Multidimensional Vectors: Initialisation Examples

Fill to specific size:
unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

434

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong

The declaration of a type alias helps here:
using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

435

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong
The declaration of a type alias helps here:

using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

435

Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was printed to stream ’to’
void print(imatrix m, std::ostream to);

int main() {
imatrix m = ...;
print(m, std::cout);

}

436

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

437

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

437

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

437

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18

439

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

440

Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.

442

Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start

443

The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...

445

The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...

Sentinel

445

Mark all Cells with their Path Lengths

Step 0: all cells with path length 0

0

T

unmarked neighbours of
cells with length 2

448

Mark all Cells with their Path Lengths

Step 1: all cells with path length 1

1 0
1

Tunmarked neighbours of
cells with length 0

unmarked neighbours of
cells with length 2

448

Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

448

Mark all Cells with their Path Lengths

Step 3: all cells with path length 3

3
2 1 0
3 2 1

3 2
3

Tunmarked neighbours of
cells with length 2

448

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

449

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

indicates if in sweep through all cells
there was progress

449

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

sweep over all cells

449

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

cell already marked or obstacle

449

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

a neighbour has path length i − 1. The
sentinels guarantee that there are al-
ways 4 neighbours

449

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

no progress, all reachable cells
marked; done.

449

The Shortest Paths Program

Algorithm: Breadth First Search

The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

453

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed

Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

453

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached

453

Vectors as Function Arguments

Recall the following:
#include <iostream>
#include <vector>

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);

int main() {
std::vector<std::vector<int>> m = ...;
print(m);

}
455

Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient

456

Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient

456

Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone

457

Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone

457

Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone

458

Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone

458

14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, n-Queen Problem, Lindenmayer Systems

459

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.

This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

460

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.
This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

460

Recursion in C++: In the same Way!

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1)
return 1;

else
return n * fac (n-1);

} 461

Infinite Recursion

is as bad as an infinite loop. . .

. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

462

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

462

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

462

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

Ein Euro ist ein Euro.

Wim Duisenberg, erster Präsident der EZB
462

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

463

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

463

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”

463

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Call of fac(4)
464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Evaluation of the return expression
464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

recursive call with argument n− 1 == 3

464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

Now there are two n. That of fac(4) and that of fac(3)

464

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

The n of the current call is used: n = 3

464

The Call Stack

For each function call:

push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

465

The Call Stack

For each function call:

push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value

at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1) 1

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

1

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2) 2

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

2

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3) 6

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

6

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4) 24

465

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

24

465

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

466

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b
is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

466

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

} 467

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

}

Termination: a mod b < b, thus b
gets smaller in each recursive call.

467

Fibonacci Numbers

Fn :=

0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

468

Fibonacci Numbers

Fn :=

0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .
468

Fibonacci Numbers in Zurich

469

Fibonacci Numbers in C++

Fn :=

0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
470

Fibonacci Numbers in C++

Fn :=

0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Correctness
and
termination
are clear.

470

Fibonacci Numbers in C++

Laufzeit

fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
470

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!

Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

471

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!

Compute the next number as a sum of a and b!

471

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

471

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
472

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
472

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
472

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

472

The Power of Recursion

Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.
Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)

473

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

474

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

474

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

474

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?
If yes, how many solutions are
there?

474

Solution?

Try all possible placements?

(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

475

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

475

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.

Idea: Do not follow paths that obviously fail. (Backtracking)

475

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)

475

Solution with Backtracking

First Queen

queens

0

0

0

0

476

Solution with Backtracking

x
Forbidden
Squares: no other
queens may be
here.

queens

0

0

0

0

476

Solution with Backtracking

x x
Forbidden
Squares: no other
queens may be
here.

queens

0

1

0

0

476

Solution with Backtracking

x x Second Queen in
next row (no colli-
sion)

queens

0

2

0

0

476

Solution with Backtracking

x x

x x x x

All squares in next
row forbiden. Track
back !

queens

0

2

4

0

476

Solution with Backtracking

x x x Move queen one
step further and try
again

queens

0

3

0

0

476

Solution with Backtracking

x x x

x
next row

queens

0

3

1

0

476

Solution with Backtracking

x x x

x

Ok (only previous
queens have to be
tested)

queens

0

3

1

0

476

Solution with Backtracking

x x x

x

x x x x

All squares of the
next row forbidden.
Track back.

queens

0

3

1

4

476

Solution with Backtracking

x x x

x x

Continue in previous
row.

queens

0

3

1

0

476

Solution with Backtracking

x x x

x x x x

Remaining squares
also forbidden.
Track back!

queens

0

3

4

0

476

Solution with Backtracking

x x x x
All squares of this
row did not yield
a solution. Track
back!

queens

0

4

0

0

476

Solution with Backtracking

x
again advance
queen by one
square

queens

1

0

0

0

476

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

476

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

476

Solution with Backtracking

x

x x x

x x

next row

queens

1

3

0

1

476

Solution with Backtracking

x

x x x

x x

Found a solution

queens

1

3

0

2

476

Search Strategy Visualized as a Tree

477

Search Strategy Visualized as a Tree

x x

477

Search Strategy Visualized as a Tree

x x

x x x x

477

Search Strategy Visualized as a Tree

x x x

477

Search Strategy Visualized as a Tree

x x x

x

477

Search Strategy Visualized as a Tree

x x x

x

x x x x

477

Search Strategy Visualized as a Tree

x x x

x x

477

Search Strategy Visualized as a Tree

x x x

x x x x

477

Search Strategy Visualized as a Tree

x x x x

477

Search Strategy Visualized as a Tree

x

477

Search Strategy Visualized as a Tree

x

x x x

477

Search Strategy Visualized as a Tree

x

x x x

477

Search Strategy Visualized as a Tree

x

x x x

x x

477

Search Strategy Visualized as a Tree

x

x x x

x x

477

Check Queen
using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.
// does not share a common row, column or diagonal
// with any of the queens on rows 0 to row−1
bool valid(const Queens& queens, unsigned int row){

unsigned int col = queens[row];
for (unsigned int r = 0; r != row; ++r){

unsigned int c = queens[r];
if (col == c || col − row == c0 − r || col + row == c + r)

return false; // same column or diagonal
}
return true; // no shared column or diagonal

}

478

Recursion: Find a Solution
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row){

if (row == queens.size())
return true;

for (unsigned int col = 0; col != queens.size(); ++col){
queens[row] = col;
if (valid(queens, row) && solve(queens,row+1))

return true; // (else check next position)
}
return false; // no valid configuration found

}
479

Recursion: Count all Solutions
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the
// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row){

if (row == queens.size())
return 1;

int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col){

queens[row] = col;
if (valid(queens, row))

count += nSolutions(queens,row+1);
}
return count;

}
480

Main Program
// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main(){
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)){

print(queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;

} else
std::cout << "no solution" << std::endl;

return 0;
}

481

Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles

482

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}

c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

483

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}

c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

483

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

483

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

483

Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.

483

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

484

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

484

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...

Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

484

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...

Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P (F) P (F)

+ +

P (+) P (+)

484

The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

484

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

485

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

485

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

485

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X

trace

485

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90 de-
grees X

− : rotate by −90
degrees

X

485

Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees X

− : rotate by −90
degrees X

485

Draw Words!

w1 = F + F +

486

Draw Words!

w1 = F + F +

486

Draw Words!

w1 = F + F +

486

Draw Words!

w1 = F + F +

486

Draw Words!

w1 = F + F +

486

Draw Words!

w1 = F + F +X

486

lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

487

lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

w = w0 = F

487

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

488

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

w = wi → w = wi+1

488

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

488

lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

draw w = wn!

488

lindenmayer: replace

// POST: returns the production of c
std::string replace (const char c)
{

switch (c) {
case ’F’:

return "F+F+";
default:

return std::string (1, c); // trivial production c −> c
}

}

489

lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word (const std::string& word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward(); // move one step forward
break;

case ’+’:
turtle::left(90); // turn counterclockwise by 90 degrees
break;

case ’−’:
turtle::right(90); // turn clockwise by 90 degrees

}
}

490

The Recursion

F

F + F +

F + F + + F + F + +

produce("F+F+")

produce("F+F+")

produce("+")

produce("F+F+")

produce("+")

491

L-Systeme: Erweiterungen

arbitrary symbols without graphical interpetation
arbitrary angles (snowflake)
saving and restoring the state of the turtle→ plants (bush)

492

15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions

493

Motivation: Calculator

Example

Input: 3 + 5
Output: 8

binary Operators +, -, *, / and numbers

floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

494

Motivation: Calculator

Example

Input: 3 / 5
Output: 0.6

binary Operators +, -, *, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses
unary operator -

494

Motivation: Calculator

Example

Input: 3 + 5 * 20
Output: 103

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++

parentheses
unary operator -

494

Motivation: Calculator

Example

Input: (3 + 5) * 20
Output: 160

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses

unary operator -

494

Motivation: Calculator

Example

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

494

Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

495

Seems to work. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 1 * 2 * 3 * 4 =
Result 24

495

Oops, Multiplication first. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

495

Analyzing the Problem

Example

Input:

13 + ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7 ∗ ...

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13 + 4∗(15− 21)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13+4 ∗ (−6)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

13 + (−24)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Result:

−11

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This

lecture is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture

is pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is

pretty much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty

much recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty much

recursive.

496

Analyzing the Problem

Example

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

Example

This lecture is pretty much recursive.

496

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

497

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...

? - ?, ? + ?, ...

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

500

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

Factor

500

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

500

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

500

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

Expression

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

500

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

500

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol

501

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

503

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.

504

Parsing

Parsing: Check if a string is valid according to the EBNF.

Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.

Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505

Construct a Parser

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

506

Rules (except number)

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

507

Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);

508

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);

509

One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from input, and the first non−whitespace character
// input returned (0 if there input no such character)
char lookahead (std:: istream& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof ())
return 0; // end of stream

else
return input.peek(); // next character in input

}

510

Cherry-Picking

. . . to extract the desired character.
// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std :: istream& input, char c)
{

if (lookahead (input) == c) {
input >> c;
return true;

} else
return false ;

}

511

Evaluating Factors

double factor (std :: istream& input)
{
double value;
if (consume (input, ’(’)) {
value = expression (input); // "(" expression
consume (input, ’) ’); // ")"

} else if (consume (input, ’−’))
value = −factor (input); // − factor

else
value = number(input); // number

return value;
}

factor = "(" expression ")"
| "−" factor
| number.

512

Evaluating Terms

double term (std:: istream& input)
{
double value = factor (input); // factor
while (true) {

if (consume (input, ’∗’))
value ∗= factor (input); // "∗" factor

else if (consume (input, ’/’))
value /= factor (input); // "/" factor

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
513

Evaluating Expressions

double expression (std :: istream& input)
{
double value = term (input); // term
while (true) {

if (consume (input, ’+’))
value += term (input); // "+" term

else if (consume (input, ’−’))
value −= term (input); // "−" term

else
return value;

}
}

expression = term { "+" term |"−" term }.
514

Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = ’0’ | ’1’ | ... | ’9’.
char digit(std::istream& input){

char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= ’0’ && ch <= ’9’){

input >> ch; // consume
return ch;

}
return 0;

}

515

... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){

input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits

num = num ∗ 10 + ch − ’0’;
ch = digit(input);

}
return num;

}

516

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

Recursion!

number

factor

term

expression

517

EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4

518

16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading

519

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

520

Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

520

Vision

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

521

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type

formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types

real range of values: rational (int× int.

522

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational (int× int.

522

Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
523

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

525

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

526

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

528

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different

529

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise initialization:
t.n = 1, t.d = 5

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

536

Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t); member-wise copy
536

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6

537

User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

540

User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.

540

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2);
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3);

542

Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3

542

Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop

543

Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);

544

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

545

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation

545

Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = operator+ (r, s);

equivalent but less handy: functional notation

545

Unary Minus

Only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}

547

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X

548

Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6

549

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value

551

Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value

551

In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";

552

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

553

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.

553

Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.

554

Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<

555

Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<< 555

17. Classes

Encapsulation, Classes, Member Functions, Constructors

556

A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...

557

. . . should be in a Library!

rational.h:
Definition of a struct rational
Function declarations

rational.cpp:
arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)

558

Thought Experiment

The three core missions of ETH:

research

education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education

technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands

559

The Customer is Happy
“Buying RAT PACKr has been a

game-changing move to put us on the
forefront of cutting-edge technology in so-
cial media engineering.”

B. Labla, CEO

. . . and
programs busily using rational.

output as double-value (3
5 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer is Happy
. . . and programs busily using rational.

output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}

560

The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

561

The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

561

New Version of RAT PACKr

It sucks, nothing works any more!

What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!

562

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.

563

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .

564

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality

The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.

⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality
The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .

565

Classes

provide the concept for encapsulation in C++

are a variant of structs
are provided in many object oriented programming languages

566

Classes

provide the concept for encapsulation in C++
are a variant of structs

are provided in many object oriented programming languages

566

Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming languages

566

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”

567

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”

567

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . .)

568

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

member function

569

Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
bl

ic
ar

ea

member function

member functions have ac-
cess to private data

569

Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access

570

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

571

Member Functions: Definition ???

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.

const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.
const refers to the instance this

r.numerator()

571

Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.
const refers to the instance this
n is the shortcut for this->n (precise explanation of “->” next
week)

r.numerator()

571

const and Member Functions

class rational {
public:

int numerator () const
{ return n; }
void set_numerator (int N)
{ n = N;}

...
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;
int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.

572

Comparison

Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison

Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison
Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Comparison
Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);

573

Member-Definition: In-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.

574

Member-Definition: In-Class vs. Out-of-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
574

Initialisation? Constructors!

class rational
{
public :

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

576

Initialisation? Constructors!

class rational
{
public :

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.

576

Initialisation “rational = int”?

class rational
{
public :

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

578

Initialisation “rational = int”?

class rational
{
public :

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body

578

The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

580

The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!

580

Alterantively: Deleting a Default Constructor

class rational
{
public :

...
rational () = delete;

...
};
...
rational r ; // error: use of deleted function ’rational::rational()

⇒ There are no uninitiatlized variables of type rational any more!

581

RAT PACKr Reloaded . . .

Customer’s program now looks like this:
// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X

583

RAT PACKr Reloaded . . .

Customer’s program now looks like this:
// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X

583

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}

584

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition

585

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before

possible overflow in addition

585

RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition

585

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

586

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int

Solution: encapsulate not only data but alsoe types.

586

Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.

586

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!

Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!

Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)

587

Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer
function double to_double (rational::integer)

587

RAT PACKr Revolutions

Finally, a customer program that remains stable
// POST: double approximation of r
double to_double (const rational r)
{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}

588

18. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors

590

Recap: vector<T>

Can be initialised with arbitrary size n

Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at
runtime

591

Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at
runtime

591

Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at
runtime

591

Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only superficially)

592

Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?

593

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

Effect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

594

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

Effect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

594

new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

p

Type: A pointer T∗ (more soon)

Value: the starting address of the memory chunk

595

new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

p

Type: A pointer T∗ (more soon)
Value: the starting address of the memory chunk

595

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call

But now: memory chunk inside vector must not “die” before the
vector itself
Memory allocated with new is not automatically deallocated (=
released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks

596

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call
But now: memory chunk inside vector must not “die” before the
vector itself

Memory allocated with new is not automatically deallocated (=
released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks

596

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call
But now: memory chunk inside vector must not “die” before the
vector itself
Memory allocated with new is not automatically deallocated (=
released)

Every new must have a matching delete that releases the
memory explicitly→ in two weeks

596

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call
But now: memory chunk inside vector must not “die” before the
vector itself
Memory allocated with new is not automatically deallocated (=
released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks

596

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

597

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .

. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

597

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor

Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

597

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗

Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

597

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

597

Pointer Types

T∗ Pointer type for base type T

An expression of type T∗ is called pointer (to T)

int∗ p; // Pointer to an int
std::string∗ q; // Pointer to a std::string

598

Pointer Types

T∗ Pointer type for base type T

An expression of type T∗ is called pointer (to T)

int∗ p; // Pointer to an int
std::string∗ q; // Pointer to a std::string

598

Pointer Types

Value of a pointer to T is the address of an object of type T

int∗ p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) p = addr

addr
(e.g. 0x7ffd89d5f7cc)

599

Pointer Types

Value of a pointer to T is the address of an object of type T

int∗ p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) p = addr

addr
(e.g. 0x7ffd89d5f7cc)

599

Pointer Types

Value of a pointer to T is the address of an object of type T

int∗ p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) p = addr

addr
(e.g. 0x7ffd89d5f7cc)

599

Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T∗ (of type T)

600

Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T∗ (of type T)

600

Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr

Type of the expression: A pointer T∗ (of type T)

600

Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T∗ (of type T)

600

Address Operator

int i = 5; // i initialised with 5
!1int∗ p = &i;

i = 5
addr

p = &i = addr

Next question: How to “follow” a pointer?

601

Address Operator

int i = 5; // i initialised with 5
!1int∗ p = &i; // p initialised with address of i

i = 5
addr

p = &i = addr

Next question: How to “follow” a pointer?

601

Address Operator

int i = 5; // i initialised with 5
!1int∗ p = &i; // p initialised with address of i

i = 5
addr

p = &i = addr

Next question: How to “follow” a pointer?

601

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the
address denoted by expr
Type of the expression: T

602

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the
address denoted by expr

Type of the expression: T

602

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the
address denoted by expr
Type of the expression: T

602

Dereference Operator

int i = 5;
int∗ p = &i; // p = address of i
!1int j = ∗p;

i = 5
addr

p = &i = addr

j = *p = 5

603

Dereference Operator

int i = 5;
int∗ p = &i; // p = address of i
!1int j = ∗p; // j = 5

i = 5
addr

p = &i = addrj = *p = 5

603

Address and Dereference Operator

pointer (R-value)

object (L-value)

& *

604

Pointer Types

A T* must actually point to a T

int∗ p = ...; // p points to an int
double∗ q = p; // but q to a double → compiler

error!

605

Mnenmonic Trick

The declaration

T* p; // p is of the type “pointer to T”

can be read as

T *p; // *p is of type T

606

Mnenmonic Trick

The declaration

T* p; // p is of the type “pointer to T”

can be read as

T *p; // *p is of type T

606

Null-Pointer

Special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)
int∗ p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid undefined behaviour
int∗ p; // p could point to anything
int∗ q = nullptr; // q explicitly points nowhere

607

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p

size
of a T

p+3 p+n

How to point to rear elements?

→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)

608

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p

p+3 p+n

How to point to rear elements?→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)

608

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p

p+3 p+n

How to point to rear elements?→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value

∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)

608

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p p+3 p+n

How to point to rear elements?→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n

∗p is equivalent to ∗(p + 0)

608

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p p+3 p+n

How to point to rear elements?→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)

608

Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to
1st element

!1int∗ p3 = p0 + 3; // p3 points to 4th element
!1−2∗(p3 + 2) = 600; // set value of 6th element to

600
!1−3std::cout << ∗(p0 + 5); // output 6th element’s

value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

609

Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to
1st element

!1int∗ p3 = p0 + 3; // p3 points to 4th element
!1−2∗(p3 + 2) = 600; // set value of 6th element to

600
!1−3std::cout << ∗(p0 + 5); // output 6th element’s

value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

609

Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to
1st element

!1int∗ p3 = p0 + 3; // p3 points to 4th element
!1−2∗(p3 + 2) = 600; // set value of 6th element to

600
!1−3std::cout << ∗(p0 + 5); // output 6th element’s

value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

609

Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to
1st element

!1int∗ p3 = p0 + 3; // p3 points to 4th element
!1−2∗(p3 + 2) = 600; // set value of 6th element to

600
!1−3std::cout << ∗(p0 + 5); // output 6th element’s

value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

609

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

it

itit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

it points to first element

614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

itit

it ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

Abort if end reached

614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit

ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

Output current element: ’x’
614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit it

itit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x
}

Advance pointer element-wise

614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit itit

it ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit

ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit it

itit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit itit

it itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit

itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y z
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit it

it

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y z
} 614

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y z
} 614

Random Access to Arrays

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression ∗(p + i)

can also be written as p[i]

E.g. p[1] == ∗(p + 1) == ’y’

615

Random Access to Arrays

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression ∗(p + i)

can also be written as p[i]

E.g. p[1] == ∗(p + 1) == ’y’

615

Random Access to Arrays

iteration over an array via indices and random access:

char∗ p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less efficient than the previously shown sequential
access via pointer iteration

616

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access
Sequential access is thus to be preferred for iterations

617

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s

Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access
Sequential access is thus to be preferred for iterations

617

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access

Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access
Sequential access is thus to be preferred for iterations

617

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access

Sequential access is thus to be preferred for iterations

617

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access
Sequential access is thus to be preferred for iterations

617

Reading a book . . . with random access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

618

Reading a book . . . with sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

618

Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the
array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment

620

Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element

[begin, end) Designates the elements of the segment of the
array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment

620

Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the
array

[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment

620

Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the
array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment

620

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to

value
void fill(1−int∗ begin, 1−int∗ end, int value) {

for (int∗ p = begin; p != end; ++p)
∗p = value;

}

...
int∗ p = new int[5];
fill(2−p, 2−p+5, 1); // Array at p

becomes {1, 1, 1, 1, 1}

621

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to

value
void fill(1−int∗ begin, 1−int∗ end, int value) {

for (int∗ p = begin; p != end; ++p)
∗p = value;

}

...
int∗ p = new int[5];
fill(2−p, 2−p+5, 1); // Array at p

becomes {1, 1, 1, 1, 1}
621

Functions with/without Effect

Pointers can (like references) be used for functions with effect.
Example: fill

But many functions don’t have an effect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;

622

Functions with/without Effect

Pointers can (like references) be used for functions with effect.
Example: fill
But many functions don’t have an effect, they only read the data
⇒ Use of const

So far, for example:
const int zero = 0;
const int& nil = zero;

622

Functions with/without Effect

Pointers can (like references) be used for functions with effect.
Example: fill
But many functions don’t have an effect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;

622

Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

623

Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

623

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer

624

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer

624

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer

624

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer

624

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

2−int const∗ const begin,
2−const int∗ const end) {

for (3−int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}

625

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

2−int const∗ const begin,
2−const int∗ const end) {

for (3−int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}

Const pointer to const int

Likewise (but different keyword order)

625

Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

2−int const∗ const begin,
2−const int∗ const end) {

for (3−int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}

Const pointer to const int

Likewise (but different keyword order)

Pointer, not const, to const int

625

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size

new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element

Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements

Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access

new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it

Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves

Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)

Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

628

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .
. . . we can implement a vector, based
on such a chunk of memory
avec – an array-based vector of int
elements

629

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .

. . . we can implement a vector, based
on such a chunk of memory
avec – an array-based vector of int
elements

629

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .
. . . we can implement a vector, based
on such a chunk of memory

avec – an array-based vector of int
elements

629

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .
. . . we can implement a vector, based
on such a chunk of memory
avec – an array-based vector of int
elements

629

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements;
2unsigned int count;

public: // Public interface:
3avec(unsigned int size);
4unsigned int size() const;
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Pointer to first element

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count;

public: // Public interface:
3avec(unsigned int size);
4unsigned int size() const;
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Number of elements

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size);
4unsigned int size() const;
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Constructor

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const;
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Size of vector

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Access an element

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[](int i); // Access an element
6void print(std::ostream& sink) const;

} Output elements

630

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[](int i); // Access an element
6void print(std::ostream& sink) const; // Output elems.

}

630

Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Save size

Side remark: vector is not initialised with a default value

631

Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Allocate memory

Side remark: vector is not initialised with a default value

631

Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Side remark: vector is not initialised with a default value

631

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance

That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this

elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
(*this).elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements

Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements

Mnemonic trick: “Follow the pointer to the member variable”

632

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632

Function avec::size()

int avec::size() 1const {
2return this−>count;

}

Doesn’t modify the vector

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok

633

Function avec::size()

int avec::size() 1const {
2return this−>count;

}
Return size

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok

633

Function avec::operator[]

int& avec::operator[](int i) {
1return this−>elements[i];

}
Return ith element

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this−>count);

return this−>elements[i];
}

634

Function avec::operator[]

int& avec::operator[](int i) {
1return this−>elements[i];

}

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this−>count);

return this−>elements[i];
}

634

Function avec::operator[]

int& avec::operator[](int i) {
return this−>elements[i];

}

Usage example:

avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0

635

Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Pointer to first element

Advance pointer element-wise

638

Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Advance pointer element-wise

Abort iteration if
past last element

638

Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Advance pointer element-wise

638

Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Advance pointer element-wise

Output current element

638

Function avec::print()
Finally: overload output operator:

operator<<(sink,
vec) {

vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639

Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639

Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged

But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639

Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change

sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639

Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639

Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size

640

Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size

640

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on

641

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on

2 1 7

641

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on

2 1 7

Possibility:

Allocate more memory than initially necessary

Fill from inside out, with pointers to first and last element

641

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on

2 1 7

first last

Possibility:

Allocate more memory than initially necessary
Fill from inside out, with pointers to first and last element

641

Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use

Then unavoidable: Allocate larger memory block and copy data
over

642

Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use
Then unavoidable: Allocate larger memory block and copy data
over

642

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

643

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

643

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

643

19. Dynamic Data Structures II

Linked Lists, Vectors as Linked Lists

644

Different Memory Layout: Linked List

No contiguous area of memory and no random
access

Each element points to its successor
Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9

pointer

⇒ Our vector can be implemented as a linked list

646

Different Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor

Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9

pointer

⇒ Our vector can be implemented as a linked list

646

Different Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor

Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9
pointer

⇒ Our vector can be implemented as a linked list

646

Different Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor
Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9
pointer

⇒ Our vector can be implemented as a linked list

646

Different Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor
Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9
pointer

⇒ Our vector can be implemented as a linked list

646

Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};

647

Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};

647

Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int)

next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};

647

Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};

647

Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};
647

Vector = Pointer to the First Element

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

class llvec {
llnode∗ head;

public:
// Public interface identical to avec’s
llvec(unsigned int size);
unsigned int size() const;
...

};
648

Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Pointer to first element

649

Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Abort if end reached

649

Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Advance pointer element-wise

649

Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Output current element

649

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’;

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’;

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1 5

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1 5

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1 5

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1 5 6

}
}

this−>head n

1 5 6
650

Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’; // 1 5 6

}
}

this−>head n

1 5 6
650

Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
1llnode∗ n = this−>head;

2for (; 0 < i; −−i)
2n = n−>next;

3return n−>value;
}

Pointer to first element

651

Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
1llnode∗ n = this−>head;

2for (; 0 < i; −−i)
2n = n−>next;

3return n−>value;
}

Step to ith element

651

Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
1llnode∗ n = this−>head;

2for (; 0 < i; −−i)
2n = n−>next;

3return n−>value;
}

Return ith element

651

Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 6

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates

652

Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 6

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates

652

Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 64

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates

652

Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 64

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates

652

Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 64

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates

652

Function llvec::llvec()
Constructor can be implemented using push_front():

llvec::llvec(unsigned int size) {
1this−>head = nullptr;

2for (; 0 < size; −−size)
2this−>push_front(0);

}

head initially points to nowhere

Use case:

llvec v = llvec(3);
std::cout << v; // 0 0 0

653

Function llvec::llvec()
Constructor can be implemented using push_front():

llvec::llvec(unsigned int size) {
1this−>head = nullptr;

2for (; 0 < size; −−size)
2this−>push_front(0);

}

Prepend 0 size times

Use case:

llvec v = llvec(3);
std::cout << v; // 0 0 0

653

Function llvec::llvec()
Constructor can be implemented using push_front():

llvec::llvec(unsigned int size) {
1this−>head = nullptr;

2for (; 0 < size; −−size)
2this−>push_front(0);

}

Use case:

llvec v = llvec(3);
std::cout << v; // 0 0 0

653

Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

Start at first element ...

654

Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

... and go to the last
element

654

Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

Append new element to
currently last

654

Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail

2 Using this pointer, it is possible to append to the end directly

1 5 6

this−>head this−>tail

655

Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail
2 Using this pointer, it is possible to append to the end directly

1 5 6 4

this−>head this−>tail

655

Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail
2 Using this pointer, it is possible to append to the end directly

1 5 6 4

this−>head this−>tail

655

Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail
2 Using this pointer, it is possible to append to the end directly

1 5 6 4

this−>head this−>tail

But: Several corner cases, e.g. vector still empty, must be
accounted for

655

Function llvec::size()
Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
1unsigned int c = 0;

2for (llnode∗ n = this−>head;
2n != nullptr;
2n = n−>next)

2++c;

3return c;
}

Count initially 0

656

Function llvec::size()
Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
1unsigned int c = 0;

2for (llnode∗ n = this−>head;
2n != nullptr;
2n = n−>next)

2++c;

3return c;
}

Count linked-list length

656

Function llvec::size()
Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
1unsigned int c = 0;

2for (llnode∗ n = this−>head;
2n != nullptr;
2n = n−>next)

2++c;

3return c;
}

Return count

656

Function llvec::size()

More efficient, but also slightly more complex: maintain size as
member variable

1 Add member variable unsigned int count to class llvec

2 this−>count must now be updated each time an operation
(such as push_front) affects the vector’s size

657

Function llvec::size()

More efficient, but also slightly more complex: maintain size as
member variable

1 Add member variable unsigned int count to class llvec
2 this−>count must now be updated each time an operation

(such as push_front) affects the vector’s size

657

Efficiency: Arrays vs. Linked Lists

Memory: our avec requires roughly n int s (vector size n), our
llvec roughly 3n int s (a pointer typically requires 8 byte)

Runtime (with avec = std::vector, llvec = std::list):

658

Efficiency: Arrays vs. Linked Lists

Memory: our avec requires roughly n int s (vector size n), our
llvec roughly 3n int s (a pointer typically requires 8 byte)

Runtime (with avec = std::vector, llvec = std::list):

658

20. Containers, Iterators and Algorithms

Containers, Sets, Iterators, const-Iterators, Algorithms, Templates

659

Vectors are Containers

Viewed abstractly, a vector is

1 A collection of elements
2 Plus operations on this collection

In C++, vector<T> and similar data structures are called
container
Called collections in some other languages, e.g. Java

660

Vectors are Containers

Viewed abstractly, a vector is

1 A collection of elements
2 Plus operations on this collection

In C++, vector<T> and similar data structures are called
container

Called collections in some other languages, e.g. Java

660

Vectors are Containers

Viewed abstractly, a vector is

1 A collection of elements
2 Plus operations on this collection

In C++, vector<T> and similar data structures are called
container
Called collections in some other languages, e.g. Java

660

Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

Efficient index-based access (v[i])
Efficient use of memory: Only the elements themselves require space
(plus element count)
Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient
Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)

661

Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

Efficient index-based access (v[i])
Efficient use of memory: Only the elements themselves require space
(plus element count)

Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient
Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)

661

Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

Efficient index-based access (v[i])
Efficient use of memory: Only the elements themselves require space
(plus element count)
Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient

Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)

661

Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

Efficient index-based access (v[i])
Efficient use of memory: Only the elements themselves require space
(plus element count)
Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient
Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)

661

Containers in C++

Nearly every application requires maintaining and manipulating
arbitrarily many data records

But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, . . .)
That’s why C++’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container
Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp

662

https://en.cppreference.com/w/cpp/container
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://github.com/abseil/abseil-cpp

Containers in C++

Nearly every application requires maintaining and manipulating
arbitrarily many data records
But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, . . .)

That’s why C++’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container
Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp

662

https://en.cppreference.com/w/cpp/container
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://github.com/abseil/abseil-cpp

Containers in C++

Nearly every application requires maintaining and manipulating
arbitrarily many data records
But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, . . .)
That’s why C++’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container

Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp

662

https://en.cppreference.com/w/cpp/container
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://github.com/abseil/abseil-cpp

Containers in C++

Nearly every application requires maintaining and manipulating
arbitrarily many data records
But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, . . .)
That’s why C++’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container
Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp

662

https://en.cppreference.com/w/cpp/container
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://github.com/abseil/abseil-cpp

Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>

Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] undefined)
Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table

663

Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>
Properties:

Cannot contain the same element twice
Elements are not in any particular order

Does not provide index-based access (s[i] undefined)
Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table

663

Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>
Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] undefined)

Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table

663

Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>
Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] undefined)
Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table

663

Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>
Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] undefined)
Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table
663

Use Case std::unordered_set<T>
Problem:

given a sequence of pairs (name, percentage) of Code Expert
submissions . . .

// Input: file submissions.txt
Friedrich 90
Schwerhoff 10
Lehner 20
Schwerhoff 11

. . . determine the submitters that achieved at least 50%
// Output
Friedrich

664

Use Case std::unordered_set<T>
Problem:

given a sequence of pairs (name, percentage) of Code Expert
submissions . . .

// Input: file submissions.txt
Friedrich 90
Schwerhoff 10
Lehner 20
Schwerhoff 11

. . . determine the submitters that achieved at least 50%
// Output
Friedrich

664

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Open submissions.txt

665

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Set of names, initially empty

665

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Pair (name, score)

665

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Input next pair

665

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Record name if score suf-
fices

665

Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Output recorded names
665

Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the elements
are ordered

{1, 2, 1} = {1, 2} 6= {2, 1}

Element look-up, insertion and removal are still efficient (better
than for std::vector<T>), but less efficient than for
std::unordered_set<T>
That’s because maintaining the order does not come for free
Side remark: implemented as a red-black tree

666

Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the elements
are ordered

{1, 2, 1} = {1, 2} 6= {2, 1}
Element look-up, insertion and removal are still efficient (better
than for std::vector<T>), but less efficient than for
std::unordered_set<T>

That’s because maintaining the order does not come for free
Side remark: implemented as a red-black tree

666

Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the elements
are ordered

{1, 2, 1} = {1, 2} 6= {2, 1}
Element look-up, insertion and removal are still efficient (better
than for std::vector<T>), but less efficient than for
std::unordered_set<T>
That’s because maintaining the order does not come for free

Side remark: implemented as a red-black tree

666

Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the elements
are ordered

{1, 2, 1} = {1, 2} 6= {2, 1}
Element look-up, insertion and removal are still efficient (better
than for std::vector<T>), but less efficient than for
std::unordered_set<T>
That’s because maintaining the order does not come for free
Side remark: implemented as a red-black tree

666

Use Case std::set<T>
std::ifstream in("submissions.txt");
1std::set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)

names.insert(name);
}

2std::cout << "Unique submitters: "
2<< names << ’\n’;

set instead of unsorted_set . . .

667

Use Case std::set<T>
std::ifstream in("submissions.txt");
1std::set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)

names.insert(name);
}

2std::cout << "Unique submitters: "
2<< names << ’\n’;

. . . and the output is in al-
phabetical order 667

Printing Containers

Recall: avec::print() and llvec::print()

What about printing set, unordered_set, . . .?
Commonality: iterate over container elements and print them

668

Printing Containers

Recall: avec::print() and llvec::print()
What about printing set, unordered_set, . . .?

Commonality: iterate over container elements and print them

668

Printing Containers

Recall: avec::print() and llvec::print()
What about printing set, unordered_set, . . .?
Commonality: iterate over container elements and print them

668

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e

min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .

669

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element

sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .

669

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements

replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .

669

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2

sample(c, n): Randomly chooses n elements from c
. . .

669

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c

. . .

669

Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .

669

Recall: Iterating With Pointers

Iteration over an array:

Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr

Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p

Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size

Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:

Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head

Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value

Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr

Advance pointer: p = p−>next

670

Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container

⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator

Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element

it = c.end(): Iterator pointing behind the last element
∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element

∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
∗it: Access current element

++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers

671

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.

Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

it
container

672

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.
Users remain independent of the container implementation

Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

it
container

672

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.
Users remain independent of the container implementation

Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

container
it

672

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.
Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container

Users don’t need to and also shouldn’t know internal details
⇒

container
it

672

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.
Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details

⇒

? ? ? ? ? ? ? ? ?

container
it

672

Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.
Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

? ? ? ? ? ? ? ? ?

container
it

672

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

it is an iterator specific to std::vector<int>

673

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

it initially points to the first element

673

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

Abort if it reached the end

673

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

Advance it element-wise

673

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

Negate current element (e→ −e)

673

Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

673

Example: Iterate over std::vector

Recall: type aliases can be used to shorten often-used type names

1using ivit = std::vector<int>::iterator; // int−
vector iterator

for (1ivit it = v.begin();
...

674

Negate as a Function
void neg(std::vector<int>& v) {

for (std::vector<int>::iterator it = v.begin();
it != v.end();
++it) {

∗it = −∗it;
}

}

// in main():
std::vector<int> v = {1, 2, 3};
neg(v); // v = {−1, −2, −3}

Disadvantage: Always negates the complete vector

675

Negate as a Function
void neg(std::vector<int>& v) {

for (std::vector<int>::iterator it = v.begin();
it != v.end();
++it) {

∗it = −∗it;
}

}

// in main():
std::vector<int> v = {1, 2, 3};
neg(v); // v = {−1, −2, −3}

Disadvantage: Always negates the complete vector
675

Negate as a Function
Better: negate inside a specific range (interval)

void neg(1std::vector<int>::iterator begin;
1std::vector<int>::iterator end) {

for (std::vector<int>::iterator it = 1begin;
it != 1end;
++it) {

∗it = −∗it;
}

}

Negate elements in
interval [begin, end)

676

Negate as a Function

Better: negate inside a specific range (interval)

void neg(std::vector<int>::iterator start;
std::vector<int>::iterator end);

// in main():
std::vector<int> v = {1, 2, 3};
1neg(v.begin(), v.begin() + (v.size() / 2)); Negate first half

677

Algorithms Library in C++

The C++standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin, end)

For example find, fill and sort
See also https://en.cppreference.com/w/cpp/algorithm

678

https://en.cppreference.com/w/cpp/algorithm

Algorithms Library in C++

The C++standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin, end)
For example find, fill and sort

See also https://en.cppreference.com/w/cpp/algorithm

678

https://en.cppreference.com/w/cpp/algorithm

Algorithms Library in C++

The C++standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin, end)
For example find, fill and sort
See also https://en.cppreference.com/w/cpp/algorithm

678

https://en.cppreference.com/w/cpp/algorithm

An iterator for llvec

We need:

1 An llvec-specific iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

2 Member functions begin() and end() for llvec to get an
iterator to the beginning and past the end, respectively

679

An iterator for llvec

We need:

1 An llvec-specific iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

2 Member functions begin() and end() for llvec to get an
iterator to the beginning and past the end, respectively

679

Iterator avec::iterator (Step 1/2)
1class llvec {

...
public:

1class iterator {
1 ...
1};

...
}

The iterator belongs to our vector, that’s why iterator is a public
inner class of llvec

Instances of our iterator are of type llvec::iterator

680

Iterator avec::iterator (Step 1/2)
1class llvec {

...
public:

1class iterator {
1 ...
1};

...
}

The iterator belongs to our vector, that’s why iterator is a public
inner class of llvec
Instances of our iterator are of type llvec::iterator 680

Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Pointer to current vector element

681

Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Create iterator to specific element

681

Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Advance iterator by one element

681

Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Access current element

681

Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

}; Compare with other iterator

681

Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

682

Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

Let iterator point to n initially

682

Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

682

Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

Advance iterator by one element

682

Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

Return reference to advanced iterator

682

Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

}

683

Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

}

Access current element

683

Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

}

683

Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

} this iterator different from other if they
point to different element

683

An iterator for llvec (Repetition)

We need:

1 An llvec-specific iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

3
2 Member functions begin() and end() for llvec to get an

iterator to the beginning and past the end, respectively

684

Iterator avec::iterator (Step 2/2)
1class llvec {

...
public:

class iterator {...};

1iterator begin();
1iterator end();

...
}

llvec needs member functions to issue iterators pointing to the
beginning and past the end, respectively, of the vector

685

Iterator llvec::iterator (Step 2/2)

llvec::iterator llvec::begin() {
1return llvec::iterator(this−>head);

}

llvec::iterator llvec::end() {
2return llvec::iterator(nullptr);

}

Iterator to first vector element

686

Iterator llvec::iterator (Step 2/2)

llvec::iterator llvec::begin() {
1return llvec::iterator(this−>head);

}

llvec::iterator llvec::end() {
2return llvec::iterator(nullptr);

} Iterator past last vector element

686

Const-Iterators
In addition to iterator, every container should also provide a
const-iterator const_iterator
Const-iterators grant only read access to the underlying Container
For example for llvec:
llvec::1−const_iterator llvec::1−cbegin() const;
llvec::1−const_iterator llvec::1−cend() const;

1−const int& llvec::const_iterator::operator∗()
const;

...

Therefore not possible (compiler error): ∗(v.cbegin()) = 0

687

Const-Iterators
In addition to iterator, every container should also provide a
const-iterator const_iterator
Const-iterators grant only read access to the underlying Container
For example for llvec:
llvec::1−const_iterator llvec::1−cbegin() const;
llvec::1−const_iterator llvec::1−cend() const;

1−const int& llvec::const_iterator::operator∗()
const;

...

Therefore not possible (compiler error): ∗(v.cbegin()) = 0
687

Const-Iterators

Const-Iterator can be used to allow only reading:

llvec v = ...;
for (llvec::1const_iterator it = v.1cbegin(); ...)

std::cout << ∗it;

It would also possible to use the non-const iterator here

688

Const-Iterators

Const-Iterator must be used if the vector is const:

1const llvec v = ...;
for (llvec::1const_iterator it = 1v.cbegin(); ...)

std::cout << ∗it;

It is not possible to use iterator here (compiler error)

689

Excursion: Templates

Goal: A generic output operator << for iterable Containers: llvec,
avec, std::vector, std::set, . . .

I.e. std::cout << c << ’n’ should work for any such container
c

690

Excursion: Templates

Goal: A generic output operator << for iterable Containers: llvec,
avec, std::vector, std::set, . . .
I.e. std::cout << c << ’n’ should work for any such container
c

690

Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);

691

Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);

We already know the pointy brackets from
vectors. Vectors are also implemented as
templates.

691

Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);

Intuition: operator works for every output
stream sink of type S and every container
container of type C

691

Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

template <typename S, typename C>
S& operator<<(S& sink, const C& container);

The compiler infers suitable types from the call arguments

std::set<int> s = ...;
std::cout << s << ’\n’; S = std::ostream, C = std::set<int>

692

Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {

for (typename 1C::const_iterator it = 1container.
begin();

it 2!= 1container.end();
2++it) {

sink << 2∗it << ’ ’;
}

return sink;
}

C must appropriate iterators

693

Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {

for (typename 1C::const_iterator it = 1container.
begin();

it 2!= 1container.end();
2++it) {

sink << 2∗it << ’ ’;
}

return sink;
}

C must appropriate iterators
– with appropriate functions

693

Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {

for (typename C::const_iterator it = container.
begin();

it != container.end();
++it) {

1sink << ∗it << ’ ’;
}

return sink;
}

S must support outputting elements
(*it) and characters (’ ’)

694

21. Dynamic Datatypes and Memory
Management

695

Problem

Last week: dynamic data type

Have allocated dynamic memory, but not released it again. In
particular: no functions to remove elements from llvec.

Today: correct memory management!

696

Goal: class stack with memory management
class stack{
public:

// post: Push an element onto the stack
void push(int value);
// pre: non-empty stack
// post: Delete top most element from the stack
void pop();
// pre: non-empty stack
// post: return value of top most element
int top() const;
// post: return if stack is empty
bool empty() const;
// post: print out the stack
void print(std::ostream& out) const;

...
697

Recall the Linked List

1 5 6

element (type llnode)

value (type int) next (type llnode*)

struct llnode {
int value;
llnode∗ next;
// constructor
llnode (int v, llnode∗ n) : value (v), next (n) {}

};

698

Stack = Pointer to the Top Element

1 5 6

element (type llnode)

value (type int) next (type llnode*)

class stack {
public:

void push (int value);
...

private:
llnode∗ topn;

};

699

Recall the new Expression

new T (...)

underlying type

new-Operator

type T*

constructor arguments

Effect: new object of type T is allocated in memory . . .
. . . and initialized by means of the matching constructor.
Value: address of the new object

700

The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 6

701

The new Expression push(4)

Effect: new object of type T is allocated in memory . . .

. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 6

701

The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor

Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 64

701

The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 64

701

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an object

that had been created with new.

type void

Effect: object is deconstructed (explanation below)
... and memory is released.

702

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an object

that had been created with new.

type void

Effect: object is deconstructed (explanation below)
... and memory is released.

702

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an object

that had been created with new.

type void

Effect: object is deconstructed (explanation below)
... and memory is released.

702

Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!

704

Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks

old objects that occupy memory. . .
. . . until it is full (heap overflow)

704

Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks

old objects that occupy memory. . .

. . . until it is full (heap overflow)

704

Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks

old objects that occupy memory. . .
. . . until it is full (heap overflow)

704

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error

705

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error

705

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated
other pointers may point to the same object

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error

705

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated
other pointers may point to the same object

... and used for releaseing the object

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error

705

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated
other pointers may point to the same object

... and used for releaseing the object
error: memory released!

Dereferencing of „dangling pointers”

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error

705

Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated
other pointers may point to the same object

... and used for releaseing the object
error: memory released!

Dereferencing of „dangling pointers”

Pointer to released objects: dangling pointers
Releasing an object more than once using delete is a similar
severe error

705

Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn

1 5 6

706

Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

706

Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

706

Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

reminder: shortcut for (*topn).next

706

Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

706

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " ";
}

topn

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " ";
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1 5
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1 5
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1 5 6
}

topn p

1 5 6

707

Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " "; // 1 5 6
}

topn p

1 5 6

707

Output Stack: operator<<

class stack {
public:

void push (int value);
void pop();
void print (std::ostream& o) const;
...

private:
llnode∗ topn;

};

// POST: s is written to o
std::ostream& operator<< (std::ostream& o, const stack& s){

s.print (o);
return o;

}
708

empty(), top()

bool stack::empty() const {
return top == nullptr;

}

int stack::top() const {
assert(!empty());
return topn−>value;

}

709

Empty Stack
class stack{
public:

stack() : topn (nullptr) {} // default constructor

void push(int value);
void pop();
void print(std::ostream& out) const;
int top() const;
bool empty() const;

private:
llnode∗ topn;

}
710

Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live (memory
leak)!
They should be released together with s1.

711

Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live (memory
leak)!

They should be released together with s1.

711

Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live (memory
leak)!
They should be released together with s1.

711

The Destructor

The Destructor of class T is the unique member function with
declaration

~T ();
is automatically called when the memory duration of a class object
ends – i.e. when delete is called on an object of type T∗ or when
the enclosing scope of an object of type T ends.
If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers topn, no effect
– reason for zombie elements

712

Using a Destructor, it Works
// POST: the dynamic memory of ∗this is deleted
stack::~stack(){

while (topn != nullptr){
llnode∗ t = topn;
topn = t−>next;
delete t;

}
}

automatically deletes all stack elements when the stack is being
released
Now our stack class seems to follow the guideline “dynamic
memory” (?)

713

Using a Destructor, it Works
// POST: the dynamic memory of ∗this is deleted
stack::~stack(){

while (topn != nullptr){
llnode∗ t = topn;
topn = t−>next;
delete t;

}
}

automatically deletes all stack elements when the stack is being
released

Now our stack class seems to follow the guideline “dynamic
memory” (?)

713

Using a Destructor, it Works
// POST: the dynamic memory of ∗this is deleted
stack::~stack(){

while (topn != nullptr){
llnode∗ t = topn;
topn = t−>next;
delete t;

}
}

automatically deletes all stack elements when the stack is being
released
Now our stack class seems to follow the guideline “dynamic
memory” (?)

713

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n";

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n";

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n";

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n";

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();

714

Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

714

Stack Done? Obviously not. . .

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

714

What has gone wrong?
s1

2 3 1

s2

...
stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

715

What has gone wrong?
s1

2 3 1

s2

...
stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

member-wise initialization: copies the
topn pointer only.

715

What has gone wrong?
s1

2 3 1

s2

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

715

What has gone wrong?
s1

2 3 1

s2

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();

715

What has gone wrong?
s1

2 3 1

s2

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();

715

What has gone wrong?
s1

2 3 1

s2
Pointer to “zombie”!

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();

715

What has gone wrong?
s1

2 3 1

s2
Pointer to “zombie”!

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

715

The actual problem

Already this goes wrong:
{

stack s1;
s1.push(1);
stack s2 = s1;

}

When leaving the scope, both stacks are deconstructed. But both
stacks try to delete the same data, because both stacks have
access to the same pointer.

716

Possible solutions

Smart-Pointers (we will not go into details here):

Count the number of pointers referring to the same objects and
delete only when that number goes down to 0
std::shared_pointer
Make sure that not more than one pointer can point to an object:
std::unique_pointer.

or:

We make a real copy of all data – as discussed below.

717

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop ();
718

We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // ok
718

The Copy Constructor

The copy constructor of a class T is the unique constructor with
declaration

T (const T& x);
is automatically called when values of type T are initialized with
values of type T

T x = t; (t of type T)
T x (t);

If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise – reason for the
problem above

719

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn

2 3 1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2

3 1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2

3 1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3

1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3

1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3 1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3 1

720

It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3 1

720

Aside: copy recursively

llnode∗ copy (node∗ that){
if (that == nullptr) return nullptr;
return new llnode(that−>value, copy(that−>next));

}

Elegant, isn’t it?

Why did we not do it like this?

Reason: linked lists can become very long. copy could then lead to
stack overflow6. Stack memory is usually smaller than heap memory.

6not an overflow of the stack that we are implementing but the call stack
721

Aside: copy recursively

llnode∗ copy (node∗ that){
if (that == nullptr) return nullptr;
return new llnode(that−>value, copy(that−>next));

}

Elegant, isn’t it? Why did we not do it like this?

Reason: linked lists can become very long. copy could then lead to
stack overflow6. Stack memory is usually smaller than heap memory.

6not an overflow of the stack that we are implementing but the call stack
721

Aside: copy recursively

llnode∗ copy (node∗ that){
if (that == nullptr) return nullptr;
return new llnode(that−>value, copy(that−>next));

}

Elegant, isn’t it? Why did we not do it like this?

Reason: linked lists can become very long. copy could then lead to
stack overflow6. Stack memory is usually smaller than heap memory.

6not an overflow of the stack that we are implementing but the call stack
721

Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1; // Initialisierung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // ok: Copy Constructor!

722

Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = s1; // Zuweisung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!

722

The Assignment Operator

Overloading operator= as a member function
Like the copy-constructor without initializer, but additionally

Releasing memory for the “old” value
Check for self-assignment (s1=s1) that should not have an effect

If there is no assignment operator declared it is automatically
generated (and assigns member-wise – reason for the problem
above

723

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s)

{
if (topn != s.topn){ // no self-assignment

stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!

724

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){

if (topn != s.topn){ // no self-assignment

stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!

724

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){

if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction

std::swap(topn, copy.topn); // now copy has the garbage!
} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!

724

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){

if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!

724

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){

if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!

724

It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){

if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!
724

Done
class stack{
public:

stack(); // constructor
~stack(); // destructor
stack(const stack& s); // copy constructor
stack& operator=(const stack& s); // assignment operator

void push(int value);
void pop();
int top() const;
bool empty() const;
void print(std::ostream& out) const;

private:
llnode∗ topn;

}
725

Dynamic Datatype

Type that manages dynamic memory (e.g. our class for a stack)
Minimal Functionality:

Constructors
Destructor
Copy Constructor
Assignment Operator

726

Dynamic Datatype

Type that manages dynamic memory (e.g. our class for a stack)
Minimal Functionality:

Constructors
Destructor
Copy Constructor
Assignment Operator

Rule of Three: if a class defines at
least one of them, it must define all
three

726

(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/

∗

−

−

3 −

4 5

+

3 ∗

4 5

6

leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)

727

(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/

∗

−

−

3 −

4 5

+

3 ∗

4 5

6

leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)

727

(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/

∗

−

−

3 −

4 5

+

3 ∗

4 5

6

leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)

727

(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/

∗

−

−

3 −

4 5

+

3 ∗

4 5

6

leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)

727

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused

728

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused

728

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused

728

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused

728

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused

728

Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/ ?

* ? = 6 ? ?

tnode

operator
Value left operand

right operand

?: unused

728

Nodes (struct tnode)

op val left righttnode

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’−’, ’∗’ or ’/’
double val;
tnode∗ left;
tnode∗ right;

tnode(char o, double v, tnode∗ l, tnode∗ r)
: op(o), val(v), left(l), right(r) {}

};
729

Nodes (struct tnode)

op val left righttnode

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’−’, ’∗’ or ’/’
double val;
tnode∗ left; // == nullptr for unary minus
tnode∗ right;

tnode(char o, double v, tnode∗ l, tnode∗ r)
: op(o), val(v), left(l), right(r) {}

};
729

Nodes (struct tnode)

op val left righttnode

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’−’, ’∗’ or ’/’
double val;
tnode∗ left; // == nullptr for unary minus
tnode∗ right;

tnode(char o, double v, tnode∗ l, tnode∗ r)
: op(o), val(v), left(l), right(r) {}

};
729

Size = Count Nodes in Subtrees

∗

−

−

3 4

+

3 ∗

4 5

Size of a leave: 1
Size of other nodes: 1 + sum of child nodes’ size
E.g. size of the "+"-node is 5

730

Size = Count Nodes in Subtrees

∗

−

−

3 4

+

3 ∗

4 5

Size of a leave: 1
Size of other nodes: 1 + sum of child nodes’ size

E.g. size of the "+"-node is 5

730

Size = Count Nodes in Subtrees

∗

−

−

3 4

+

3 ∗

4 5

Size of a leave: 1
Size of other nodes: 1 + sum of child nodes’ size
E.g. size of the "+"-node is 5

730

Count Nodes in Subtrees

// POST: returns the size (number of nodes) of
// the subtree with root n
int size (const tnode∗ n) {

if (n){ // shortcut for n != nullptr
return size(n−>left) + size(n−>right) + 1;

}
return 0;

}

op val left right

731

Evaluate Subtrees
// POST: evaluates the subtree with root n
double eval(const tnode∗ n){

assert(n);
if (n−>op == ’=’) return n−>val;
double l = 0;
if (n−>left) l = eval(n−>left);
double r = eval(n−>right);
switch(n−>op){

case ’+’: return l+r;
case ’−’: return l−r;
case ’∗’: return l∗r;
case ’/’: return l/r;
default: return 0;

}
}

op unary, or left branch

leaf. . .
. . . or fork:

right branch

op val left right

732

Cloning Subtrees

// POST: a copy of the subtree with root n is made
// and a pointer to its root node is returned
tnode∗ copy (const tnode∗ n) {

if (n == nullptr)
return nullptr;

return new tnode (n−>op, n−>val, copy(n−>left), copy(n−>right));
}

op val left right

733

Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode∗ n) {

if(n){
clear(n−>left);
clear(n−>right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5

734

Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode∗ n) {

if(n){
clear(n−>left);
clear(n−>right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5

734

Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode∗ n) {

if(n){
clear(n−>left);
clear(n−>right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5

734

Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode∗ n) {

if(n){
clear(n−>left);
clear(n−>right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5

734

Using Expression Subtrees
// Construct a tree for 1 − (−(3 + 7))
tnode∗ n1 = new tnode(’=’, 3, nullptr, nullptr);
tnode∗ n2 = new tnode(’=’, 7, nullptr, nullptr);
tnode∗ n3 = new tnode(’+’, 0, n1, n2);
tnode∗ n4 = new tnode(’−’, 0, nullptr, n3);
tnode∗ n5 = new tnode(’=’, 1, nullptr, nullptr);
tnode∗ root = new tnode(’−’, 0, n5, n4);

// Evaluate the overall tree
std::cout << "1 − (−(3 + 7)) = " << eval(root) << ’\n’;

// Evaluate a subtree
std::cout << "3 + 7 = " << eval(n3) << ’\n’;

clear(root); // free memory
735

Planting Trees

class texpression {
public:

texpression (double d)
: root (new tnode (’=’, d, 0, 0)) {}

...
private:

tnode∗ root;
};

creates a tree with
one leaf

736

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this

737

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this

737

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this

737

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this

737

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

e

e.root

−

e’

copy(e.root)

root

*this

737

Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

e

e.root

−

e’

copy(e.root)

root

*this

737

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5

738

Rule of three: Clone, reproduce and cut trees
texpression::~texpression(){

clear(root);
}

texpresssion::texpression (const texpression& e)
: root(copy(e.root)) { }

texpression::texpression& operator=(const texpression& e){
if (root != e.root){

texpression cp = e;
std::swap(cp.root, root);

}
return ∗this;

}

739

Concluded
class texpression{
public:

texpression (double d); // constructor
~texpression(); // destructor
texpression (const texpression& e); // copy constructor
texpression& operator=(const texpression& e); // assignment op
texpression operator−();
texpression& operator−=(const texpression& e);
texpression& operator+=(const texpression& e);
texpression& operator∗=(const texpression& e);
texpression& operator/=(const texpression& e);
double evaluate();

private:
tnode∗ root;

};
740

From values to trees!

// term = factor { "∗" factor | "/" factor }
double term (std :: istream& is){
double value = factor (is);
while (true) {

if (consume (is, ’∗’))
value ∗= factor (is);

else if (consume (is, ’/’))
value /= factor (is);

else
return value;

}
}

calculator.cpp
(expression value)

741

From values to trees!
using number_type = double;

// term = factor { "∗" factor | "/" factor }
number_type term (std :: istream& is){
number_type value = factor (is);
while (true) {

if (consume (is, ’∗’))
value ∗= factor (is);

else if (consume (is, ’/’))
value /= factor (is);

else
return value;

}
}

double_calculator.cpp
(expression value)

741

From values to trees!
using number_type = texpression ;

// term = factor { "∗" factor | "/" factor }
number_type term (std :: istream& is){
number_type value = factor (is);
while (true) {

if (consume (is, ’∗’))
value ∗= factor (is);

else if (consume (is, ’/’))
value /= factor (is);

else
return value;

}
}

double_calculator.cpp
(expression value)
→
texpression_calculator.cpp
(expression tree)

741

Concluding Remark

In this lecture, we have intentionally refrained from implementing
member functions in the node classes of the list or tree.7

When there is inheritace and polymorphism used, the
implementation of the functionality such as evaluate, print, clear
(etc:.) is better implemented in member functions.
In any case it is not a good idea to implement the memory
management of the composite data strcuture list or tree within the
nodes.

7Parts of the implementations are even simpler (because the case n==nullptr can be caught more easily
742

22. Conclusion

743

Purpose and Format

Name the most important key words to each chapter. Checklist:
“does every notion make some sense for me?”

M motivating example for each chapter
C concepts that do not depend from the implementation (language)
L language (C++): all that depends on the chosen language
E examples from the lectures

744

Kapitelüberblick
1. Introduction
2. Integers
3. Booleans
4. Defensive Programming
5./6. Control Statements
7./8. Floating Point Numbers
9./10. Functions
11. Reference Types
12./13. Vectors and Strings
14./15. Recursion
16. Structs and Overloading
17. Classes
18./19. Dynamic Datastructures
20. Containers, Iterators and Algorithms
21. Dynamic Datatypes and Memory Management

745

1. Introduction

M Euclidean algorithm
C algorithm, Turing machine, programming languages, compilation, syntax

and semantics
values and effects, fundamental types, literals, variables

L include directive #include <iostream>

main function int main(){...}

comments, layout // Kommentar

types, variables, L-value a , R-value a+b

expression statement b=b*b; , declaration statement int a;, return
statement return 0;

746

2. Integers

M Celsius to Fahrenheit
C associativity and precedence, arity

expression trees, evaluation order
arithmetic operators
binary representation, hexadecimal numbers
signed numbers, twos complement

L arithmetic operators 9 * celsius / 5 + 32

increment / decrement expr++

arithmetic assignment expr1 += expr2

conversion int↔ unsigned int

E Celsius to Fahrenheit, equivalent resistance

747

3. Booleans

C Boolean functions, completeness
DeMorgan rules

L the type bool
logical operators a && !b

relational operators x < y

precedences 7 + x < y && y != 3 * z

short circuit evaluation x != 0 && z / x > y

the assert-statement, #include <cassert>

E Div-Mod identity.

748

4. Definsive Programming

C Assertions and Constants
L The assert-statement, #include <cassert>

const int speed_of_light=2999792458

E Assertions for the GCD

749

5./6. Control Statements

M linear control flow vs. interesting programs
C selection statements, iteration statements

(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

L if statements if (a % 2 == 0) {..}

for statements for (unsigned int i = 1; i <= n; ++i) ...

while and do-statements while (n > 1) {...}

blocks and branches if (a < 0) continue;
Switch statement switch(grade) {case 6: }

E sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades

750

7./8. Floating Point Numbers

M correct computation: Celsius / Fahrenheit

C fixpoint vs. floating point
holes in the value range
compute using floating point numbers
floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

L types float, double
floating point literals 1.23e-7f

E Celsius/Fahrenheit, Euler, Harmonic Numbers

751

9./10. Functions

M Computation of Powers
C Encapsulation of Functionality

functions, formal arguments, arguments
scope, forward declarations
procedural programming, modularization, separate compilation
Stepwise Refinement

L declaration and definition of functions double pow(double b, int e){ ... }

function call pow (2.0, -2)

the type void
E powers, perfect numbers, minimum, calendar

752

11. Reference Types

M Swap

C value- / reference- semantics, pass by value, pass by reference, return by
reference
lifetime of objects / temporary objects
constants

L reference type int& a

call by reference, return by reference int& increment (int& i)

const guideline, const references, reference guideline

E swap, increment

753

12./13. Vectors and Strings

M Iterate over data: sieve of erathosthenes
C vectors, memory layout, random access

(missing) bound checks
vectors
characters: ASCII, UTF8, texts, strings

L vector types std::vector<int> a {4,3,5,2,1};

characters and texts, the type char char c = ’a’;, Konversion nach int
vectors of vectors
Streams std::istream, std::ostream

E sieve of Erathosthenes, Caesar-code, shortest paths

754

14./15. Recursion

M recursive math. functions, the n-Queen problem, Lindenmayer systems, a
command line calculator

C recursion
call stack, memory of recursion
correctness, termination,
recursion vs. iteration
Backtracking, EBNF, formal grammars, parsing

E factorial, GCD, sudoku-solver, command line calcoulator

755

16. Structs and Overloading

M build your own rational number

C heterogeneous data types
function and operator overloading
encapsulation of data

L struct definition struct rational {int n; int d;};

member access result.n = a.n * b.d + a.d * b.n;

initialization and assignment,
function overloading pow(2) vs. pow(3,3);, operator overloading

E rational numbers, complex numbers

756

17. Classes

M rational numbers with encapsulation

C Encapsulation, Construction, Member Functions
L classes class rational { ... };

access control public: / private:

member functions int rational::denominator () const

The implicit argument of the member functions

E finite rings, complex numbers

757

18./19. Dynamic Datastructures

M Our own vector
C linked list, allocation, deallocation, dynamic data type
L The new statement

pointer int* x;, Null-pointer nullptr.

address and derference operator int *ip = &i; int j = *ip;

pointer and const const int *a;

E linked list, stack

758

20. Containers, Iterators and Algorithms

M vectors are containers
C iteration with pointers

containers and iterators
algorithms

L Iterators std::vector<int>::iterator
Algorithms of the standard library std::fill (a, a+5, 1);

implement an iterator
iterators and const

E output a vector, a set

759

21. Dynamic Datatypes and Memory Management

M Stack
Expression Tree

C Guideline ”dynamic memory“
Pointer sharing
Dynamic Datatype
Tree-Structure

L new and delete
Destructor stack::~stack()
Copy-Constructor stack::stack(const stack& s)
Assignment operator stack& stack::operator=(const stack& s)
Rule of Three

E Binary Search Tree

760

The End

End of the Course

761

	Introduction
	Computer Science
	Computers
	Programming
	C++
	Comments
	Include and main Function
	Statements
	Declarations
	Variables
	Expressions
	L-Values and R-Values
	Operators

	Integers
	Präzedenz und Assoziativität
	Expression Trees and Evaluation Order
	Arithmetic operators
	Number Representations
	Domains and Conversion
	Signed Numbers

	Logical Values
	Boolean Values and Relational Operators
	Boolean Functions and Logical Operators
	Precedences
	Completeness
	Short circuit Evaluation

	Defensive Programming
	Constants

	Control Structures I
	Selection Statements
	Iteration Statements
	Termination
	Blocks

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

	Floating-point Numbers II
	Floating-point Number Systems
	Normalied Representation
	Binary and Decimal Systems
	Computing with Floating-point Numbers
	The IEEE Standard 754
	Floating-point Rules

	Functions I
	Defining Functions
	Function Calls
	Evaluation of Function Calls
	The type void

	Functions II
	Pre- and Postconditions
	Stepwise Refinement
	Scope
	Declaration vs. Definition
	Libraries
	Separate Compilation
	Open Source
	Name Spaces
	The C++ Standard Library

	Reference Types
	Reference Types
	Pass by Reference, Pass by Value
	Temporary Objects

	Vectors and Strings I
	Sieve of Erathostenes
	Vectors
	Memory Layout and Properties
	Characters and Texts
	ASCII and UTF8
	Caesar-Code

	Vectors and Strings II
	Texts
	Multidimensional Vectors
	Shortest Paths
	Vectors as Function Arguments

	Recursion 1
	Mathematical Recursion
	Termination
	The Call Stack
	Examples
	Recursion vs. Iteration
	The Power of Recursion
	Lindenmayer Systems

	Recursion 2
	Motivation: Calculator
	Formal Grammars
	Expressions
	EBNF for Expressions
	Lookahead
	Evaluation

	Structs
	Structs
	Overloading Functions
	Operator Overloading
	Arithmetic Operators
	Comparison Operators
	In/Output Operators

	Classes
	Thought Experiment
	Encapsulation
	Member Functions
	Constructors
	Type aliases within classes

	Dynamic Data Structures I
	Recap Vectors
	Dynamic Memory
	Pointers
	Address Operator
	Dereference Operator
	Pointer Arithmetic
	Array Accesses
	Arrays and Functions
	Pointers and Const
	Array-based Vector
	Signature
	Constructor
	Functions
	Growing/Shrinking

	Dynamic Data Structures II
	Linked Lists
	Vector as Linked List
	Functions

	Containers, Iterators and Algorithms
	Dynamic Datatypes and Memory Management
	Stack
	Dynamic Memory
	Destruction
	Copy Constructor
	Assignment Operator
	Dynamic Datatype
	Expression Tree Nodes
	Expression Trees

	Conclusion

