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Welcome

to the Course Informatik
for CSE at the MAVT departement of ETH Zürich.

Place and time:

Monday 08:15 - 10:00, CHN C 14.
Pause 9:00 - 9:15, slight shift possible.

Course web page

http://lec.inf.ethz.ch/math/informatik_cse
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Team

chef assistant Francois Serre

back office Lucca Hirschi

assistants Manuel Kaufmann
Robin Worreby
Roger Barton
Sebastian Balzer

lecturers Dr. Felix Friedrich / Dr. Malte Schwerhoff
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Exercises
The solution of the weekly exercises is thus voluntary but stronly
recommended.
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Exams

The exam (in examination period 2019) will cover

Lectures content (lectures, handouts)
Exercise content (exercise sessions, exercises).
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Exams

Written exam that most probably takes place at a computer (for the
CSE students).

We will test your practical skills (programming skills) and theoretical
knowledge (background knowledge, systematics).
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Offer

During the semester we offer weekly programming exercises that
are graded. Points achieved will be taken as a bonus to the exam.
The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of 0.25.
The admission to specially marked bonus depends on the
successful completion of other exercises. The achieved mark
bonus expires as soon as the lecture is given anew.
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Offer (Concretely)

3 bonus exercises in total; 2/3 of the points suffice for the exam
bonus of 0.25 marks
You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...
Bonus exercises must be unlocked (→ experience points) by
successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises completely
in order to unlock a bonus exercise
Details: course website, exercise sessions, online exercise
system (Code Expert)
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Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
invite you to interviews.

Should you be invited to an interview: don’t panic. Primary we
presume your innocence and want to know if you understood what
you have submitted.

11



Exercise group registration I
Visit http://expert.ethz.ch/enroll/AS18/infcse
Log in with your nethz account.
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Exercise group registration II
Register with the subsequent dialog for an exercise group.
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Overview
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Programming Exercise
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Programming Exercise

A: compile
B: run
C: test
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Programming Exercise

D: description
E: History
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Test and Submit
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Test and Submit

Test
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Test and Submit

Test

Submission
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Where is the Save Button?

The file system is transaction based and is saved permanently
(“autosave”). When opening a project it is found in the most recent
observed state.
The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.
The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.
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Snapshots
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Snapshots

Look at snapshot
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Snapshots

Look at snapshot

Submission

Go Back
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1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C++Program and its Syntactic and Semantic Ingredients
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What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)
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Computer Science vs. Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)
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Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .

. . . but not as an end in itself but for the systematic processing
of informations.
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Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .
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Computer Science 6= Computer Literacy

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?
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This course

Systematic problem solving with algorithms and the programming
language C++.
Hence:

not only
but also programming course.
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Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step

Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)
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Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b

a b a b a b
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Live Demo: Turing Machine
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Euklid in the Box
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Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing
31



Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann
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Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
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Memory for data and program

Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.
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Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
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Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
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Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890
36



Why programming?

Do I study computer science or what ...

There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .
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Mathematics used to be the lingua franca of the natural sci-
ences on all universities. Today this is computer science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics )
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This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)

Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!
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Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be subdivided into (extremely) many
single steps
The machine language varies between computers.
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Higher Programming Languages

can be represented as program text that

can be understood by humans
is independent of the computer model
→ Abstraction!
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Why C++?

Other popular programming languages: Java, C#, Objective-C,
Oberon, Javascript, Go, Python, . . .

General consensus:

„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety

42
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Why C++?

Over the years, C++’s greatest strength and its greatest
weakness has been its C-Compatibility – B. Stroustrup
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Deutsch vs. C++
Deutsch

Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

C++

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
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Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.
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Syntax and Semantics

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.
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Syntax and Semantics of C++

Syntax

When is a text a C++ program?

I.e. is it grammatically correct?

Semantics

What does a program mean?

Which algorithm does a program implement?
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Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language
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Programming Tools

Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.
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The first C++ program
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
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Most important ingredients. . . Statements
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Do something (read in a)!
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Most important ingredients. . . Expressions
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Compute a value (a2)!
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“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
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“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

comments
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Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!
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“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
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“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {
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std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

include directive
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“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
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}

declaration of the main function
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Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
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Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

expression statements
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Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}
return statement
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Statements – Effects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

effect: output of the string Compute ...

Effect: input of a number stored in a

Effect: saving the computed value of a*a into b

Effect: saving the computed value of b*b into b

Effect: output of the value of a and the computed value of b*bEffect: return the value 0
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Statements – Variable Definitions
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration statement

type
names
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Literals

represent constant values
have a fixed type and value
are "syntactical values"

Examples:

0 has type int, value 0.

1.2e5 has type double, value 1.2 · 105.
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Variables

represent (varying) values
have

name
type
value
address

Example

int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler (and linker, runtime)
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Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks
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Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;
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Expressions

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

variable name, primary expression (+ name and address)

variable name, primary expression (+ name and address)

literal, primary expression
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Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

composite expression
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Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

Two times composed expression

Four times composed expression
74



L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;
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L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)
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L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

R-Value

R-Value
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L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address

Value is the content at the memory location according to the
type of the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name
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L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value
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R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

Every E-Bike can be used as normal bike, but not the other way
round

An R-Value cannot change its value
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Expression that is no L-value

Example: literal 0
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L-Value and R-Value
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Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;
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Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator
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Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (input stream)

right operand (variable name)
input operator
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Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

assignment operator

multiplication operator
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2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int
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Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit
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// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
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int main() {
// Input
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int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "
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}
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9 * celsius / 5 + 32

Arithmetic expression,
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9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols
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9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols
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9 * celsius / 5 + 32

Arithmetic expression,
three literals, one variable, three operator symbols

How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32
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Precedence

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)
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Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32
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Associativity

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: operators of
same precedence evaluate from left to right
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Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.

-3 - 4

means

(-3) - 4
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Parentheses

Any expression can be put in parentheses by means of

associativities

precedences

arities

of the operands in an unambiguous way.
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Expression Trees
Parentheses yield the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Expression Trees
Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32
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Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Expression Trees – Notation
Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32
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Evaluation Order – more formally

Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to be
used is not defined.
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Evaluation Order – more formally

E

K1 K2

C++: the valid order to be
used is not defined.

"Good expression": any valid evaluation order leads to the same
result.
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Evaluation Order – more formally

E

K1 K2

C++: the valid order to be
used is not defined.

Example for a “bad expression”: a*(a=2)
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Evaluation order

Guideline

Avoid modifying variables that are used in the same expression
more than once.
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a : R-value→ R-value
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

a+b : R-value × R-value→ R-value
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

-a+b+c = ((-a) + b) + c
R-value × R-value × R-value→ R-value
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right
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Interlude: Assignment expression – in more detail

Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value

What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Example multiple assignment:
a = b = 0 =⇒ b=0; a=0
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Division

Operator / implements integer division

5 / 2 has value 2

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
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Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
9 / 5 * celsius + 32
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Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
1 * celsius + 32
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Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
15 + 32
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Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . .
47
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Division

In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!
9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit

104



Loss of Precision

Guideline

Watch out for potential loss of precision
Postpone operations with potential loss of precision to avoid “error
escalation”
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Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.
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Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

It holds that:

(a / b) * b + a % b has the value of a.
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Increment and decrement

Increment / Decrement a number by one is a frequent operation
works like this for an L-value:

expr = expr + 1.

Disadvantages

relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an effect (but should not, cf. guideline)
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In-/Decrement Operators

Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned
(as R-value)
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In-/Decrement Operators

Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned
(as L-value)

108



In-/Decrement Operators

Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned
(as R-value)
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In-/Decrement Operators

Prä-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned
(as L-value)

108



In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n";
std::cout << a++ << "\n";
std::cout << a << "\n";

110



In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n";
std::cout << a << "\n";
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In-/Decrement Operators

Example

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9
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C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C

while C++ returns the old C.
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C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C
while C++ returns the old C.

112



Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %
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Arithmetic Assignments

a += b
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analogously for -, *, / and %
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 21 + b0 · 20

Example: 101011
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 32+8+2+1.
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

Example: 101011 corresponds to 43.

Most Significant Bit (MSB)

Least Significant Bit (LSB)

115



Binary Numbers: Numbers of the Computer?

Truth: Computers calculate using binary numbers.
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Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish
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Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish
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Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)
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Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles
hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15
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Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits.

“compact representation of binary numbers”

32-bit numbers: 0x00000000 -- 0xffffffff .
0x80000000: highest bit of a 32-bit number is set
0xffffffff: all bits of a 32-bit number are set
“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”
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Why Hexadecimal Numbers?
“For programmers and technicians”
(user manual chess computer Mephisto II, 1981)
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Example: Hex-Colors

#00FF00
r g b
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Example: Hex-Colors

#FFFF00
r g b
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Example: Hex-Colors

#808080
r g b
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Example: Hex-Colors

#FF0050
r g b
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Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...
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Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
}

Minimum int value is -2147483648.
Maximum int value is 2147483647.

Where do these numbers come from?

124



Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.

Where do these numbers come from?

124



Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.

Where do these numbers come from?
124



Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?
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Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

On most platforms B = 32
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Domain of the Type int

Representation with B bits. Domain

{−2B−1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

Where does this partitioning come from?

For the type int C++ guarantees B ≥ 16
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Over- and Underflow

Arithmetic operations (+,-,*) can lead to numbers outside the
valid domain.
Results can be incorrect!

power8.cpp: 158 = −1732076671

power20.cpp: 320 = −808182895

There is no error message!
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The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .
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Mixed Expressions

Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u
Such mixed expressions are of the “more general” type
unsigned int.
int-operands are converted to unsigned int.
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Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x+ 2B
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Computing with Binary Numbers (4 digits)

Simple Addition

2 0010

+3 +0011

5 0101
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Computing with Binary Numbers (4 digits)

Simple Subtraction

5 0101

−3 −0011

2 0010
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Computing with Binary Numbers (4 digits)

Addition with Overflow

7 0111

+9 +1001

16 (1)0000
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Computing with Binary Numbers (4 digits)

Negative Numbers?

5 0101

+(−5) ????

0 (1)0000
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Computing with Binary Numbers (4 digits)

Simpler -1

1 0001

+(−1) 1111

0 (1)0000
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Computing with Binary Numbers (4 digits)

Utilize this:

3 0011

+? +????

−1 1111
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Computing with Binary Numbers (4 digits)

Invert!

3 0011

+(−4) +1100

−1 1111=̂ 2B − 1
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Computing with Binary Numbers (4 digits)

a a

+(−a− 1) ā

−1 1111=̂ 2B − 1
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Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

−a =̂ ā+ 1
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Computing with Binary Numbers (4 digits)

Wrap around semantics (calculating modulo 2B

−a =̂ 2B − a
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Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
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Negative Numbers (3 Digits)

a −a
0 000

000 0

1 001

-1

2 010

-2

3 011

-3

4 100
5 101
6 110
7 111
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Negative Numbers (3 Digits)
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Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
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Negative Numbers (3 Digits)

a −a
0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most significant bit decides about the sign and it contributes to
the value.
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3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation
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Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression
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Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”
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The Type bool in C++

represents logical values

Literals false and true
Domain {false, true}

bool b = true; // Variable with value true
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Relational Operators

a < b (smaller than)

arithmetic type × arithmetic type→ bool

R-value × R-value→ R-value
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Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b =
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Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b = true
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Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b =
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Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b = false
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Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b =

144



Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b = true
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Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2∗a−1); // b =
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Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2∗a−1); // b = false

144



Boolean Functions in Mathematics
Boolean function

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.
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AND(x, y) x ∧ y
“logical And”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

147



Logical Operator &&

a && b (logical and)

int n = −1;
int p = 3;
bool b = (n < 0) && (0 < p); //
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Logical Operator &&

a && b (logical and)

int n = −1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true
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OR(x, y) x ∨ y
“logical Or”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y OR(x, y)

0 0 0

0 1 1

1 0 1

1 1 1
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Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); //
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Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); // b = false

150



NOT(x) ¬x
“logical Not”

f : {0, 1} → {0, 1}

0 corresponds to “false”.
1corresponds to “true”.

x NOT(x)

0 1

1 0
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Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); //
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Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); // b = true
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Precedences

!b && a

m
(!b) && a
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Precedences

!b && a
m

(!b) && a
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Precedences

a && b || c && d

m
(a && b) || (c && d)
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Precedences

a || b && c || d

m
a || (b && c) || d
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Precedences

a || b && c || d
m

a || (b && c) || d
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Precedences

The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || ! b

Some parentheses on the previous slides were actually redundant.
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Completeness

AND, OR and NOT are the boolean
functions available in C++.

Any other binary boolean function can
be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

156



Completeness: XOR(x, y) x⊕ y

AND, OR and NOT are the boolean
functions available in C++.
Any other binary boolean function can
be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0
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Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)
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Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)
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Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)
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Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110
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Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110
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Completeness Proof

Step 1: generate the fundamental functions f0001, f0010, f0100, f1000

f0001 = AND(x, y)

f0010 = AND(x,NOT(y))

f0100 = AND(y,NOT(x))

f1000 = NOT(OR(x, y))

159



Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.
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Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.
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bool vs int: Conversion

bool can be used whenever int is expected

Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true
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DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162



DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162



DeMorgan Rules

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

162



Application: either ... or (XOR)

(x || y) && !(x && y)

x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y)

x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y)

not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y)

not: both or none

163



Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

163



Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x != 0 && z / x > y

⇒ No division by 0
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Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ true && z / x > y

⇒ No division by 0
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Short circuit Evaluation
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If the result is then known, the right operand will not be evaluated.

x has value 0⇒ false

⇒ No division by 0
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Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ x != 0 && z / x > y

⇒ No division by 0
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4. Defensive Programming

Constants and Assertions
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Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors

Errors that the compiler cannot find:
runtime errors (always semantical)
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The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition
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The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”
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Constants: Variables behind Glass

169



The const-guideline

const-guideline

For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a
constant.

A program that adheres to this guideline is called const-correct.
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Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171



Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

� It’s not a bug, it’s a feature! �

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171



Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track

3. Question the (seemingly) obvious, there could be a typo in the
code

171



Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

171



Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false

requires #include <cassert>
can be switched off (potential performance gain)
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Assertions for the gcd(x, y)
Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Input arguments for calcula-
tion

Precondition for the ongoing computation
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Assertions for the gcd(x, y)
... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Precondition for the ongoing computation

Properties of the
gcd
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Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

...
assert(x > 0 && y > 0); // Ignored

... // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
...
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Fail-Fast with Assertions

Real software: many C++
files, complex control flow

Errors surface late(r)→
impedes error localisation
Assertions: Detect errors
early
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5. Control Structures I

Selection Statements, Iteration Statements, Termination, Blocks
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Control Flow

Up to now: linear (from top to bottom)
Interesting programs require “branches” and “jumps”
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Selection Statements

implement branches

if statement

if-else statement

179



if-Statement

if ( condition )
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool
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if-Statement)
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if-else-statement
if ( condition )

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch
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if-else-statement
if ( condition )

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
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Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";
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Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Indentation

Indentation
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Iteration Statements

implement “loops”

for-statement
while-statement
do-statement
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Compute 1 + 2 + ... + n

// input
std::cout << "Compute the sum 1+...+n for n=?";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i)

s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";
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for-Statement Example
for ( unsigned int i=1; i <= n ; ++i )

s += i;

Assumptions: n == 2, s == 0

i s
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for-Statement Example
for ( unsigned int i=1; i <= n ; ++i )

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
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for-Statement Example
for ( unsigned int i=1; i <= n ; ++i )

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

s == 3
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for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)
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Gauß as a Child (1777 - 1855)

Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

Gauß finished after one minute.
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The Solution of Gauß

The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of

1 + 2 + · · · + 99 + 100
+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050
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for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:

expression changes its value that appears in condition .
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for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:

After a finite number of iterations condition becomes false:
Termination

190



Infinite Loops

Infinite loops are easy to generate:

for ( ; ; ) ;

Die empty condition is true.
Die empty expression has no effect.
Die null statement has no effect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;
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Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C++-Program P and each input I if the program P terminates with
the input I.

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing
machine.
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Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);
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Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

(body is the null statement)
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Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)

Exit: n%d != 0 evaluates to false as soon as a divisor is found
— at the latest, once d == n
Progress guarantees that the exit condition will be reached
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Example: Correctness

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.
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Blocks

Blocks group a number of statements to a new statement

{statement1 statement2 ... statementN}
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Blocks

Blocks group a number of statements to a new statement

Example: body of the main function

int main() {
...

}
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Blocks

Blocks group a number of statements to a new statement

Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cout << "partial sum is " << s << "\n";

}
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Blocks

Blocks group a number of statements to a new statement

Beispiel: if / else

if (d < n) // d is a divisor of n in {2,...,n−1}
std::cout << n << " = " << d << " ∗ " << n / d << ".\n";

else {
assert (d == n);
std::cout << n << " is prime.\n";

}

196



6. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

197



Visibility

Declaration in a block is not visible outside of the block.

int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”
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Potential Scope
in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for ( int i = 0; i < 10; ++i) {s += i; ... }
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Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Real Scope

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}
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Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs
int k = 2;
std::cout << −−k; // outputs

}
}

Local variables (declaration in a block) have automatic storage
duration.
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std::cout << ++i; // outputs 6, 7, 8, 9, 10
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}
}
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while Statement

while ( condition )
statement

is equivalent to

for ( ; condition ; )
statement
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while Statement
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statement
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Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1
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do Statement

do
statement

while ( expression );

is equivalent to

statement
while ( expression )

statement
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do Statement

do
statement

while ( expression );

is equivalent to

statement
while ( expression )

statement
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Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
220



Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
221



break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered
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Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
225



Control Flow if else

condition

statement1

statement2

true

false

if ( condition )
statement1

else
statement2
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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statement

init-statement

condition

statement

expression

true

false
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Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue
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Control Flow break and continue in for

init-statement

condition

statement

expression
break

continue
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Control Flow break and continue in for

init-statement

condition

statement

expression

break
continue
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Control Flow break and continue in for

init-statement

condition

statement

expression

break

continue
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Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language

Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto
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Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto
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BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)
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Spaghetti-Code with goto

Output of of ???????????
using the programming language BASIC:

true

true
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Spaghetti-Code with goto

Output of all prime numbers
using the programming language BASIC:

true

true
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The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}
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Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}
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Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241



Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}
In all other cases

Advantage: Control flow clearly recognisable
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Advantage: Control flow clearly recognisable
245



The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)
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The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)
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7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.
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<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82 degrees Fahrenheit.

richtig wäre 82.4
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“Proper” Calculation

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius; // Enable fractional numbers
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 ∗ celsius / 5 + 32 << " degrees Fahrenheit.\\n";

28 degrees Celsius are 82.4 degrees Fahrenheit.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

82.4 = 0000082.400

Disadvantages

Value range is getting even smaller than for integers.
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Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Representability depends on the position of the decimal point.

third place truncated
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Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent
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Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics

have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)
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Arithmetic Operators

Analogous to int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operator, i.e. no %
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Literals
are different from integers

by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1

.23e-7f

integer part

fractional part

exponent
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Computing with float: Example

Approximating the Euler-Number

e =
∞∑
i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.

256



Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i−th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i−th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i−1)! −> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}
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Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.

In mixed expressions integers are converted to floating point
numbers.
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

Typ float, value 28
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * 28.0f / 5 + 32

is converted to float : 9.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

252.0f / 5 + 32

is converted to float : 5.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

50.4f + 32

is converted to float : 32.0f
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

82.4f
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.5

input 1.0

input 0.5

output 0
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

260



Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8
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Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.
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8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers

262



Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

β ≥ 2, the base,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:

F (β, p, emin, emax)
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Floating-point number Systems
F (β, p, emin, emax) contains the numbers

±
p−1∑
i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.

represented in base β:

± d0•d1 . . . dp−1 × βe,
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Floating-point Number Systems

Representations of the decimal number 0.1 (with β = 10):

1.0 · 10−1, 0.1 · 100, 0.01 · 101, . . .

Different representations due to choice of exponent
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Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 1

The normalized representation is unique and therefore prefered.
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Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 2

The number 0, as well as all numbers smaller than βemin, have no
normalized representation (we will come back to this later)
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Set of Normalized Numbers

F ∗(β, p, emin, emax)

268



Normalized Representation

Example F ∗(2, 3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4

1.11 · 22 = 7
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Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)

270



Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)

270



Conversion (0 < x < 2)

Computation of the binary representation:

x =
∞∑
i=0

bi2
−i

= b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .
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=⇒
2 · (x− b0) = b1•b2b3b4 . . .
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Conversion (0 < x < 2)

Computation of the binary representation:

x = b0•b1b2b3 . . .

= b0 + 0•b1b2b3 . . .

=⇒
2 · (x− b0) = b1•b2b3b4 . . .

for (int b_0; x != 0; x = 2 * (x - b_0)) {
b_0 = (x >= 1);
std::cout << b_0;

}
272



Example (binary)

x = 1•01011

= 1 + 0•01011

=⇒
2 · (x− 1) = 0•1011
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Example (binary)

x = 0•1011

= 0 + 0•1011

=⇒
2 · (x− 0) = 1•011
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Example (binary)

x = 1•011

= 1 + 0•011

=⇒
2 · (x− 1) = 0•11
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Example (binary)

x = 0•11

= 0 + 0•11

=⇒
2 · (x− 0) = 1•1
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Example (binary)

x = 0•11

= 0 + 0•11

=⇒
2 · (x− 0) = 1•1
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Example (binary)

x = 1•1

= 1 + 0•1

=⇒
2 · (x− 1) = 1
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Example (binary)

x = 1•1

= 1 + 0•1

=⇒
2 · (x− 1) = 1
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Example (binary)

x = 1

= 1 + 0

=⇒
2 · (x− 1) = 0
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Example (binary)

x = 1

= 1 + 0

=⇒
2 · (x− 1) = 0
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Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1

0.1 0.2

0.2 b1 = 0 0.2 0.4

0.4 b2 = 0 0.4 0.8

0.8 b3 = 0 0.8 1.6

1.6 b4 = 1 0.6 1.2

1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not finite
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Binary Number Representations of 1.1 and 0.1

are not finite⇒ conversion errors
1.1f und 0.1f: Approximations of 1.1 and 0.1

In diff.cpp: 1.1− 1.0 6= 0.1
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are not finite⇒ conversion errors
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In diff.cpp: 1.1− 1.0 6= 0.1
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Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178 . . .

1.1f = 1.1000000238418 . . .

278



Computing with Floating-point Numbers

is nearly as simple as with integers.

1.111 · 2−2

+ 1.011 · 2−1
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Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 1.011 · 2−1

1. adjust exponents by denormalizing one number
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Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2X

1. adjust exponents by denormalizing one number
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Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

2. binary addition of the significands
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Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 100.101 · 2−2X

2. binary addition of the significands
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Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 100.101 · 2−2

3. renormalize
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Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.00101 · 20X

3. renormalize

279



Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.00101 · 20

4. round to p significant places, if necessary

279



Computing with Floating-point Numbers

Example (β = 2, p = 4):

1.111 · 2−2

+ 10.110 · 2−2

= 1.001 · 20X

4. round to p significant places, if necessary

279



The IEEE Standard 754

defines floating-point number systems and their rounding behavior
is used nearly everywhere
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The IEEE Standard 754

defines floating-point number systems and their rounding behavior
is used nearly everywhere
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The IEEE Standard 754

Single precision (float) numbers:

F ∗(2, 24,−126, 127) (32 bit) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) (64 bit) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

280



The IEEE Standard 754

Single precision (float) numbers:

F ∗(2, 24,−126, 127) (32 bit) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) (64 bit) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

280



Example: 32-bit Representation of a Floating Point
Number

31 30 29 28 27 26 25 24 23 012345678910111213141516171819202122

± Exponent Mantisse

2−126, . . . , 2127±
0,∞, . . .

1.00000000000000000000000. . .
1.11111111111111111111111

283



Floating-point Rules Rule 1

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1
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Floating-point Rules Rule 1

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

284



Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)
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Floating-point Rules Rule 2
Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

Addition of 1 does not have any effect! 285



Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i

≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent
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Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1

i
≈ lnn.

This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent
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Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";
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Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";

Input: 10000000

forwards: 15.4037

backwards: 16.686
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Harmonic Numbers Rule 2
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;
std::cout << "Forward sum = " << fs << "\n";

float bs = 0;
for (unsigned int i = n; i >= 1; −−i)

bs += 1.0f / i;
std::cout << "Backward sum = " << bs << "\n";

Input: 100000000

forwards: 15.4037

backwards: 18.8079

288



Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.
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Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25
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Harmonic Numbers Rule 2

Observation:

The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:

For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25
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Floating-point Guidelines Rule 3

Rule 4

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.
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9. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the
Type void

293



Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << result << ".\n";

"Funktion pow"
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Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(−n)

a = 1.0/a;
n = −n;

}
for (int i = 0; i < n; ++i)

result ∗= a;

std::cout << a << "^" << n << " = " << pow(a,n) << ".\n";

"Funktion pow"
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Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}
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Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

double pow(double b, int e){...}
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Function to Compute Powers
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()
{

std::cout << pow( 2.0, −2) << "\n"; // outputs 0.25
std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(−2.0, 9) << "\n"; // outputs −512

return 0;
}
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Function Definitions

T fname (T1 pname1,T2 pname2, . . . ,TN pnameN )
block

function name

return type

body

formal arguments

argument types
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body
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Xor

// post: returns l XOR r
bool Xor(bool l, bool r)
{

return l != r;
}
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Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{

float res = 0;
for (unsigned int i = n; i >= 1; −−i)

res += 1.0f / i;
return res;

}

301



min

// POST: returns the minimum of a and b
int min(int a, int b)
{

if (a<b)
return a;

else
return b;

}
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Function Calls

fname ( expression1, expression2, . . . , expressionN )

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function.

Example: pow(a,n): Expression of type double
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Function Calls

fname ( expression1, expression2, . . . , expressionN )

All call arguments must be convertible to the respective formal
argument types.
The function call is an expression of the return type of the
function.

Example: pow(a,n): Expression of type double
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Function Calls

For the types we know up to this point it holds that:

Call arguments are R-values
↪→ call-by-value (also pass-by-value), more on this soon

The function call is an R-value.

fname: R-value × R-value × · · ·× R-value −→ R-value
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

306
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b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
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ow

b=2.0,e=-2
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

b=2.0,e=-2
// ok
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Evaluation Function Call
double pow(double b, int e){
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)
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}
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al
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fp

ow

i=1
result=0.25
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
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}
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// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;
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pow (2.0, −2)
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result=0.25

Return
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
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ow

Return

value: 0.25
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Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(−e)
b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

result ∗ = b;
return result;

}

...
pow (2.0, −2)

C
al

lo
fp

ow

value: 0.25
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Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}

Not the formal arguments b and e of pow but the variables
defined here locally in the body of main
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Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e ; ++i)

r ∗ = b;
return r;

}

int main(){
double b = 2.0;
int e = −2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // −2
return 0;

}
Not the formal arguments b and e of pow but the variables
defined here locally in the body of main
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The type void

// POST: "(i, j)" has been written to standard output
???? print_pair(int i, int j) {

std::cout << "(" << i << ", " << j << ")\n";
}

int main() {
print_pair(3,4); // outputs (3, 4)
return 0;

}
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The type void

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {

std::cout << "(" << i << ", " << j << ")\n";
}

int main() {
print_pair(3,4); // outputs (3, 4)
return 0;

}
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The type void

Fundamental type with empty value range

Usage as a return type for functions that do only provide an effect
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The type void

Fundamental type with empty value range
Usage as a return type for functions that do only provide an effect
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void-Functions

do not require return.
execution ends when the end of the function body is reached or if
return; is reached
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10. Functions II

Pre- and Postconditions Stepwise Refinement, Scope, Libraries and
Standard Functions
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Preconditions

precondition:

what is required to hold when the function is called?

defines the domain of the function

0e is undefined for e < 0

// PRE: e >= 0 || b != 0.0
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Preconditions

precondition:

what is required to hold when the function is called?

defines the domain of the function

0e is undefined for e < 0

// PRE: e >= 0 || b != 0.0
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Postconditions

postcondition:

What is guaranteed to hold after the function call?

Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e
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Postconditions

postcondition:

What is guaranteed to hold after the function call?

Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b^e
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Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0
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Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0
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White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

Overflow if e or b are too large
be potentially not representable as a double (holes in the value
range!)
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White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:

Overflow if e or b are too large
be potentially not representable as a double (holes in the value
range!)
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White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

Mathematical conditions as a compromise between formal
correctness and lax practice
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Checking Preconditions. . .

Preconditions are only comments.

How can we ensure that they hold when the function is called?
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Checking Preconditions. . .

Preconditions are only comments.
How can we ensure that they hold when the function is called?
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. . . with assertions

#include <cassert>
...
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e) {

assert (e >= 0 || b != 0);
double result = 1.0;
...

}
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Postconditions with Asserts
The result of “complex” computations is often easy to check.

Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}
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Postconditions with Asserts
The result of “complex” computations is often easy to check.
Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p∗p/4 − q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p∗p/4 >= q); // precondition
double x1 = − p/2 + sqrt(p∗p/4 − q);
assert(equals(x1∗x1+p∗x1+q,0)); // postcondition
return x1;

}
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Stepwise Refinement

A simple technique to solve complex problems
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Example Problem

Find out if two rectangles intersect!
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Top-Down Approach

Formulate a coarse solution using

comments
ficticious functions

Repeated refinement:

comments −→ program text
ficticious functions −→ function definitions
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Coarse Solution

int main()
{

// input rectangles

// intersection?

// output solution

return 0;
}
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Refinement 1: Input Rectangles

(x1, y1) w1

h1

(x2, y2) w2

h2

x

y
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Refinement 1: Input Rectangles

(x1, y1, w1, h1)

(x2, y2, w2, h2)
(x1, y1) w1

h1

(x2, y2) w2

h2

x

y
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Refinement 1: Input Rectangles

Width w and height h may be negative.

(x, y, w, h)

(x, y)w < 0

h ≥ 0
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Refinement 1: Input Rectangles
int main()
{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?

// output solution

return 0;
}
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Refinement 2: Intersection? and Output
int main()
{

input rectangles X

bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";

else
std::cout << "no intersection!\n";

return 0;
}
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Refinement 3: Intersection Function. . .
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return false; // todo
}

int main() {

input rectangles X

intersection? X

output solution X

return 0;
}
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Refinement 3: Intersection Function. . .

bool rectangles_intersect(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)

{
return false; // todo

}

Function main X
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Refinement 3: . . . with PRE and POST

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles,
// where w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1) and
// (x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return false; // todo
}
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Refinement 4: Interval Intersection

Two rectangles intersect if and only if their x and y-intervals
intersect.

(x1, y1) w1

h1

(x2, y2) w2

h2

[x1, x1 + w1]

[x2, x2 + w2]

[y1, y1 + h1]

[y2, y2 + h2]
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Refinement 4: Interval Intersections

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2);

X

}
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Refinement 4: Interval Intersections

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2); X

}
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Refinement 4: Interval Intersections

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return false; // todo
}

Function rectangles_intersect X

Function main X
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Refinement 5: Min and Max

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return max(a1, b1) >= min(a2, b2)
&& min(a1, b1) <= max(a2, b2);

X

}
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Refinement 5: Min and Max

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return max(a1, b1) >= min(a2, b2)
&& min(a1, b1) <= max(a2, b2); X

}
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Refinement 5: Min and Max
// POST: the maximum of x and y is returned
int max(int x, int y){

if (x>y) return x; else return y;
}

// POST: the minimum of x and y is returned
int min(int x, int y){

if (x<y) return x; else return y;
}

Function intervals_intersect X

Function rectangles_intersect X

Function main X
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Refinement 5: Min and Max
// POST: the maximum of x and y is returned
int max(int x, int y){

if (x>y) return x; else return y;
}

// POST: the minimum of x and y is returned
int min(int x, int y){

if (x<y) return x; else return y;
}

Function intervals_intersect X

Function rectangles_intersect X

Function main X

already exists in the standard library
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Back to Intervals

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return std::max(a1, b1) >= std::min(a2, b2)
&& std::min(a1, b1) <= std::max(a2, b2); X

}
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Look what we have achieved step by step!

#include <iostream>
#include <algorithm>

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return std::max(a1, b1) >= std::min(a2, b2)
&& std::min(a1, b1) <= std::max(a2, b2);

}

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2);

}

int main ()
{

std::cout << "Enter two rectangles [x y w h each]\n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;
bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);
if (clash)

std::cout << "intersection!\n";
else

std::cout << "no intersection!\n";
return 0;

}
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Result

Clean solution of the problem
Useful functions have been implemented
intervals_intersect
rectangles_intersect

Intersection
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Where can a Function be Used?
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}G

ül
tig

ke
it

f
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Scope of a Function

is the part of the program where a function can be called

Extension by declaration of a function: like the definition but without
{...}.

double pow(double b, int e);
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Scope of a Function

is the part of the program where a function can be called

Extension by declaration of a function: like the definition but without
{...}.

double pow(double b, int e);
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This does not work. . .
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}G

ül
tig

ke
it

f
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. . . but this works!
#include <iostream>
int f(int i); // Gueltigkeitsbereich von f ab hier

int main()
{

std::cout << f(1);
return 0;

}

int f(int i)
{

return i;
}
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Forward Declarations, why?
Functions that mutually call each other:

int g(...); // g valid from here

int f(...) // f valid from here
{

g(...) // g undeclared
}

int g(...) // g valid from here!
{

f(...) // ok
}

G
ül

tig
ke

it
f

G
ül

tig
ke

it
g
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Reusability

Functions such as rectangles_intersect and pow are useful in
many programs.

“Solution”: copy-and-paste the source code
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Level 1: Outsource the Function
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}
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Level 1: Outsource the Function
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(−e)

b = 1.0/b;
e = −e;

}
for (int i = 0; i < e; ++i)

result ∗= b;
return result;

}

double pow(double b, int e); in
separate file mymath.cpp

353



Level 1: Include the Function
// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp"

int main()
{

std::cout << pow( 2.0, −2) << "\n";
std::cout << pow( 1.5, 2) << "\n";
std::cout << pow( 5.0, 1) << "\n";
std::cout << pow(−2.0, 9) << "\n";

return 0;
}

in working directory
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Level 1: Include the Function
// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp"

int main()
{

std::cout << pow( 2.0, −2) << "\n";
std::cout << pow( 1.5, 2) << "\n";
std::cout << pow( 5.0, 1) << "\n";
std::cout << pow(−2.0, 9) << "\n";

return 0;
}

in working directory
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Disadvantage of Including

#include copies the file (mymath.cpp) into the main program
(callpow2.cpp).

The compiler has to (re)compile the function definition for each
program
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#include copies the file (mymath.cpp) into the main program
(callpow2.cpp).
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program
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Level 2: Separate Compilation

double pow(double b,
int e)

{
...

}

mymath.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion powg++ -c mymath.cpp
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Level 2: Separate Compilation

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e);

mymath.h
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Level 2: Separate Compilation

#include <iostream>
#include "mymath.h"
int main()
{

std::cout << pow(2,−2) << "\n";
return 0;

}

callpow3.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!
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The linker unites...

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!
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... what belongs together

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!

=

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010
001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

Funktion pow

Funktion main

rufe addr auf!

Executable callpow3
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Availability of Source Code?

Observation

mymath.cpp (source code) is not required any more when the
mymath.o (object code) is available.

Many vendors of libraries do not provide source code.

Header files then provide the only readable informations.
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Open-Source Software

Source code is generally available.

Only this allows the continued development of code by users and
dedicated “hackers”.
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Only this allows the continued development of code by users and
dedicated “hackers”.
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Libraries

Logical grouping of similar functions

pow

exp

log

sin

cmath
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Name Spaces. . .

// cmath
namespace std {

double pow(double b, int e);

....
double exp(double x);
...

}
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. . . Avoid Name Conflicts

#include <cmath>
#include "mymath.h"

int main()
{

double x = std::pow(2.0, −2); // <cmath>
double y = pow(2.0, −2); // mymath.h

}
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Functions from the Standard Library

help to avoid re-inventing the wheel (such as with std::pow);
lead to interesting and efficient programs in a simple way;

guarantee a quality standard that cannot easily be achieved with
code written from scratch.
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Functions from the Standard Library

help to avoid re-inventing the wheel (such as with std::pow);
lead to interesting and efficient programs in a simple way;
guarantee a quality standard that cannot easily be achieved with
code written from scratch.
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Example: Prime Number Test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , n− 1}
dividing n .

unsigned int d;
for (d=2; n % d != 0; ++d);
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Prime Number test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , b
√
nc}

dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

This works because std::sqrt rounds to the next
representable double number (IEEE Standard 754).
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Prime Number test with sqrt

n ≥ 2 is a prime number if and only if there is no d in {2, . . . , b
√
nc}

dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

This works because std::sqrt rounds to the next
representable double number (IEEE Standard 754).
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Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2);

}
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Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // fail!

}
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Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2);

}
373



Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // ok!

}
373



Sneak Preview: Reference Types

We can enable functions to change the value of call arguments.

Not a new concept specific to functions, but rather a new class of
types

Reference types (e.g. int&)
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Sneak Preview: Reference Types

We can enable functions to change the value of call arguments.
Not a new concept specific to functions, but rather a new class of
types

Reference types (e.g. int&)

374



11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References
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Swap!
// POST: values of x and y are exchanged
void swap (int& x, int& y) {
int t = x;
x = y;
y = t;

}
int main(){

int a = 2;
int b = 1;
swap (a, b);
assert (a == 1 && b == 2); // ok!

}
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Reference Types

We can make functions change the values of the call arguments

no new concept for functions, but a new class of types

Reference Types
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Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types
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Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.
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underlying type

read as “T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.

378



Anakin Skywalker alias Darth Vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9

darth_vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

9

anakin_skywalker darth_vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

22

anakin_skywalker darth_vader

380



Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker;

22

anakin_skywalker darth_vader

assignment to the L-value behind the alias
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22
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darth_vader

darth_vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalker

darth_vader

darth_vader
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Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;

A variable of reference type (a reference) can only be initialized
with an L-Value .

The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

381



Reference Types: Intialization and Assignment
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A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).

Assignment to the reference is to the object behind the alias.
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Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

381



Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address
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Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address
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Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

5

j i
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{
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}
...
int j = 5;
increment (j);
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j

i
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Pass by Reference

void increment (int& i)
{ // i becomes an alias of the call argument

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

5

j i

initialization of the formal arguments
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Pass by Reference

void increment (int& i)
{

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j

i
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Pass by Reference

Formal argument has reference type:

⇒ Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.
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Pass by Value

Formal argument does not have a reference type:

⇒ Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.
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References in the Context of intervals intersect
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect (int& l, int& h,

int a1, int b1, int a2, int b2) {
sort (a1, b1);
sort (a2, b2);

a1 b1

a2 b2l = std::max (a1, a2); // Assignments
h = std::min (b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
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References in the Context of intervals intersect
// POST: a <= b
void sort (int& a, int& b) {

if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect (int& l, int& h,
int a1, int b1, int a2, int b2) {

sort (a1, b1); // Initialization
sort (a2, b2); // Initialization
l = std::max (a1, a2);
h = std::min (b1, b2);
return l <= h;

}
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Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)

In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment
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Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

value of the actual parameter is
pushed onto the call stack

i is returned as reference

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

value of the actual parameter is
pushed onto the call stack

...and disappears from the stack

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

j

value of the actual parameter is
pushed onto the call stack

j becomes alias to released memory

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

3 i

memory re-
leased

j

value of the actual parameter is
pushed onto the call stack

value of j is output

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior
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The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must “stay alive”
at least as long as the reference.
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Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)
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Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (efficient)
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Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)
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When const T& ?

Rule

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course
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What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n;
i = 6;

The compiler detects our attempt to cheat
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What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n; // error: const-qualification is discarded
i = 6;

The compiler detects our attempt to cheat
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What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6
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What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6
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12. Vectors and Strings I

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code
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Vectors: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...

... but not yet over data!
Vectors store homogeneous data.
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Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers
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Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers
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... and go to the next number
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Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 2132 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.
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method: cross out all non-prime numbers
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Vectors: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 222 6 9 12 15 18 2132 3 5 7 11 13 17 19 23

Question: how do we cross out numbers ??
Answer: with a vector.

397



Erathostenes with Vectors: Initialization

...

#include <vector>

...

std::vector<bool> crossed_out (n, false);

element type in triangular brackets

Initialization with n elements
initial value false.
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Erathostenes with Vectors: Computation

for (unsigned int i = 2; i < crossed_out.size(); ++i)
if (!crossed_out[i]) { // i is prime

std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)

crossed_out[m] = true;
}
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Memory Layout of a Vector

A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each
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Random Access
The L-value

a [ expr ]

has type T and refers to the i-th element of the vector a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]
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a[0] a[1] a[2] a[3]
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Random Access

a [ expr ]

The value i of expr is called index.
[]: subscript operator
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Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a, i.e. address of the first memory cell

p+ s · i: address of a[i]

a[i]

404



Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a p+ s · i: address of a[i]

a[i]
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Vector Initialization

std::vector<int> a (5);
The five elements of a are zero intialized)

std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
std::vector<int> a;
An initially empty vector is created.
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Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30;
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Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)

arr[i] = 30; // runtime error: access to arr[10]!
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Attention

Bound Checks

When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.
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Consequences of illegal index accesses
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Consequences of illegal index accesses
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Vectors are Comfortable

std::vector<int> v (10);
v.at(5) = 3; // with bound check
v.push_back(8); // 8 is appended
std::vector<int> w = v; // w is initialized with v
int sz = v.size(); // sz = 11
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Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements
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String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements
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The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’
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represents printable characters (e.g. ’a’) and control characters
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char c = ’a’

defines variable c of type
char with value ’a’

literal of type char
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The type char (“character”)

is formally an integer type

values convertible to int / unsigned int

values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}
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The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int

is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz
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Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.

ASCII can be encoded with 7 bits. An eighth bit can be used
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Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
encode further 128 characters – this is history
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Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
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Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001
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Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)
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Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}
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Caesar-Code: shift-Function
// pre: divisor > 0
// post: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c printable
c = 32 + mod(c − 32 + s,95)};

}
return c;

}
"- 32" transforms interval [32, 126] to [0, 94]
"32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of x(mod95) in interval [0, 94]
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

spaces and newline characters
shall not be ignored
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Conversion to bool: returns false if and
only if the input is empty.
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

} shifts only printable characters.

419



Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)
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Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin
to std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY
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Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream
is an generic input/output
stream of chars

Function is called with specific
streams, e.g.: Console
(std::cin/cout), Files
(std::i/ofstream), Strings
(std::i/ostringstream)
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Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to
std::cout
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Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file
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Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>
...

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to std::cout
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13. Vectors and Strings II

Strings, Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments
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Texts

Text “to be or not to be” could be represented as
vector<char>

Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>
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Using std::string

Declaration, and initialisation with a literal:

std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...
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Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)
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Using std::string

Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string
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Multidimensional Vectors

For storing multidimensional structures such as tables, matrices,
...

... vectors of vectors can be used:
std::vector<std::vector<int>> m; // An empty matrix
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Multidimensional Vectors

In memory: flat

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]
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Multidimensional Vectors: Initialisation Examples

Using literals:
// A 3−by−5 matrix
std::vector<std::vector<std::string>> m = {

{"ZH", "BE", "LU", "BS", "GE"},
{"FR", "VD", "VS", "NE", "JU"},
{"AR", "AI", "OW", "IW", "ZG"}

};

assert(m[1][2] == "VS");
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Multidimensional Vectors: Initialisation Examples

Fill to specific size:
unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)
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Multidimensional Vectors: Initialisation Examples

Fill to specific size:
unsigned int a = ...;
unsigned int b = ...;

// An a−by−b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)
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Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong

The declaration of a type alias helps here:
using Name = Typ;

Name that can now be used to ac-
cess the type

existing type
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Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was printed to stream ’to’
void print(imatrix m, std::ostream to);

int main() {
imatrix m = ...;
print(m, std::cout);

}
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Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.
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Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
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4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts
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This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
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Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.
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Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start
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The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...
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The Shortest Path Program

// define a two−dimensional array of dimensions
// (n+2) x (m+2) to hold the floor
// plus extra walls around
std::vector<std::vector<int> >

floor (n+2, std::vector<int>(m+2));

// Einlesen der Hallenbelegung, initiale Markierung
// (Handout)
...
// Markierung der umschliessenden Waende (Handout)
...

Sentinel
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Mark all Cells with their Path Lengths

Step 0: all cells with path length 0

0

T

unmarked neighbours of
cells with length 2
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Mark all Cells with their Path Lengths

Step 1: all cells with path length 1

1 0
1

Tunmarked neighbours of
cells with length 0

unmarked neighbours of
cells with length 2
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Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2
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Mark all Cells with their Path Lengths

Step 3: all cells with path length 3

3
2 1 0
3 2 1

3 2
3

Tunmarked neighbours of
cells with length 2
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Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}
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Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

indicates if in sweep through all cells
there was progress
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Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
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if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

sweep over all cells
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Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

cell already marked or obstacle
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Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

a neighbour has path length i − 1. The
sentinels guarantee that there are al-
ways 4 neighbours

449



Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

no progress, all reachable cells
marked; done.

449



The Shortest Paths Program

Algorithm: Breadth First Search

The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached
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The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.
Improvement: stop once the goal has been reached
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Vectors as Function Arguments

Recall the following:
#include <iostream>
#include <vector>

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);

int main() {
std::vector<std::vector<int>> m = ...;
print(m);

}
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Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient
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Printing a Matrix: Version 1

Recall the following:

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>> m);
...
print(m);

Disadvantage: When calling print(m) the (potentially large)
matrix m will be copied (call-by-value)⇒ inefficient
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Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone
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Printing a Matrix: Version 2

Better: Pass by reference (call-by-reference)

// POST: Matrix ’m’ was printed to std::cout
void print(std::vector<std::vector<int>>& m);
...
print(m);

Disadvantage: print(m) could modify the matrix⇒ potentially
error-prone
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Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone
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Printing a Matrix: Version 3

Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);
...
print(m);

Now: Efficient, but nevertheless not more error-prone
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14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, n-Queen Problem, Lindenmayer Systems
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Mathematical Recursion

Many mathematical functions can be naturally defined recursively.

This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise
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Mathematical Recursion

Many mathematical functions can be naturally defined recursively.
This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise
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Recursion in C++: In the same Way!

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1)
return 1;

else
return n * fac (n-1);

} 461



Infinite Recursion

is as bad as an infinite loop. . .

. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}
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Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

Ein Euro ist ein Euro.

Wim Duisenberg, erster Präsident der EZB
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Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”
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progress towards termination
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terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

“n is getting smaller for each call”
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Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Call of fac(4)
464



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
464



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Evaluation of the return expression
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Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 4

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

recursive call with argument n− 1 == 3

464



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument
464



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{ // n = 3

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

Now there are two n. That of fac(4) and that of fac(3)
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Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument

The n of the current call is used: n = 3
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The Call Stack

For each function call:

push value of the call argument onto
the stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24
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The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

24
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Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

466
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Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

} 467



Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)
{

if (b == 0)
return a;

else
return gcd (b, a % b);

}

Termination: a mod b < b, thus b
gets smaller in each recursive call.
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Fibonacci Numbers

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

468



Fibonacci Numbers

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .
468



Fibonacci Numbers in Zurich

469



Fibonacci Numbers in C++

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
470



Fibonacci Numbers in C++

Fn :=


0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Correctness
and
termination
are clear.
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Fibonacci Numbers in C++

Laufzeit

fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}
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Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!

Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!
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Fast Fibonacci Numbers
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Compute the next number as a sum of a and b!
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Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
472
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Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)
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The Power of Recursion

Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.
Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)
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The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?

If yes, how many solutions are
there?
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Provided is a n timesn chessboard
For example n = 6

Question: is it possiblt to position n
queens such that no two queens
threaten each other?
If yes, how many solutions are
there?

474



Solution?

Try all possible placements?

(
n2

n

)
possibilities. Too many!

nn possibilities. Better – but still too many.
Idea: Do not follow paths that obviously fail. (Backtracking)
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Solution with Backtracking

First Queen

queens

0

0

0

0
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Solution with Backtracking

x
Forbidden
Squares: no other
queens may be
here.
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0

0

0
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Solution with Backtracking

x x
Forbidden
Squares: no other
queens may be
here.

queens

0

1

0

0

476



Solution with Backtracking

x x Second Queen in
next row (no colli-
sion)

queens

0

2

0

0
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Solution with Backtracking

x x

x x x x

All squares in next
row forbiden. Track
back !

queens

0

2

4

0
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Solution with Backtracking

x x x Move queen one
step further and try
again

queens

0

3

0

0
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Solution with Backtracking

x x x

x
next row
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0

3

1
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Solution with Backtracking

x x x

x

Ok (only previous
queens have to be
tested)

queens

0

3

1

0
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Solution with Backtracking

x x x

x

x x x x

All squares of the
next row forbidden.
Track back.

queens

0

3

1

4
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Solution with Backtracking

x x x

x x

Continue in previous
row.

queens

0

3

1

0
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Solution with Backtracking

x x x

x x x x

Remaining squares
also forbidden.
Track back!

queens

0

3

4

0
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Solution with Backtracking

x x x x
All squares of this
row did not yield
a solution. Track
back!

queens

0

4

0

0
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Solution with Backtracking

x
again advance
queen by one
square

queens

1

0

0

0
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Solution with Backtracking
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x x x
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next row
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Solution with Backtracking

x

x x x

x x

Found a solution

queens

1

3

0

2
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Search Strategy Visualized as a Tree
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Check Queen
using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.
// does not share a common row, column or diagonal
// with any of the queens on rows 0 to row−1
bool valid(const Queens& queens, unsigned int row){

unsigned int col = queens[row];
for (unsigned int r = 0; r != row; ++r){

unsigned int c = queens[r];
if (col == c || col − row == c0 − r || col + row == c + r)

return false; // same column or diagonal
}
return true; // no shared column or diagonal

}
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Recursion: Find a Solution
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row){

if (row == queens.size())
return true;

for (unsigned int col = 0; col != queens.size(); ++col){
queens[row] = col;
if (valid(queens, row) && solve(queens,row+1))

return true; // (else check next position)
}
return false; // no valid configuration found

}
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Recursion: Count all Solutions
// pre: all queens from row 0 to row−1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the
// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row){

if (row == queens.size())
return 1;

int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col){

queens[row] = col;
if (valid(queens, row))

count += nSolutions(queens,row+1);
}
return count;

}
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Main Program
// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main(){
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)){

print(queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;

} else
std::cout << "no solution" << std::endl;

return 0;
}
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Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles
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Definition and Example

alphabet Σ

Σ∗: finite words over Σ

production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}

c P (c)
F F + F +
+ +
− −

F

Definition

The triple L = (Σ, P, s0) is an L-System.
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The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P ( F ) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...Definition

P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)
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Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards

X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X
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Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees

X

− : rotate by −90
degrees

X
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Turtle Graphics
Turtle with position and direction
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Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one step
forwards X

+ : rotate by 90
degrees X

− : rotate by −90
degrees X
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Draw Words!

w1 = F + F +
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Draw Words!
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Draw Words!

w1 = F + F +X
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lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}
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lindenmayer: Main Program
word w0 ∈ Σ∗:

int main () {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

w = w0 = F

487



lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}
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w = wi → w = wi+1
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lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){

if (depth > 0){
for (unsigned int k = 0; k < word.length(); ++k)

produce(replace(word[k]), depth−1);
} else {

draw_word(word);
}

}

draw w = wn!
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lindenmayer: replace

// POST: returns the production of c
std::string replace (const char c)
{

switch (c) {
case ’F’:

return "F+F+";
default:

return std::string (1, c); // trivial production c −> c
}

}
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lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word (const std::string& word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward(); // move one step forward
break;

case ’+’:
turtle::left(90); // turn counterclockwise by 90 degrees
break;

case ’−’:
turtle::right(90); // turn clockwise by 90 degrees

}
}
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The Recursion

F

F + F +

F + F + + F + F + +

produce("F+F+")

produce("F+F+")

produce("+")

produce("F+F+")

produce("+")
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L-Systeme: Erweiterungen

arbitrary symbols without graphical interpetation
arbitrary angles (snowflake)
saving and restoring the state of the turtle→ plants (bush)
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15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions
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Motivation: Calculator

Example

Input: 3 + 5
Output: 8

binary Operators +, -, *, / and numbers

floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -
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Motivation: Calculator

Example

Input: 3 / 5
Output: 0.6

binary Operators +, -, *, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses
unary operator -

494



Motivation: Calculator

Example

Input: 3 + 5 * 20
Output: 103

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++

parentheses
unary operator -
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Motivation: Calculator

Example

Input: (3 + 5) * 20
Output: 160

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses

unary operator -
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Motivation: Calculator

Example

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -
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Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";
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Seems to work. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 1 * 2 * 3 * 4 =
Result 24
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Oops, Multiplication first. . .
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’∗’)
lval ∗= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15
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Analyzing the Problem

Example

Input:

13 + ...

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

13 + 4∗(15− 21)

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

13+4 ∗ (−6)

Example

This

lecture is pretty much recursive.

496



Analyzing the Problem

Example

Result:

13 + (−24)

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

Example

Result:

−11

Example

This

lecture is pretty much recursive.
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498



Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498



Formal Grammars

Alphabet: finite set of symbols
Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)

498





Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, ( ? )

? * ?, ? / ?, ...
? - ?, ? + ?, ...
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Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( ? )
-Number, -( ? )
? * ?, ? / ?, ...
? - ?, ? + ?, ...

Factor
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Expressions Addition/Subtraction
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Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , ( Expression )
-Number, -( Expression )
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression
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The EBNF for Expressions

A factor is

a number,
an expression in parentheses or
a negated factor.

factor = number
| "(" expression ")"
| "−" factor.

alternative

terminal symbol

non-terminal symbol
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The EBNF for Expressions

A term is

factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "∗" factor | "/" factor }.

optional repetition
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The EBNF for Expressions

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.
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Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = d i g i t { d i g i t }.
d i g i t = ’0’ | ’1’ | ’2’ | ... |’9’.
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Parsing

Parsing: Check if a string is valid according to the EBNF.

Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505



Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.

Useful: From the EBNF we can (nearly) automatically generate a
parser

505



Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a
parser

505



Construct a Parser

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements
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Rules (except number)

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.
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Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);
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Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);
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One Character Lookahead. . .

. . . to find the right alternative.
// POST: leading whitespace characters are extracted
// from input, and the first non−whitespace character
// input returned (0 if there input no such character)
char lookahead (std:: istream& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof ())
return 0; // end of stream

else
return input.peek(); // next character in input

}
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Cherry-Picking

. . . to extract the desired character.
// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std :: istream& input, char c)
{

if (lookahead (input) == c) {
input >> c;
return true;

} else
return false ;

}
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Evaluating Factors

double factor (std :: istream& input)
{
double value;
if (consume (input, ’( ’ )) {
value = expression (input); // "(" expression
consume (input, ’) ’ ); // ")"

} else if (consume (input, ’−’))
value = −factor (input); // − factor

else
value = number(input); // number

return value;
}

factor = "(" expression ")"
| "−" factor
| number.
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Evaluating Terms

double term (std:: istream& input)
{
double value = factor (input); // factor
while (true) {

if (consume (input, ’∗’ ))
value ∗= factor (input); // "∗" factor

else if (consume (input, ’/’ ))
value /= factor (input); // "/" factor

else
return value;

}
}

term = factor { "∗" factor | "/" factor }.
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Evaluating Expressions

double expression (std :: istream& input)
{
double value = term (input); // term
while (true) {

if (consume (input, ’+’))
value += term (input); // "+" term

else if (consume (input, ’−’))
value −= term (input); // "−" term

else
return value;

}
}

expression = term { "+" term |"−" term }.
514



Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = ’0’ | ’1’ | ... | ’9’.
char digit(std::istream& input){

char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= ’0’ && ch <= ’9’){

input >> ch; // consume
return ch;

}
return 0;

}
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... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){

input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = 0;
while(ch > 0){ // skip remaining digits

num = num ∗ 10 + ch − ’0’;
ch = digit(input);

}
return num;

}
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Recursion!

number

factor

term

expression
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EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = number
| "(" expression ")"
| "−" factor.

term = factor { "∗" factor | "/" factor }.

expression = term { "+" term |"−" term }.

std::stringstream input ("1−2−3");
std::cout << expression (input) << "\n"; // −4
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16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading
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Calculating with Rational Numbers

Rational numbers (Q) are of the form
n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!
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Vision

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";
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A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct defines a new type
formal range of values: cartesian product of the value ranges of
existing types
real range of values: rational ( int× int.
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Accessing Member Variables
struct rational {

int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}

rn
rd

:=
an
ad

+
bn
bd

=
an · bd + ad · bn

ad · bd
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Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...
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Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";
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Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined
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Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and −value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different
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Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

536



Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise initialization:
t.n = 1, t.d = 5
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Structs: Initialization and Assignment
rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t); member-wise copy
536



Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example,
2

3
6= 4

6
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User Defined Operators

Instead of

rational t = add(r, s);

we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.
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Function Overloading
A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3);
std::cout << sq (1.414);
std::cout << pow (2);
std::cout << pow (3,3);
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double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that fits “best” for a function
call

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3
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Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:

operatorop
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Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = add (r, s);
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = r + s;

infix notation

545



Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n ∗ b.d + a.d ∗ b.n;
result.d = a.d ∗ b.d;
return result;

}
...
const rational t = operator+ (r, s);

equivalent but less handy: functional notation
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Unary Minus

Only one argument:

// POST: return value is −a
rational operator− (rational a)
{

a.n = −a.n;
return a;

}
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Comparison Operators

can be defined such that they do the right thing:

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n ∗ b.d == a.d ∗ b.n;
}

2

3
=

4

6
X
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Arithmetic Assignment

We want to write

rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6
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Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value
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Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n ∗ b.d + a.d ∗ b.n;
a.d ∗= b.d;
return a;

}

The L-value a is increased by the value of b and returned as
L-value
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In/Output Operators

can also be overloaded.

Before:

std::cout << "Sum is "
<< t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is "
<< t << "\n";
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,

rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,

rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<
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17. Classes

Encapsulation, Classes, Member Functions, Constructors
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A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...
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. . . should be in a Library!

rational.h:
Definition of a struct rational
Function declarations

rational.cpp:
arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)
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Thought Experiment

The three core missions of ETH:

research

education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands
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Thought Experiment

The three core missions of ETH:

research
education
technology transfer

We found a startup: RAT PACKr!

Selling the rational library to customers
ongoing development according to customer’s demands
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The Customer is Happy
“Buying RAT PACKr has been a

game-changing move to put us on the
forefront of cutting-edge technology in so-
cial media engineering.”

B. Labla, CEO

. . . and
programs busily using rational.

output as double-value (3
5 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;
return result / r.d;

}
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output as double-value (35 → 0.6)

// POST: double approximation of r
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{

double result = r.n;
return result / r.d;

}
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The Customer Wants More
“Can we have rational numbers with an extended value range?”

Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};
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New Version of RAT PACKr

It sucks, nothing works any more!

What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to double
is the problem, our library is correct.

Up to now it worked, therefore the new
version is to blame!
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Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.
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We are to Blame!!

Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.
No customer is willing to adapt the programs when the version of
the library changes.

⇒ RAT PACKr is history. . .
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Idea of Encapsulation (Information Hiding)

A type is uniquely defined by its value range and its functionality

The representation should not be visible.
⇒ The customer is not provided with representation but with
functionality!

str.length(),
v.push_back(1),. . .
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Classes

provide the concept for encapsulation in C++

are a variant of structs
are provided in many object oriented programming languages
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Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only difference

struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”
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Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code

rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do any-
thing any more . . .

. . . and we can’t, either.
(no operator+,. . . )
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Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {

return n;
}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};
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// POST: return value is the numerator of this instance
int numerator () const {
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}
// POST: return value is the denominator of this instance
int denominator () const {

return d;
}

private:
int n;
int d; // INV: d!= 0

};

pu
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ic
ar

ea

member function

member functions have ac-
cess to private data
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Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access
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Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class.

in the
function, this is the name of this implicit argument.
const refers to the instance this
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Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument.
const refers to the instance this
n is the shortcut for this->n (precise explanation of “->” next
week)

r.numerator()
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const and Member Functions

class rational {
public:

int numerator () const
{ return n; }
void set_numerator (int N)
{ n = N;}

...
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;
int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.
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Comparison

Roughly like this it were ...

class rational {
int n;
...

public:
int numerator () const
{

return n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions

struct bruch {
int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);
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Member-Definition: In-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
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Member-Definition: In-Class vs. Out-of-Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and definition (bad
for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{

return n;
}

This also works.
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Initialisation? Constructors!

class rational
{
public :

rational ( int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3
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Initialisation? Constructors!

class rational
{
public :

rational ( int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.
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Initialisation “rational = int”?

class rational
{
public :

rational ( int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

578



Initialisation “rational = int”?

class rational
{
public :

rational ( int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body
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The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!
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The Default Constructor

class rational
{
public :

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r ; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any more!
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Alterantively: Deleting a Default Constructor

class rational
{
public :

...
rational () = delete;

...
};
...
rational r ; // error: use of deleted function ’rational::rational()

⇒ There are no uninitiatlized variables of type rational any more!
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RAT PACKr Reloaded . . .

Customer’s program now looks like this:
// POST: double approximation of r
double to_double (const rational r)
{

double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X
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RAT PACKr Reloaded . . .
be

fo
re

class rational {
...
private:

int n;
int d;

};

int numerator () const
{

return n;
}

af
te

r

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)

return n;
else {

int result = n;
return −result;

}
}
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RAT PACKr Reloaded ?

class rational {
...
private:

unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{

if (is_positive)
return n;

else {
int result = n;
return −result;

}
}

value range of nominator and denominator like before
possible overflow in addition
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Encapsulation still Incompleete

Customer’s point of view (rational.h):
class rational {
public:

// POST: returns numerator of ∗this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.
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Fix: “our” type rational::integer

Customer’s point of view (rational.h):
public:

using integer = long int; // might change
// POST: returns numerator of ∗this
integer numerator () const;

We provide an additional type!

Determine only Functionality, e.g:

implicit conversion int→ rational::integer

function double to_double (rational::integer)
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RAT PACKr Revolutions

Finally, a customer program that remains stable
// POST: double approximation of r
double to_double (const rational r)
{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}
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18. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors
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Recap: vector<T>

Can be initialised with arbitrary size n

Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at
runtime
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Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only superficially)
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Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?
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new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

Effect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)
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new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

p

Type: A pointer T∗ (more soon)

Value: the starting address of the memory chunk
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new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

p

Type: A pointer T∗ (more soon)
Value: the starting address of the memory chunk
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Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call

But now: memory chunk inside vector must not “die” before the
vector itself
Memory allocated with new is not automatically deallocated (=
released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks
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new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)
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Pointer Types

T∗ Pointer type for base type T

An expression of type T∗ is called pointer (to T)

int∗ p; // Pointer to an int
std::string∗ q; // Pointer to a std::string
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Pointer Types

Value of a pointer to T is the address of an object of type T

int∗ p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) p = addr

addr
(e.g. 0x7ffd89d5f7cc)
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Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T∗ (of type T )
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Address Operator

int i = 5; // i initialised with 5
!1int∗ p = &i;

i = 5
addr

p = &i = addr

Next question: How to “follow” a pointer?
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Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the
address denoted by expr
Type of the expression: T
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Dereference Operator

int i = 5;
int∗ p = &i; // p = address of i
!1int j = ∗p;

i = 5
addr

p = &i = addr

j = *p = 5
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Dereference Operator

int i = 5;
int∗ p = &i; // p = address of i
!1int j = ∗p; // j = 5

i = 5
addr

p = &i = addrj = *p = 5
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Address and Dereference Operator

pointer (R-value)

object (L-value)

& *
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Pointer Types

A T* must actually point to a T

int∗ p = ...; // p points to an int
double∗ q = p; // but q to a double → compiler

error!
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Mnenmonic Trick

The declaration

T* p; // p is of the type “pointer to T”

can be read as

T *p; // *p is of type T
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Null-Pointer

Special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)
int∗ p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid undefined behaviour
int∗ p; // p could point to anything
int∗ q = nullptr; // q explicitly points nowhere
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Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p

size
of a T

p+3 p+n

How to point to rear elements?

→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)
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Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to
1st element

!1int∗ p3 = p0 + 3; // p3 points to 4th element
!1−2∗(p3 + 2) = 600; // set value of 6th element to

600
!1−3std::cout << ∗(p0 + 5); // output 6th element’s

value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5
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Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p

+ 3

ititit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}
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x y z

p

+ 3

it

itit ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

it points to first element
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Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

itit

it ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

Abort if end reached
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Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit

ititit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’;
}

Output current element: ’x’
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Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit it

itit ititit itit

for (3char∗ it = p;
4,7,10,13it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x
}

Advance pointer element-wise
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Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit itit

for (3char∗ it = p;
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Random Access to Arrays

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression ∗(p + i)

can also be written as p[i]

E.g. p[1] == ∗(p + 1) == ’y’
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Random Access to Arrays
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x y z
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Random Access to Arrays

iteration over an array via indices and random access:

char∗ p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less efficient than the previously shown sequential
access via pointer iteration
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Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . . ) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . . ) costs only one
addition per access
Sequential access is thus to be preferred for iterations
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Reading a book . . . with random access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...
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Reading a book . . . with sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...
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Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the
array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment
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Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to

value
void fill(1−int∗ begin, 1−int∗ end, int value) {

for (int∗ p = begin; p != end; ++p)
∗p = value;

}

...
int∗ p = new int[5];
fill(2−p, 2−p+5, 1); // Array at p

becomes {1, 1, 1, 1, 1}
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Functions with/without Effect

Pointers can (like references) be used for functions with effect.
Example: fill

But many functions don’t have an effect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;
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Positioning of Const

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis
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Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer
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Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

2−int const∗ const begin,
2−const int∗ const end) {

for (3−int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}
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Const pointer to const int

Likewise (but different keyword order)
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Non-mutating Functions: print

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

2−int const∗ const begin,
2−const int∗ const end) {

for (3−int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}

Const pointer to const int

Likewise (but different keyword order)

Pointer, not const, to const int
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Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size

new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)
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Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)
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Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .
. . . we can implement a vector, based
on such a chunk of memory
avec – an array-based vector of int
elements
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Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements;
2unsigned int count;

public: // Public interface:
3avec(unsigned int size);
4unsigned int size() const;
5int& operator[](int i);
6void print(std::ostream& sink) const;

}

Pointer to first element
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Number of elements
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Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
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2unsigned int count; // Number of elements
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}
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Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[](int i); // Access an element
6void print(std::ostream& sink) const;

} Output elements
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Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
1int∗ elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[](int i); // Access an element
6void print(std::ostream& sink) const; // Output elems.

}
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Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Save size

Side remark: vector is not initialised with a default value
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Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Allocate memory

Side remark: vector is not initialised with a default value
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Constructor avec::avec()

avec::avec(unsigned int size)
: 1count(size) {

2elements = new int[size];
}

Side remark: vector is not initialised with a default value
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Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance

That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632



Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this

elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632



Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
(*this).elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements

Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632



Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements

Mnemonic trick: “Follow the pointer to the member variable”

632



Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Equivalent, but shorter: this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

632



Function avec::size()

int avec::size() 1const {
2return this−>count;

}

Doesn’t modify the vector

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec::size()

int avec::size() 1const {
2return this−>count;

}
Return size

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec::operator[]

int& avec::operator[](int i) {
1return this−>elements[i];

}
Return ith element

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this−>count);

return this−>elements[i];
}
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Function avec::operator[]

int& avec::operator[](int i) {
1return this−>elements[i];

}

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this−>count);

return this−>elements[i];
}

634



Function avec::operator[]

int& avec::operator[](int i) {
return this−>elements[i];

}

Usage example:

avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0
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Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Pointer to first element

Advance pointer element-wise
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Advance pointer element-wise

Abort iteration if
past last element
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Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (1int∗ p = this−>elements;

2p != this−>elements + this−>count;
3++p)

{
4sink << ∗p << ’ ’;

}
}

Advance pointer element-wise

Output current element
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Function avec::print()
Finally: overload output operator:

operator<<( sink,
vec) {

vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639



Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639



Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged

But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639



Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change

sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639



Function avec::print()
Finally: overload output operator:

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

639



Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size
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Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on
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Possibility:

Allocate more memory than initially necessary

Fill from inside out, with pointers to first and last element
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Allocate more memory than initially necessary
Fill from inside out, with pointers to first and last element
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Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use

Then unavoidable: Allocate larger memory block and copy data
over
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Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position
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19. Dynamic Data Structures II

Linked Lists, Vectors as Linked Lists
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Different Memory Layout: Linked List

No contiguous area of memory and no random
access

Each element points to its successor
Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9

pointer

⇒ Our vector can be implemented as a linked list
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Different Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor
Insertion and deletion of arbitrary elements is simple

1 5 6 3 8 8 9
pointer

⇒ Our vector can be implemented as a linked list
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Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};
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Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

struct llnode {
int value;
llnode∗ next;

llnode(int v, llnode∗ n): value(v), next(n) {} //
Constructor

};
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Vector = Pointer to the First Element

1 5 6

element (type struct llnode)

value (type int) next (type llnode∗)

class llvec {
llnode∗ head;

public:
// Public interface identical to avec’s
llvec(unsigned int size);
unsigned int size() const;
...

};
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Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Pointer to first element

649
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};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;
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3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Abort if end reached
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Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Advance pointer element-wise
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Function llvec::print()
struct llnode {

int value;
llnode∗ next;
...

};

void llvec::print(std::ostream& sink) const {
for (1llnode∗ n = this−>head;

2n != nullptr;
3n = n−>next)

{
4sink << n−>value << ’ ’;

}
}

Output current element
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Function llvec::print()
void llvec::print(std::ostream& sink) const {

for (1llnode∗ n = this−>head;
258n != nullptr;
n = n−>next)

{
sink << n−>value << ’ ’;

}
}

this−>head n

1 5 6
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Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
1llnode∗ n = this−>head;

2for (; 0 < i; −−i)
2n = n−>next;

3return n−>value;
}

Pointer to first element

651
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Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
1llnode∗ n = this−>head;

2for (; 0 < i; −−i)
2n = n−>next;

3return n−>value;
}

Return ith element

651



Function llvec::push_front()
Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
4this−>head =

2new llnode{3e, this−>head};
}

this−>head

1 5 6

Attention: If the new llnode weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates
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(= memory deallocated) as soon as push_front terminates

652



Function llvec::llvec()
Constructor can be implemented using push_front():

llvec::llvec(unsigned int size) {
1this−>head = nullptr;

2for (; 0 < size; −−size)
2this−>push_front(0);

}

head initially points to nowhere

Use case:

llvec v = llvec(3);
std::cout << v; // 0 0 0
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Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

Start at first element ...
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Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

... and go to the last
element

654



Function llvec::push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec::push_back(int e) {
1llnode∗ n = this−>head;

2for (; n−>next != nullptr; n = n−>next);

3n−>next =
3new llnode{e, nullptr};

}

Append new element to
currently last
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Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail

2 Using this pointer, it is possible to append to the end directly

1 5 6

this−>head this−>tail
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Function llvec::push_back()

More efficient, but also slightly more complex:

1 Second pointer, pointing to the last element: this−>tail
2 Using this pointer, it is possible to append to the end directly

1 5 6 4

this−>head this−>tail

But: Several corner cases, e.g. vector still empty, must be
accounted for
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Function llvec::size()
Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
1unsigned int c = 0;

2for (llnode∗ n = this−>head;
2n != nullptr;
2n = n−>next)

2++c;

3return c;
}

Count initially 0
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Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
1unsigned int c = 0;

2for (llnode∗ n = this−>head;
2n != nullptr;
2n = n−>next)

2++c;

3return c;
}

Return count
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Function llvec::size()

More efficient, but also slightly more complex: maintain size as
member variable

1 Add member variable unsigned int count to class llvec

2 this−>count must now be updated each time an operation
(such as push_front) affects the vector’s size
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Efficiency: Arrays vs. Linked Lists

Memory: our avec requires roughly n int s (vector size n), our
llvec roughly 3n int s (a pointer typically requires 8 byte)

Runtime (with avec = std::vector, llvec = std::list):
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20. Containers, Iterators and Algorithms

Containers, Sets, Iterators, const-Iterators, Algorithms, Templates
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Vectors are Containers

Viewed abstractly, a vector is

1 A collection of elements
2 Plus operations on this collection

In C++, vector<T> and similar data structures are called
container
Called collections in some other languages, e.g. Java
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Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

Efficient index-based access (v[i])
Efficient use of memory: Only the elements themselves require space
(plus element count)
Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient
Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)
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Containers in C++

Nearly every application requires maintaining and manipulating
arbitrarily many data records

But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, . . .)
That’s why C++’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container
Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp
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Example Container: std::unordered_set<T>

A mathematical set is an unordered, duplicate-free collection of
elements:

{1, 2, 1} = {1, 2} = {2, 1}
In C++: std::unordered_set<T>

Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] undefined)
Efficient “element contained?” check
Efficient insertion and removal of elements

Side remark: implemented as a hash table
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Properties:

Cannot contain the same element twice
Elements are not in any particular order
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Efficient insertion and removal of elements
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Use Case std::unordered_set<T>
Problem:

given a sequence of pairs (name, percentage) of Code Expert
submissions . . .

// Input: file submissions.txt
Friedrich 90
Schwerhoff 10
Lehner 20
Schwerhoff 11

. . . determine the submitters that achieved at least 50%
// Output
Friedrich
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Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Open submissions.txt

665
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Pair (name, score)
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Input next pair
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Use Case std::unordered_set<T>
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2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Record name if score suf-
fices
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Use Case std::unordered_set<T>
1std::ifstream in("submissions.txt");
2std::unordered_set<std::string> names;

3std::string name;
3unsigned int score;

while (4in >> name >> score) {
5if (50 <= score)

5names.insert(name);
}

6std::cout << "Unique submitters: "
6<< names << ’\n’;

Output recorded names
665



Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the elements
are ordered

{1, 2, 1} = {1, 2} 6= {2, 1}

Element look-up, insertion and removal are still efficient (better
than for std::vector<T>), but less efficient than for
std::unordered_set<T>
That’s because maintaining the order does not come for free
Side remark: implemented as a red-black tree
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Use Case std::set<T>
std::ifstream in("submissions.txt");
1std::set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)

names.insert(name);
}

2std::cout << "Unique submitters: "
2<< names << ’\n’;

set instead of unsorted_set . . .
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Use Case std::set<T>
std::ifstream in("submissions.txt");
1std::set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)

names.insert(name);
}

2std::cout << "Unique submitters: "
2<< names << ’\n’;

. . . and the output is in al-
phabetical order 667



Printing Containers

Recall: avec::print() and llvec::print()

What about printing set, unordered_set, . . .?
Commonality: iterate over container elements and print them
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Similar Functions

Lots of other useful operations can be implemented by iterating
over a container:
contains(c, e): true iff container c contains element e

min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .
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Recall: Iterating With Pointers

Iteration over an array:

Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr

Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p

Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size

Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:

Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head

Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value

Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr

Advance pointer: p = p−>next

670



Recall: Iterating With Pointers

Iteration over an array:
Point to start element: p = this−>arr
Access current element: ∗p
Check if end reached: p == p + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this−>head
Access current element: p−>value
Check if end reached: p == nullptr
Advance pointer: p = p−>next

670



Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container

⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
∗it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers
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Iterators

Iterators allow accessing different containers in a uniform way: ∗it, ++it,
etc.

Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

it
container

672
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Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

it is an iterator specific to std::vector<int>
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3it != v.end();
4++it) {

∗it = −∗it;
}

6std::cout << v; // -1 -2 -3

it initially points to the first element
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for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {
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for (1std::vector<int>::iterator it 2= v.begin();
3it != v.end();
4++it) {

∗it = −∗it;
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Negate current element (e→ −e)
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Example: Iterate over std::vector

Recall: type aliases can be used to shorten often-used type names

1using ivit = std::vector<int>::iterator; // int−
vector iterator

for (1ivit it = v.begin();
...
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Negate as a Function
void neg(std::vector<int>& v) {

for (std::vector<int>::iterator it = v.begin();
it != v.end();
++it) {

∗it = −∗it;
}

}

// in main():
std::vector<int> v = {1, 2, 3};
neg(v); // v = {−1, −2, −3}

Disadvantage: Always negates the complete vector
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Negate as a Function
Better: negate inside a specific range (interval)

void neg(1std::vector<int>::iterator begin;
1std::vector<int>::iterator end) {

for (std::vector<int>::iterator it = 1begin;
it != 1end;
++it) {

∗it = −∗it;
}

}

Negate elements in
interval [begin, end)
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Negate as a Function

Better: negate inside a specific range (interval)

void neg(std::vector<int>::iterator start;
std::vector<int>::iterator end);

// in main():
std::vector<int> v = {1, 2, 3};
1neg(v.begin(), v.begin() + (v.size() / 2)); Negate first half
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Algorithms Library in C++

The C++standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin, end)

For example find, fill and sort
See also https://en.cppreference.com/w/cpp/algorithm
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An iterator for llvec

We need:

1 An llvec-specific iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

2 Member functions begin() and end() for llvec to get an
iterator to the beginning and past the end, respectively
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Iterator avec::iterator (Step 1/2)
1class llvec {

...
public:

1class iterator {
1 ...
1};

...
}

The iterator belongs to our vector, that’s why iterator is a public
inner class of llvec

Instances of our iterator are of type llvec::iterator
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Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Pointer to current vector element
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Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Create iterator to specific element
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Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Advance iterator by one element
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Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

};

Access current element
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Iterator llvec::iterator (Step 1/2)

class iterator {
1llnode∗ node;

public:
2iterator(llnode∗ n);
3iterator& operator++();
4int& operator∗() const;
5bool operator!=(const iterator& other) const;

}; Compare with other iterator
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Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}
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// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

Let iterator point to n initially
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Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode∗ n): 2node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {

assert(this−>node != nullptr);

4this−>node = this−>node−>next;

5return ∗this;
}

Return reference to advanced iterator

682



Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

}
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Iterator llvec::iterator (Step 1/2)

// Element access
int& llvec::iterator::operator∗() const {

2return this−>node−>value;
}

// Comparison
bool llvec::iterator::operator!=(const llvec::

iterator& other) const {
4return this−>node != other.node;

} this iterator different from other if they
point to different element

683



An iterator for llvec (Repetition)

We need:

1 An llvec-specific iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

3
2 Member functions begin() and end() for llvec to get an

iterator to the beginning and past the end, respectively
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Iterator avec::iterator (Step 2/2)
1class llvec {

...
public:

class iterator {...};

1iterator begin();
1iterator end();

...
}

llvec needs member functions to issue iterators pointing to the
beginning and past the end, respectively, of the vector
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Iterator llvec::iterator (Step 2/2)

llvec::iterator llvec::begin() {
1return llvec::iterator(this−>head);

}

llvec::iterator llvec::end() {
2return llvec::iterator(nullptr);

}

Iterator to first vector element

686



Iterator llvec::iterator (Step 2/2)

llvec::iterator llvec::begin() {
1return llvec::iterator(this−>head);

}

llvec::iterator llvec::end() {
2return llvec::iterator(nullptr);

} Iterator past last vector element
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Const-Iterators
In addition to iterator, every container should also provide a
const-iterator const_iterator
Const-iterators grant only read access to the underlying Container
For example for llvec:
llvec::1−const_iterator llvec::1−cbegin() const;
llvec::1−const_iterator llvec::1−cend() const;

1−const int& llvec::const_iterator::operator∗()
const;

...

Therefore not possible (compiler error): ∗(v.cbegin()) = 0
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Const-Iterators

Const-Iterator can be used to allow only reading:

llvec v = ...;
for (llvec::1const_iterator it = v.1cbegin(); ...)

std::cout << ∗it;

It would also possible to use the non-const iterator here
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Const-Iterators

Const-Iterator must be used if the vector is const:

1const llvec v = ...;
for (llvec::1const_iterator it = 1v.cbegin(); ...)

std::cout << ∗it;

It is not possible to use iterator here (compiler error)
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Excursion: Templates

Goal: A generic output operator << for iterable Containers: llvec,
avec, std::vector, std::set, . . .

I.e. std::cout << c << ’n’ should work for any such container
c
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Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);
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Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);

We already know the pointy brackets from
vectors. Vectors are also implemented as
templates.
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Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

2template 2<typename 3S, typename 3C2>
3S& operator<<(3S& sink, const 3C& container);

Intuition: operator works for every output
stream sink of type S and every container
container of type C
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Excursion: Templates

Templates enable type-generic functions and classes:

Templates enable the use of types as arguments

template <typename S, typename C>
S& operator<<(S& sink, const C& container);

The compiler infers suitable types from the call arguments

std::set<int> s = ...;
std::cout << s << ’\n’; S = std::ostream, C = std::set<int>
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Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {

for (typename 1C::const_iterator it = 1container.
begin();

it 2!= 1container.end();
2++it) {

sink << 2∗it << ’ ’;
}

return sink;
}

C must appropriate iterators
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for (typename 1C::const_iterator it = 1container.
begin();

it 2!= 1container.end();
2++it) {

sink << 2∗it << ’ ’;
}

return sink;
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C must appropriate iterators
– with appropriate functions
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Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {

for (typename C::const_iterator it = container.
begin();

it != container.end();
++it) {

1sink << ∗it << ’ ’;
}

return sink;
}

S must support outputting elements
(*it) and characters (’ ’)
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21. Dynamic Datatypes and Memory
Management
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Problem

Last week: dynamic data type

Have allocated dynamic memory, but not released it again. In
particular: no functions to remove elements from llvec.

Today: correct memory management!
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Goal: class stack with memory management
class stack{
public:

// post: Push an element onto the stack
void push(int value);
// pre: non-empty stack
// post: Delete top most element from the stack
void pop();
// pre: non-empty stack
// post: return value of top most element
int top() const;
// post: return if stack is empty
bool empty() const;
// post: print out the stack
void print(std::ostream& out) const;

...
697



Recall the Linked List

1 5 6

element (type llnode)

value (type int) next (type llnode*)

struct llnode {
int value;
llnode∗ next;
// constructor
llnode (int v, llnode∗ n) : value (v), next (n) {}

};
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Stack = Pointer to the Top Element

1 5 6

element (type llnode)

value (type int) next (type llnode*)

class stack {
public:

void push (int value);
...

private:
llnode∗ topn;

};
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Recall the new Expression

new T (...)

underlying type

new-Operator

type T*

constructor arguments

Effect: new object of type T is allocated in memory . . .
. . . and initialized by means of the matching constructor.
Value: address of the new object
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The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 6
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The new Expression push(4)

Effect: new object of type T is allocated in memory . . .

. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 6
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The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor

Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 64
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The new Expression push(4)

Effect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

1 5 64
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The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an object

that had been created with new.

type void

Effect: object is deconstructed (explanation below)
... and memory is released.
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Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!
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. . . until it is full (heap overflow)
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Careful with new and delete!

rational∗ t = new rational;
rational∗ s = t;
delete s;
int nominator = (*t).denominator();

Pointer to released objects: dangling pointers

Releasing an object more than once using delete is a similar
severe error
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Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn

1 5 6
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Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

reminder: shortcut for (*topn).next
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Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode∗ p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6
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Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode∗ p = topn; p != nullptr; p = p−>next)

out << p−>value << " ";
}

topn

1 5 6
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Print the Stack print()
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out << p−>value << " "; // 1 5 6
}
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Output Stack: operator<<

class stack {
public:

void push (int value);
void pop();
void print (std::ostream& o) const;
...

private:
llnode∗ topn;

};

// POST: s is written to o
std::ostream& operator<< (std::ostream& o, const stack& s){

s.print (o);
return o;

}
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empty(), top()

bool stack::empty() const {
return top == nullptr;

}

int stack::top() const {
assert(!empty());
return topn−>value;

}
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Empty Stack
class stack{
public:

stack() : topn (nullptr) {} // default constructor

void push(int value);
void pop();
void print(std::ostream& out) const;
int top() const;
bool empty() const;

private:
llnode∗ topn;

}
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Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live (memory
leak)!
They should be released together with s1.
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The Destructor

The Destructor of class T is the unique member function with
declaration

~T ( );
is automatically called when the memory duration of a class object
ends – i.e. when delete is called on an object of type T∗ or when
the enclosing scope of an object of type T ends.
If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers topn, no effect
– reason for zombie elements
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Using a Destructor, it Works
// POST: the dynamic memory of ∗this is deleted
stack::~stack(){

while (topn != nullptr){
llnode∗ t = topn;
topn = t−>next;
delete t;

}
}

automatically deletes all stack elements when the stack is being
released
Now our stack class seems to follow the guideline “dynamic
memory” (?)
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Stack Done?

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n";

stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
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Stack Done? Obviously not. . .
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What has gone wrong?
s1

2 3 1

s2

...
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...
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std::cout << s1 << "\n";

s2.pop ();

member-wise initialization: copies the
topn pointer only.
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The actual problem

Already this goes wrong:
{

stack s1;
s1.push(1);
stack s2 = s1;

}

When leaving the scope, both stacks are deconstructed. But both
stacks try to delete the same data, because both stacks have
access to the same pointer.
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Possible solutions

Smart-Pointers (we will not go into details here):

Count the number of pointers referring to the same objects and
delete only when that number goes down to 0
std::shared_pointer
Make sure that not more than one pointer can point to an object:
std::unique_pointer.

or:

We make a real copy of all data – as discussed below.
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We make a real copy

s1 2 3 1

s2 2 3 1

...
stack s2 = s1;
std::cout << s2 << "\n";

s1.pop ();
std::cout << s1 << "\n";

s2.pop ();
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The Copy Constructor

The copy constructor of a class T is the unique constructor with
declaration

T ( const T& x );
is automatically called when values of type T are initialized with
values of type T

T x = t; (t of type T)
T x (t);

If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise – reason for the
problem above
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It works with a Copy Constructor

// POST: ∗this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {

if (s.topn == nullptr) return;
topn = new llnode(s.topn−>value, nullptr);
llnode∗ prev = topn;
for(llnode∗ n = s.topn−>next; n != nullptr; n = n−>next){

llnode∗ copy = new llnode(n−>value, nullptr);
prev−>next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn

2 3 1
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Aside: copy recursively

llnode∗ copy (node∗ that){
if (that == nullptr) return nullptr;
return new llnode(that−>value, copy(that−>next));

}

Elegant, isn’t it?

Why did we not do it like this?

Reason: linked lists can become very long. copy could then lead to
stack overflow6. Stack memory is usually smaller than heap memory.

6not an overflow of the stack that we are implementing but the call stack
721
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Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1; // Initialisierung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // ok: Copy Constructor!
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Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = s1; // Zuweisung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!
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The Assignment Operator

Overloading operator= as a member function
Like the copy-constructor without initializer, but additionally

Releasing memory for the “old” value
Check for self-assignment (s1=s1) that should not have an effect

If there is no assignment operator declared it is automatically
generated (and assigns member-wise – reason for the problem
above
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It works with an Assignment Operator!

// POST: ∗this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s)

{
if (topn != s.topn){ // no self-assignment

stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return ∗this; // return as L-Value (convention)

}

Cooool trick!
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Done
class stack{
public:

stack(); // constructor
~stack(); // destructor
stack(const stack& s); // copy constructor
stack& operator=(const stack& s); // assignment operator

void push(int value);
void pop();
int top() const;
bool empty() const;
void print(std::ostream& out) const;

private:
llnode∗ topn;

}
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Dynamic Datatype

Type that manages dynamic memory (e.g. our class for a stack)
Minimal Functionality:

Constructors
Destructor
Copy Constructor
Assignment Operator
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Dynamic Datatype

Type that manages dynamic memory (e.g. our class for a stack)
Minimal Functionality:

Constructors
Destructor
Copy Constructor
Assignment Operator

Rule of Three: if a class defines at
least one of them, it must define all
three
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(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/
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−

3 −
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+

3 ∗
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leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)
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Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/

* = 6

tnode

operator
Value left operand

right operand

?: unused
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Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/ ?
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tnode
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Value left operand

right operand

?: unused

728



Nodes (struct tnode)

op val left righttnode

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’−’, ’∗’ or ’/’
double val;
tnode∗ left;
tnode∗ right;

tnode(char o, double v, tnode∗ l, tnode∗ r)
: op(o), val(v), left(l), right(r) {}

};
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Size = Count Nodes in Subtrees

∗

−

−

3 4

+

3 ∗

4 5

Size of a leave: 1
Size of other nodes: 1 + sum of child nodes’ size
E.g. size of the "+"-node is 5
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Count Nodes in Subtrees

// POST: returns the size (number of nodes) of
// the subtree with root n
int size (const tnode∗ n) {

if (n){ // shortcut for n != nullptr
return size(n−>left) + size(n−>right) + 1;

}
return 0;

}

op val left right
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Evaluate Subtrees
// POST: evaluates the subtree with root n
double eval(const tnode∗ n){

assert(n);
if (n−>op == ’=’) return n−>val;
double l = 0;
if (n−>left) l = eval(n−>left);
double r = eval(n−>right);
switch(n−>op){

case ’+’: return l+r;
case ’−’: return l−r;
case ’∗’: return l∗r;
case ’/’: return l/r;
default: return 0;

}
}

op unary, or left branch

leaf. . .
. . . or fork:

right branch

op val left right
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Cloning Subtrees

// POST: a copy of the subtree with root n is made
// and a pointer to its root node is returned
tnode∗ copy (const tnode∗ n) {

if (n == nullptr)
return nullptr;

return new tnode (n−>op, n−>val, copy(n−>left), copy(n−>right));
}

op val left right
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Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode∗ n) {

if(n){
clear(n−>left);
clear(n−>right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5
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Using Expression Subtrees
// Construct a tree for 1 − (−(3 + 7))
tnode∗ n1 = new tnode(’=’, 3, nullptr, nullptr);
tnode∗ n2 = new tnode(’=’, 7, nullptr, nullptr);
tnode∗ n3 = new tnode(’+’, 0, n1, n2);
tnode∗ n4 = new tnode(’−’, 0, nullptr, n3);
tnode∗ n5 = new tnode(’=’, 1, nullptr, nullptr);
tnode∗ root = new tnode(’−’, 0, n5, n4);

// Evaluate the overall tree
std::cout << "1 − (−(3 + 7)) = " << eval(root) << ’\n’;

// Evaluate a subtree
std::cout << "3 + 7 = " << eval(n3) << ’\n’;

clear(root); // free memory
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Planting Trees

class texpression {
public:

texpression (double d)
: root (new tnode (’=’, d, 0, 0)) {}

...
private:

tnode∗ root;
};

creates a tree with
one leaf
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Letting Trees Grow
texpression& texpression::operator−= (const texpression& e)
{

assert (e.root);
root = new tnode (’−’, 0, root, copy(e.root));
return ∗this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this
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e’

copy(e.root)

root

*this
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Raising Trees

texpression operator− (const texpression& l,
const texpression& r){

texpression result = l;
return result −= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a−b−c;

−

−

3 4

5
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Raising Trees
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Rule of three: Clone, reproduce and cut trees
texpression::~texpression(){

clear(root);
}

texpresssion::texpression (const texpression& e)
: root(copy(e.root)) { }

texpression::texpression& operator=(const texpression& e){
if (root != e.root){

texpression cp = e;
std::swap(cp.root, root);

}
return ∗this;

}
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Concluded
class texpression{
public:

texpression (double d); // constructor
~texpression(); // destructor
texpression (const texpression& e); // copy constructor
texpression& operator=(const texpression& e); // assignment op
texpression operator−();
texpression& operator−=(const texpression& e);
texpression& operator+=(const texpression& e);
texpression& operator∗=(const texpression& e);
texpression& operator/=(const texpression& e);
double evaluate();

private:
tnode∗ root;

};
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From values to trees!

// term = factor { "∗" factor | "/" factor }
double term (std :: istream& is){
double value = factor ( is );
while (true) {

if (consume (is, ’∗’ ))
value ∗= factor ( is );

else if (consume (is, ’/’ ))
value /= factor ( is );

else
return value;

}
}

calculator.cpp
(expression value)
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From values to trees!
using number_type = double;

// term = factor { "∗" factor | "/" factor }
number_type term (std :: istream& is){
number_type value = factor ( is );
while (true) {

if (consume (is, ’∗’ ))
value ∗= factor ( is );

else if (consume (is, ’/’ ))
value /= factor ( is );

else
return value;

}
}

double_calculator.cpp
(expression value)
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From values to trees!
using number_type = texpression ;

// term = factor { "∗" factor | "/" factor }
number_type term (std :: istream& is){
number_type value = factor ( is );
while (true) {

if (consume (is, ’∗’ ))
value ∗= factor ( is );

else if (consume (is, ’/’ ))
value /= factor ( is );

else
return value;

}
}

double_calculator.cpp
(expression value)
→
texpression_calculator.cpp
(expression tree)
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Concluding Remark

In this lecture, we have intentionally refrained from implementing
member functions in the node classes of the list or tree.7

When there is inheritace and polymorphism used, the
implementation of the functionality such as evaluate, print, clear
(etc:.) is better implemented in member functions.
In any case it is not a good idea to implement the memory
management of the composite data strcuture list or tree within the
nodes.

7Parts of the implementations are even simpler (because the case n==nullptr can be caught more easily
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22. Conclusion
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Purpose and Format

Name the most important key words to each chapter. Checklist:
“does every notion make some sense for me?”

M motivating example for each chapter
C concepts that do not depend from the implementation (language)
L language (C++): all that depends on the chosen language
E examples from the lectures
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Kapitelüberblick
1. Introduction
2. Integers
3. Booleans
4. Defensive Programming
5./6. Control Statements
7./8. Floating Point Numbers
9./10. Functions
11. Reference Types
12./13. Vectors and Strings
14./15. Recursion
16. Structs and Overloading
17. Classes
18./19. Dynamic Datastructures
20. Containers, Iterators and Algorithms
21. Dynamic Datatypes and Memory Management
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1. Introduction

M Euclidean algorithm
C algorithm, Turing machine, programming languages, compilation, syntax

and semantics
values and effects, fundamental types, literals, variables

L include directive #include <iostream>

main function int main(){...}

comments, layout // Kommentar

types, variables, L-value a , R-value a+b

expression statement b=b*b; , declaration statement int a;, return
statement return 0;
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2. Integers

M Celsius to Fahrenheit
C associativity and precedence, arity

expression trees, evaluation order
arithmetic operators
binary representation, hexadecimal numbers
signed numbers, twos complement

L arithmetic operators 9 * celsius / 5 + 32

increment / decrement expr++

arithmetic assignment expr1 += expr2

conversion int↔ unsigned int

E Celsius to Fahrenheit, equivalent resistance
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3. Booleans

C Boolean functions, completeness
DeMorgan rules

L the type bool
logical operators a && !b

relational operators x < y

precedences 7 + x < y && y != 3 * z

short circuit evaluation x != 0 && z / x > y

the assert-statement, #include <cassert>

E Div-Mod identity.
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4. Definsive Programming

C Assertions and Constants
L The assert-statement, #include <cassert>

const int speed_of_light=2999792458

E Assertions for the GCD
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5./6. Control Statements

M linear control flow vs. interesting programs
C selection statements, iteration statements

(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

L if statements if (a % 2 == 0) {..}

for statements for (unsigned int i = 1; i <= n; ++i) ...

while and do-statements while (n > 1) {...}

blocks and branches if (a < 0) continue;
Switch statement switch(grade) {case 6: }

E sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades
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7./8. Floating Point Numbers

M correct computation: Celsius / Fahrenheit

C fixpoint vs. floating point
holes in the value range
compute using floating point numbers
floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

L types float, double
floating point literals 1.23e-7f

E Celsius/Fahrenheit, Euler, Harmonic Numbers
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9./10. Functions

M Computation of Powers
C Encapsulation of Functionality

functions, formal arguments, arguments
scope, forward declarations
procedural programming, modularization, separate compilation
Stepwise Refinement

L declaration and definition of functions double pow(double b, int e){ ... }

function call pow (2.0, -2)

the type void
E powers, perfect numbers, minimum, calendar

752



11. Reference Types

M Swap

C value- / reference- semantics, pass by value, pass by reference, return by
reference
lifetime of objects / temporary objects
constants

L reference type int& a

call by reference, return by reference int& increment (int& i)

const guideline, const references, reference guideline

E swap, increment
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12./13. Vectors and Strings

M Iterate over data: sieve of erathosthenes
C vectors, memory layout, random access

(missing) bound checks
vectors
characters: ASCII, UTF8, texts, strings

L vector types std::vector<int> a {4,3,5,2,1};

characters and texts, the type char char c = ’a’;, Konversion nach int
vectors of vectors
Streams std::istream, std::ostream

E sieve of Erathosthenes, Caesar-code, shortest paths
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14./15. Recursion

M recursive math. functions, the n-Queen problem, Lindenmayer systems, a
command line calculator

C recursion
call stack, memory of recursion
correctness, termination,
recursion vs. iteration
Backtracking, EBNF, formal grammars, parsing

E factorial, GCD, sudoku-solver, command line calcoulator
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16. Structs and Overloading

M build your own rational number

C heterogeneous data types
function and operator overloading
encapsulation of data

L struct definition struct rational {int n; int d;};

member access result.n = a.n * b.d + a.d * b.n;

initialization and assignment,
function overloading pow(2) vs. pow(3,3);, operator overloading

E rational numbers, complex numbers
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17. Classes

M rational numbers with encapsulation

C Encapsulation, Construction, Member Functions
L classes class rational { ... };

access control public: / private:

member functions int rational::denominator () const

The implicit argument of the member functions

E finite rings, complex numbers
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18./19. Dynamic Datastructures

M Our own vector
C linked list, allocation, deallocation, dynamic data type
L The new statement

pointer int* x;, Null-pointer nullptr.

address and derference operator int *ip = &i; int j = *ip;

pointer and const const int *a;

E linked list, stack
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20. Containers, Iterators and Algorithms

M vectors are containers
C iteration with pointers

containers and iterators
algorithms

L Iterators std::vector<int>::iterator
Algorithms of the standard library std::fill (a, a+5, 1);

implement an iterator
iterators and const

E output a vector, a set
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21. Dynamic Datatypes and Memory Management

M Stack
Expression Tree

C Guideline ”dynamic memory“
Pointer sharing
Dynamic Datatype
Tree-Structure

L new and delete
Destructor stack::~stack()
Copy-Constructor stack::stack(const stack& s)
Assignment operator stack& stack::operator=(const stack& s)
Rule of Three

E Binary Search Tree
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The End

End of the Course
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