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Discussion

m Exercises availabe at lectures.

m Preliminary discussion in the following recitation session

m Solution of the exercise until the day before the next recitation session.
m Dicussion of the exercise in the next recitation session.



Exercises

m The solution of the weekly exercises is thus voluntary but stronly
recommended.



No lacking resources!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.



Online Tutorial

For a smooth course entry we provide an online C++ tutorial

Goal: leveling of the different programming skills.
Written mini test for your self assessment in the first recitation
session.



Exams

The exam (in examination period 2019) will cover

m Lectures content (lectures, handouts)
m Exercise content (exercise sessions, exercises).

Written exam that most probably takes place at a computer (for the CSE students).

We will test your practical skills (programming skills) and theoretical knowledge
(background knowledge, systematics).



Offer

m During the semester we offer weekly programming exercises that
are graded. Points achieved will be taken as a bonus to the exam.

m The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of 0.25.
The admission to specially marked bonus depends on the
successful completion of other exercises. The achieved mark
bonus expires as soon as the lecture is given anew.



Offer (Concretely)

m 3 bonus exercises in total; 2/3 of the points suffice for the exam
bonus of 0.25 marks

m You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...

m Bonus exercises must be unlocked (— experience points) by
successfully completing the weekly exercises

m |t is again not necessary to solve all weekly exercises completely
in order to unlock a bonus exercise

m Details: course website, exercise sessions, online exercise
system (Code Expert)



Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
invite you to interviews.

Should you be invited to an interview: don’t panic. Primary we
presume your innocence and want to know if you understood what
you have submitted.



Exercise group registration |

m Visit http://expert.ethz.ch/enroll1/AS18/infcse
m Log in with your nethz account.

Please sign in with your ETH credentials

nethz Username

nethz Password



http://expert.ethz.ch/enroll/AS18/infcse

Exercise group registration i

Register with the subsequent dialog for an exercise group.

[ ] ® < [Em] 0 expert.ethz.ch/enroll/AS18/et2 & [+ ] ] (] n

[c ode] expert

Engineering Tool Il

Enroll in the course by choosing one of the exercise groups.

all Dr. Florian Negele
Enroll

Dr. Felix Oliver Friedrich




Overview

[code] expert

Enrolled Courses My Exercise Groups My Courses

Demo Course pemo Group - Dr. Hermann Lehner chang

Coding Demo Exercise Earned XP Submissions
S Tasks & Solutions 1,000/ 1,000

# Quadratic Equations in C++ 1,000 v

Markdown Editor Manual Submissions

B Tasks | & Solutions
# Basic Markdown Syntax

# Code Blocks and Inline Code

& Autum2017 v

Handout Date Due Date

9. Sep. 2017 00:00 31. Dez. 2027 00:00

Handout Date Due Date

1. Aug. 2017 00:00 1. Aug. 2017 00:01



Programming Exercise

B Project Files Minimax - Student Attempt
main.cpp o treams> & Felix Oliver Friedrich «D

int main () { Status Not submitted yet
int min; int max; F

s D: description
(int 1 0; 1 i .
E: History
(v-min) min H
(v-max) max

=
2
E
&)
z
S

wajsAs ajy alold B

imum and
maximum of a series of ten integers.

© Input format: 10 consecutive integers
number : int , example:

 Expected output format: minimun:

maxinum: int , example:

7

A: compile
B: run
C: test

>_ Console



Test and Submit

% Project Files

wasfs ol 198f0id

main.cpp

£

Minimax - Student Attempt

<iostream>

int main () {
int min; int max;
std::cin min; std::cin max;
max = min-1
(int 1 = 0; i < 8; ++i){
int v;
std:icin > v;
(v<min) min
(v-max) max

std: :cout min std::endl;

Running tests

min_first p
hio lastna

hin_niddle

max_first

input:

100251 -25065 45 -1000001 1 @ 0 45 100250 O
expected output:

-1000001/100251

actual output:

-1000001/100250

max_last passed

max_middle passed
unique passed

Tests result: passed 6 of 7 / score: 86% [ NNNGGG___l

>_ Console

1

& Felix Oliver Friedrich

s Not submitted yet

el |

Filter Snapshots

KiolsiH &

First Working Version

Initial Snapshot




Where is the Save Button?

m The file system is transaction based and is saved permanently
(“autosave”). When opening a project it is found in the most recent
observed state.

m The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.

m The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.



Snapshots

% Project Files M - Student Attempt ix Ol i
imax - Student Attemp! & Felix Oliver Friedrich

el |

=D 1 <lostream>
Status Already submitted
int main () {
int min; int max;
std::cin min; std::cin max;
max = min;
(int 1 = 0; i < 8; ++i){
int v;
s Really Working Version
std:icin - v; y 9
(v<min) min
(v>max) max ; First Workir'g Version

A Create new Submission

wasfs ol 198f0id
KioisiH &

Filter Snapshots

std::cout min

Initial Snapshot

Running tests

min_first passed
min_last passed
min_middle passed
max_first passed
max_last passed
max_middle passed

unique passed Go BaCk

Tests result: passed 7 of 7 / score: 100% [N

>_ Console




Literature

m The course is designed to be self explanatory.
m Skript together with the course Informatik at the D-MATH/D-PHYS department.
m Recommended Literature

m B. Stroustrup. Einfihrung in die Programmierung mit C++, Pearson
Studium, 2010.

m B. Stroustrup, The C++ Programming Language (4th Edition)

Addison-Wesley, 2013.

A. Koenig, B.E. Moo, Accelerated C++, Adddison Wesley, 2000.

B. Stroustrup, The design and evolution of C++, Addison-Wesley, 1994.



Credits

m Lecture:

m Original version by Prof. B. Gartner and Dr. F. Friedrich
m With changes from Dr. F. Friedrich, Dr. H. Lehner, Dr. M. Schwerhoff

m Script: Prof. B. Gartner
m Code Expert: Dr. H. Lehner, David Avanthay and others

Andere Quellen werden hier am Rand in dieser Form angegeben

N



1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C-++Program and its Syntactic and Semantic Ingredients

21



What is Computer Science?

m The science of systematic processing of informations,. ..
m ... particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)



Computer Science vs. Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

on/fellows1991.pdf

ch/cs:

unt.

http://larc.

N


http://larc.unt.edu/ian/research/cseducation/fellows1991.pdf

Computer Science vs. Computers

m Computer science is also concerned with the development of fast
computers and networks. ..

m ...but not as an end in itself but for the systematic processing
of informations.
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Computer Science = Computer Literacy

Computer literacy: user knowledge

m Handling a computer

m Working with computer programs for text processing, email,
presentations ...

Computer Science Fundamental knowledge

m How does a computer work?
m How do you write a computer program?



This course

m Systematic problem solving with algorithms and the programming
language C++.

m Hence:
not only

but also programming course.
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Algorithm: Fundamental Notion of Computer Science

Algorithm:

m Instructions to solve a problem step by step

m Execution does not require any intelligence, but precision (even
computers can do it)

m according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

rg/wiki/Algorithmus

ipedia.o

http://de.wik

N


http://de.wikipedia.org/wiki/Algorithmus

Oldest Nontrivial Algorithm

Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

m Input: integersa > 0,06 >0
m OQutput: gcd of a und b

While b #£ 0
If « > b then
a+a—>b
else:
Result: .

ab ab ab ab



Live Demo: Turing Machine

VRN

M\/ <
[9] >
Rechts

012 3 456 7 89

Speicher

3

Register
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Euklid in the Box

Speicher
0 1 2 3 4 5 6 7 9
?
[8] [9] L=o? | R =~ L2 L - R springe || R — L || springe a
L =R stop ngnge —1[8 || zuo || =19 || zu0 /
- 7 .
~" ~"
Programmcode Daten
Daten
A While b £ 0
7 N
Links  Rechts If & > b then
a4a—>b
b a else:
b+ b—ua
Ergebnis: a.

Register
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Computers — Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Folge von Symbolen auf Ein- und Ausgabeband

— T 1 T T 7Y T T 1
Programmcode (X > Eingabe
1 1 1 1 1 1 1 1

Festprogramm-
Computer

Kontrolleinheit
Interner Zustand

Lese-/
Schreibkopf

«Symbol lesen»

«Symbol iiberschreiben»
«Nach links»
«Nach rechts»

http://en.wikipedia.org/wiki/Alan_Turing

Alan Turing

w


http://en.wikipedia.org/wiki/Alan_Turing

Computer - Implementation

m Z1 — Konrad Zuse (1938)
m ENIAC — John Von Neumann (1945)

Von Neumann Architektur

Prozessor - CPU

iRechenwerki i Steuerwerk i
i AU i :

i3 g

Speicher Ein-/Ausgabe

Konrad Zuse

.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
mons .wikimedia.org/wiki/File:John_von_Neumann. jpg

John von Neumann


http://www.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
http://commons.wikimedia.org/wiki/File:John_von_Neumann.jpg

Computer

Ingredients of a Von Neumann Architecture
m Memory (RAM) for programs and data
m Processor (CPU) to process programs and data

m |/O components to communicate with the world

33



Memory for data and program

m Sequence of bits from {0, 1}.

m Program state: value of all bits.

m Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
m Every memory cell has an address.

m Random access: access time to the memory cell is (nearly)
independent of its address.

01001101 00101110

Addresse : 17 Addresse : 18



Processor

The processor (CPU)
m executes instructions in machine language
m has an own "fast" memory (registers)
m can read from and write to main memory

m features a set of simplest operations = instructions (e.g. adding
to register values)

35



Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

AN

30 m = more than 100.000.000 instructions

~N

a contemporary desktop PC can process more than 100 millions
instructions

"Uniprocessor computer at 1 GHz.
36



Programming

m With a programming language we issue commands to a computer
such that it does exactly what we want.

m The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890

http://en.wikipedia.org/wiki/Harvard_Computers

w


http://en.wikipedia.org/wiki/Harvard_Computers

Why programming?

m Do | study computer science or what ...
m There are programs for everything ...

m | am not interested in programming ...
|

because computer science is a mandatory subject here,
unfortunately...
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Mathematics used to be the lingua franca of the natural sci-
ences on all universities. Today this is computer science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics ©)
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This is why programming!

m Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.

m Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)

m Programming is the interface between engineering and computer
science — the interdisciplinary area is growing constantly.

m Programming is fun (and is useful)!

40



Programming Languages

m The language that the computer can understand (machine
language) is very primitive.

m Simple operations have to be subdivided into (extremely) many
single steps

m The machine language varies between computers.



Higher Programming Languages

can be represented as program text that

m can be understood by humans
m is independent of the computer model
— Abstraction!

42



Programming langauges - classification

Differentiation into

m Compiled vs. interpreted languages

m (C++, C#, Pascal, Modula, Oberon, Java, Go
VS.

Python, Tcl, Javascript, Matlab
m Higher programming languages vs. Assembler

m Multi-purpose programming languages vs. single purpose
programming languages

m Procedural, object oriented, functional and logical languages.

43



Why C++?

Other popular programming languages: Java, C#, Objective-C,
Oberon, Javascript, Go, Python, ...

General consensus:

m ,The” programming language for systems programming: C
m C has a fundamental weakness: missing (type) safety

44



Why C++?

Over the years, C++’s greatest strength and its greatest
weakness has been its C-Compatibility — B. Stroustrup

B. Stroustrup, Design and Evolution of C++, Kap. 4.5

I



Why C++?

m C+-+equips C with the power of the abstraction of a higher
programming language

m In this course: C+-+ introduced as high level language, not as
better C

m Approach: traditionally procedural — object-oriented.

46



Deutsch vs. C++

Deutsch

Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

C++

// computation
int b=a * a; // b =a"2
b =Db % b; // b =a"4

47



Syntax and Semantics

m Like our language, programs have to be formed according to
certain rules.

m Syntax: Connection rules for elementary symbols (characters)
m Semantics: interpretation rules for connected symbols.

m Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

48



C--+: Kinds of errors illustrated with German sentences

m Das Auto fuhr zu schnell.
m DasAuto fuh r zu sxhnell.
m Rot das Auto ist.

m Man empfiehlt dem Dozenten
nicht zu widersprechen

m Sie ist nicht gross und rothaarig.

m Die Auto ist rot.
m Das Fahrrad galoppiert schnell.

m Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.
Syntaxfehler: Wortbildung.
Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]
Syntaktisch korrekt, doch semantisch fehlerhaft:
Falscher Artikel. [Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch
fehlerhaft. [Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch
mehrdeutig. [kein Analogon]

49



Syntax and Semantics of C++

Syntax

m When is atexta C++ program?

m l.e. is it grammatically correct?

Semantics

m What does a program mean?
m Which algorithm does a program implement?

50



Syntax and semantics of C+-+

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)

m is the “law” of C++
m defines the grammar and meaning of C++programs

m since 2011, continuously extended with features for advanced
programming



Programming Tools

m Editor: Program to modify, edit and store C+-program texts

m Compiler: program to translate a program text into machine
language

m Computer: machine to execute machine language programs

m Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.



Language constructs with an example

m Comments/layout m constants

m Include directive m identifiers, names
m the main function m objects

m Values effects m expressions

m Types and functionality m L- and R- values
m literals m operators

m variables m statements

53



The first C+-+ program Most important ingredients...

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {
// input
std::cout << "Compute a”8 for a =7 ";
int a;
std::cin >> a; +——— Statements: Do something (read in a)!
// computation
int b = a * a; // b = a2 «—— Expressions: Compute a value (a?)!
b =Db x b; // b =a4
// output b * b, i.e., a~8
std::cout << a << "8 = " << b *x b << "\n";
return O;

54



Behavior of a Program

At compile time:

m program accepted by the compiler (syntactically correct)

m Compiler error

During runtime:
m correct result
m incorrect result
m program crashes

m program does not terminate (endless loop)

55



“Accessories:” Comments

// Program: power8.cpp

// Raise a number to the eighth power.
#include <iostream>

int main() {

// input ¢
std::cout << "Compute a”8 for a =7 ";
int a;

std::cin >> a;

// computation 4—

int b=axa; // b=a"2
b =D>b x b; // b =a"4
// output b * b, i.e., a~8

std::cout << a << "8 = " << b *x b << "\n";

return O;

comments

56



Comments and Layout

Comments

m are contained in every good program.

m document what and how a program does something and how it
should be used,

m are ignored by the compiler

m Syntax: “double slash” // until the line ends.
The compiler ignores additionally

m Empty lines, spaces,

m Indendations that should reflect the program logic



Comments and Layout

The compiler does not care...

#include <iostream>

int main(){std::cout << "Compute a~8 for a =7 ";
int a; std::cin >> a; int b =a *x a; b =Db *x b;
std::cout << a << "8 = " << b*b << "\n";return O0;}

... but we do!

58



“Accessories:” Include and Main Function

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream> <————— include directive

int main() £ declaration of the main function
// input
std::cout << "Compute a”8 for a =7 ";
int a;

std::cin >> a;
// computation
int b=a xa; // b=a2

b =b x b; // b =a4

// output b * b, i.e., a~8

std::cout << a << "8 = " K< b ¥ b K< ll\nu;
return O;
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Include Directives

C-+-+ consists of

m the core language

m standard library
m in-/output (header iostream)
m mathematical functions (cmath)
m ..

#include <iostream>

m makes in- and output available
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The main Function

the main-function
m is provided in any C+-+ program

m is called by the operating system
m like a mathematical function ...
B arguments

m return value

m ... but with an additional effect

m Read a number and output the 8th power.

61



Statements: Do something!

int main() {
// input

std::cout << "Compute a8 for a =7 ";
int a;

std::cin >> a;«¢ expression statements
// computation
int b=a x a; // b

b =Db x b;

// output b *x b, i.e., a”8

std::cout << a << "8 = " << b * b << "\n";
return 0;¢ return statement



Statements

m building blocks of a C+-+ program

m are executed (sequentially)

m end with a semicolon

m Any statement has an effect (potentially)
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Expression Statements

m have the following form:
expr;

where expris an expression
m Effect is the effect of expr, the value of expr is ignored.

Example: b = bx*b;
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Return Statements

m do only occur in functions and are of the form
return expr;

where expris an expression
m specify the return value of a function

Example: return 0;



Statements - Effects

int main() { .
effect: output of the string Compute ...

// input
std::cout << "Compute a8 for a =7 ";+—-_____,//

int a;
std::cin >> a;4{————— Effect: input of a number stored in a
// computation Effect: saving the computed value of a*a into b
int b = a x a;¢// b = a2
b =D x b; // b= a4
Effect: saving the computed value of b*b into b
// output b * b, i.e., a~8
std::cout << a << ""8 = " << b * b << "\n";

) return 0;4\\

Effect: return the value 0 Effect: output of the value of a and the computed value c
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Values and Effects

m determine what a program does,
m are purely semantical concepts:

m Symbol 0 means Value 0 € 7Z
B std::cin >> a; means effect "read in a number"

m depend on the program state (memory content, inputs)



Statements - Variable Definitions

int main() {
// input
std::cout << "Compute a8 for a =7 ";

a;<¢ declaration statement
; std::cin >> a;
ype
names // computation
b=a>x<a; / b=2a2
b =b x b; // b =a4
// output b *x b, i.e., a”8

std::cout << a << ""8 = " << b x b << "\n";

return O;
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Declaration Statements

m introduce new names in the program,
m consist of declaration and semicolon

Example: int a;
®m can initialize variables

Example: int b = a * a;

69



Types and Functionality

int:
m C++ integer type
m corresponds to (%, +, x) in math

In C++ each type has a name and
m a domain (e.g. integers)
m functionality (e.g. addition/multiplication)



Fundamental Types

C++ comprises fundamental types for
m integers (int)

natural numbers (unsigned int)

|
m real numbers (float, double)
m boolean values (bool)

|



Literals

m represent constant values
m have a fixed type and value
m are "syntactical values"

Examples:

m 0 has type int, value 0.
m 1.2e5 has type double, value 1.2 - 10°.

72



Variables

m represent (varying) values
m have

name
type
value
address

m are "visible" in the program
context

int a; defines a variable with
E name: a
m type: int
m value: (initially) undefined

m Address: determined by
compiler (and linker, runtime)
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Objects

m represent values in main memory

m have type, address and value (memory content at the address)
m can be named (variable) ...

m ... but also anonymous.

REINEIE

A program has a fixed number of variables. In order to be able to deal with a
variable number of value, it requires "anonymous" addresses that can be address
via temporary names (— Computer Science 1).
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Identifiers and Names

(Variable-)names are identifiers

m allowed: A,....Z; a,...,2;0,...,9;_

m First symbol needs to be a character.
There are more names:

m std: :cin (Qualified identifier)



Expressions: compute a value!

represent Computations
are either primary (b)

|
|

m or composed (b*b)...

m ... from different expressions, using operators
|

have a type and a value

Analogy: building blocks



Expressions Building Blocks

composite expression
// input ¢(//’——

|std::cout << "Compute a~8 for a =7 "k
int a;
std::cin >> a;

// computation
int b =a *xa; // b=a2

bl = }(— Two times composed expression
- ——

|std::cout << a|<< n~g = << << "\ n";

/I\
return ( Four times composed expression
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Expressions

m represent computations

m are primary or composite (by other expressions and operations)
a *x a
composed of

variable name, operator symbol,variable name
variable name: primary expression

m can be put into parantheses

a * aisequivalentto (a * a)



Expressions

have type, value und effect (potentially).

a % a b=bx*b
m type: int (type of the operands) m type: int (Typ der Operanden)
m Value: product of a and a m Value: product of b and b
m Effect: none. m effect: assignment of the product value
tob

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression
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L-Values and R-Values

// input f_ R-Value
std: :cout <<|"Compute a“8 for a =7 "k
int a;

std::cin >> @(7 L-value (expression + address)

// output b * b, i.e., a”8 [
std::cout << a<< ""8 = " << - << ".\ n";

return %
R-Value (expression that is not an L-value)
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L-Values and R-Values

L-Wert (“Left of the assignment operator”)
m Expression with address

m Value is the content at the memory location according to the
type of the expression.

m L-Value can change its value (e.g. via assignment)

Example: variable name
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L-Values and R-Values

R-Wert (“Right of the assignment operator”)
m Expression that is no L-value
Example: literal 0

m Any L-Value can be used as R-Value (but not the other way
round)

m An R-Value cannot change its value
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L-Value and R-Value

/a8
' 5 |

R-Wert




Operators and Operands Building Blocks

left operand (output stream)
f output operator right operand (string)
ipput l://’
std cout "Compute a~8 for a "
int a;

std::cin >> a
~ right operand (variable name)

// computati: iNput operator
int b = left operand (input stream)

b =Db % b; // b =2a4

//E: eissignment operator ~g

std::cout << a << ""8 = " << b * b << "\n";

return O; T
k multiplication operator
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Operators

Operators

m combine expressions (operands) into new composed
expressions

m specify for the operands and the result the types and if the have
to be L- or R-values.

m have an arity
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Multiplication Operator *

m expects two R-values of the same type as operands (arity 2)
m "returns the product as R-value of the same type", that means
formally:

m The composite expression is an R-value; its value is the product of the
value of the two operands

Examples: a * aandb * b
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Assignment Operator =

m Left operand is L-value,
m Right operand is R-value of the same type.

m Assigns to the left operand the value of the right operand and
returns the left operand as L-value

Examples:b = b * banda = b

Attention, Trap!

The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).
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Input Operator >>

m left operand is L-Value (input stream)
m right operand is L-Value

m assigns to the right operand the next value read from the input
stream, removing it from the input stream and returns the input
stream as L-value

Example std: :cin >> a (mostly keyboard input)
m Input stream is being changed and must thus be an L-Value.
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Output Operator <<

m left operand is L-Value (output stream)

m right operand is R-Value

m outputs the value of the right operand, appends it to the output
stream and returns the output stream as L-Value
Example: std::cout << a (mostly console output)

m The output stream is being changed and must thus be an L-Value.
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Output Operator <<

Why returning the output stream?

m allows bundling of output
std::cout << a << ""8 = " << b * b << "\n"
is parenthesized as follows

((((Std::cout <<L a) <L "=8 = ") << b * b) << |l\n||)

m std::cout << ais the left hand operand of the next << and is
thus an L-Value that is no variable name
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power8. cpp

m Problem with power8. cpp: large input values are not correctly
handled

m reason: domain of the type int is limited
m details will be provided next week
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2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,
Arithmetic Operators, Domain of Types int, unsigned int
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Celsius to Fahrenheit

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =7 ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 x celsius / 5 + 32 << " degrees Fahrenheit.\n";
return O;
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9 % celsius / 5 + 32

m Arithmetic expression,
m contains three literals, a variable, three operator symbols

How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction

9 *x celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)
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Associativity

From left to right

9 *x celsius / 5 + 32
bedeutet
((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (*, /, %, +, —) are left associative: operators of
same precedence evaluate from left to right
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Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.

-3 -4
means

(-3) - 4
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Parentheses

Any expression can be put in parentheses by means of
m associativities
m precedences
m arities (number of operands)

of the operands in an unambiguous way (Details in the lecture
notes).
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Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

32

celsius
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Evaluation Order

"From top to bottom" in the expression tree

9 % celsius / 5 + 32

celsius

32




Evaluation Order

Order is not determined uniquely:

9 % celsius / 5 + 32

celsius 32




Expression Trees — Notation

Common notation: root on top

9 % celsius / 5 + 32

32

celsius




Evaluation Order — more formally

m Valid order: any node is evaluated after its children

@ In C++, the valid order to
@ @ be used is not defined.
m "Good expression": any valid evaluation order leads to the same result.
m Example for a “bad expression”: a* (a=2)



Evaluation order

Guideline

Avoid modifying variables that are used in the same expression
more than once.



Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right
Negation - 1 16 right
Multiplication * 2 14 left
Division / 2 14 left
Modulo yA 2 14 links
Addition + 2 13 left
Subtraction - 2 13 left

All operators: [R-value x] R-value — R-value



Interlude: Assignment expression — in more detail

m Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value

m Whatdoesa = b = ¢ mean?
m Answer: assignment is right-associative

a=b-=c — a=(b=c)

Example multiple assignment:
a=b=0=b=0; a=0



Division

m Operator / implements integer division

5 / 2hasvalue 2
m In fahrenheit.cpp
9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

m Mathematically equivalent. . . but not in C+4-+!
9 / 5 x celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit



Loss of Precision

Guideline

m Watch out for potential loss of precision
m Postpone operations with potential loss of precision to avoid “error
escalation”



Division and Modulo

m Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.

m It holds that:
(a/ b) *b + a % b hasthe value of a.



Increment and decrement

m Increment / Decrement a number by one is a frequent operation
m works like this for an L-value:

expr = expr + 1.

Disadvantages
m relatively long
B expr is evaluated twice

m Later: L-valued expressions whose evaluation is “expensive”
m expr could have an effect (but should not, cf. guideline)



In-/Decrement Operators

Post-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)
Pra-Dekrement

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)



In-/decrement Operators

use arity prec assoz L-/R-value
Post-increment expr++ 1 17 left L-value — R-value
Pre-increment ++expr 1 16 right L-value — L-value
Post-decrement  expr-- 1 17 left L-value — R-value
Pre-decrement --expr 1 16 right L-value — L-value




In-/Decrement Operators

int a = 7;

std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9



In-/Decrement Operators

Is the expression

++expr; < we favour this
equivalent to

expr++;?
Yes, but

m Pre-increment can be more efficient (old value does not need to
be saved)

m Post In-/Decrement are the only left-associative unary operators
(not very intuitive)
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C++vs. ++C

Strictly speaking our language should be named ++C because

m it is an advancement of the language C
m while C++ returns the old C.



Arithmetic Assignments

analogously for -, *, /and¥%



Arithmetic Assignments

Gebrauch Bedeutung
+= exprl += expr2 exprl = exprl + expr2
-= exprl -= expr2 exprl = exprl - expr2
*= exprl *= expr2 exprl = exprl * expr2
/= exprl /= expr2 exprl = exprl / expr2
%= exprl = expr2 exprl = exprl J expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.



Binary Number Representations

Binary representation (Bits from {0, 1})
bnbn—l Ce blbo
corresponds to the number b, - 2" + --- + by - 2+ by

Example: 101011 corresponds to 43.

Least Significant Bit (LSB)
Most Significant Bit (MSB)



Binary Numbers: Numbers of the Computer?
Truth: Computers calculate using binary numbers.
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Binary Numbers: Numbers of the Computer?

Stereotype: computers are talking 0/1 gibberish

oo Tronoro Trouoro

01001110 01011010 01011010
Freitag, 8. Juni 2012 . Ne.131 - 233, Jhg. 1001010 010101 1001001101 wwwnzzeh - Fr 400 . €3.50

01000010 01100101
01110010 01101001

01100011 01161600 01110100 01100101

00100000 11111100 01100010
01100101 01110010 00100000
OLIO1110 01100101 01110101 011
0010101110011 00100000 010-
01101 01100001 01110011

on1zoors oxzoooor

1011181 60100000 01100100 011

00100000 01110110
01100110 01100101

wo

01000110 01101100 1191100

oo o 10100 00100000 0ICBO0IO 01
oatonn0




Computing Tricks

m Estimate the orders of magnitude of powers of two.?:

210 — 1024 = 1Ki ~ 103,
220 — 1Mi ~ 106,

230 — 1Gi ~ 10°,

232 = 4. (1024)3 = 4Gi.
264 — 16Ei ~ 16 - 1018,

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) — mega (M, Mi) — giga (G, Gi) — tera(T, Ti) — peta(P, Pi) — exa (E, Ei)



Hexadecimal Numbers

Numbers with base 16
hphp—1...hihg

corresponds to the number

hy - 16" 4+ -+ 4+ hy - 16 + hy.

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

hex | bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
© 1100 12
d 1101 18
e 1110 14
f 1111 15
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Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.

“‘compact representation of binary numbers”

32-bit numbers consist of eight hex-nibbles: 0x00000000 -- Oxffffffff .
0x400 = 1Ki = 1'024.

0x100000 = 1Mi = 1'048'576.

0x40000000 = 1G7 = 1'073.741, 824.

0x80000000: highest bit of a 32-bit number is set

oxffffff££: all bits of a 32-bit number are set

“0x8a20aaf0 is an address in the upper 2G of the 32-bit address space”



Why Hexadecimal Numbers?

“For programmers and technicians” (Excerpt of a user manual of the

chess computers Mephisto I, 1981)

-4 0O
o liiaY]

C3 C3
Lt ]

Beispiele:

a) Anzeige 8200
MEPHISTO ist mit genau 2 Bauern-Einheiten im Vorteil.

b) Anzeige 7F00
MEPHISTO ist mit genau 1 Bauem-Einheit im Nachte

Die Anzeige erfolgt in hexadezimaler Schreibweise. Im Gegensatz zum
gewohnten Dezimalsystem gehen die Ziffern an jeder Stelle von 0 bis F
(A=10,B=11 15)

Fiir mathematisc bildete nachstehend die Urr
in das dezim
ABCD = (Ax16?) + (Bx162) + (Cx16") + (Dx169)

Fir A gilt: 7 = -1; 8 = 0; 9 = +1 usw.
Eine Bauerneinheit (B) wird au riickt in 162 = 256 Punkten,
Dieses auf den ersten Blick vielleicht etwas komplizierte System dient
der Service-Freundlichkeit von MEPHISTO, sowie insbesondere der
Entwicklungsarbeit an zukiinftigen, noch stérkeren Prc mmen, ist
also mehr fiir unsere Programmierer und Techniker vorgesehen
Beispiele:
) Anzeige 805E

(E=14) Umrechnung nach folgendem Verfahren

(14x169) + (5x16') + (0x162) + (0x163) = 14+80+0+0

= 494 Punkte.

hnungsformel

d) Anzeige 7F80
(7=-1; F=15) Umrechnung wie folgt
(0x169) + (8x16') + (15x162) - (1x1683) = 0+128+3840
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Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...

01001110 41011010 01011010
Freitag, 8. Jui 2012 . Ne. 131 - 233, Jhg, 08001010 030101 1001001101 vwnzzeh - Fr 400 . €350

01000010 01100101
01110010 01101001

01100011 01101000 01110100 01100101

00100000 11111100 01100010
01100101 01110010 00100000
OLIOLL10 01100101 01110101 0L1-
00101 01110011 00100000 010-
01101 01100001 01110011

oL1ro0r1 1100001

01100110 01100101

01000110 01101100 1117100

00 002001

wnoaiar 10100 00100000 0IG00GIO 01100
oamonn

QIos0it a1010000
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Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is
<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";
return O;

} Minimum int value is -2147483648.
Maximum int value is 2147483647.

Where do these numbers come from?
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Domain of the Type int

m Representation with B bits. Domain comprises the 27 integers:
(=287t 9Bl 1 .. —1,0,1,...,28°t —2 2Bl _ 1}

Where does this partitioning come from?

m On most platforms B = 32
m For the type int C++ guarantees B > 16

m Background: Section 2.2.8 (Binary Representation) in the lecture
notes.



Over- and Underflow

m Arithmetic operations (+,-,*) can lead to numbers outside the
valid domain.

m Results can be incorrect!
power8. cpp: 15° = —1732076671

power20.cpp: 320 = —808182895
m There is no error message!



The Type unsigned int

m Domain
{0,1,...,28 — 1}

m All arithmetic operations exist also for unsigned int.
m Literals: 1u, 17u...



Mixed Expressions

m Operators can have operands of different type (e.g. int and
unsigned int).

17 + 17u

m Such mixed expressions are of the “more general” type
unsigned int.

m int-operands are converted to unsigned int.
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Conversion “reversed”

The declaration
int a = 3u;
converts 3u to int.

The value is preserved because it is in the domain of int; otherwise
the result depends on the implementation.



Signed Number Representation

m (Hopefully) clear by now: binary number representation without
sign, e.g.

[bglbgo .. bO]u = bs1 - 931 + b3 - 230 + -+ b
m Obviously required: use a bit for the sign.

m Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal in
both systems.



Computing with Binary Numbers (4 digits)

Simple Addition

Simple Subtraction

+3

0010
+0011

0101

0101
—0011

0010



Computing with Binary Numbers (4 digits)

Addition with Overflow

7
+9

16

Negative Numbers?

+(=5)

0

0111
+1001

(1)0000

0101
7777

(1)0000



Computing with Binary Numbers (4 digits)

Simpler -1
1 0001
+(—1) 1111
0 (1)0000
Utilize this:
3 0011
+7 +7777

—1 1111



Computing with Binary Numbers (4 digits)

Invert!
3 0011
+(—4) +1100
—1 1111228 — 1
a a
+(—a—1) a

—1 1111228 —1



Computing with Binary Numbers (4 digits)

m Negation: inversion and addition of 1

~

—a = a+1

m Wrap around semantics (calculating modulo 27

—a = 2B _ 4



Why this works

Modulo arithmetics: Compute on a circle®

\“‘I',II’/, s\\\“‘I',II',/
N7 N7,
/ N D \
7,1\ _|_ A RS
11=23=-1= 4=160=...
mod 12 mod 12

3The arithmetics also work with decimal numbers (and for multiplication).

||||||||

3=1b=...

mod 12



Negative Numbers (3 Digits)

The most significant bit decides about the sign and it contributes to

the value.

a

—a

whnh =0

000
001
010
011

000
111
110
101
100



Two’s Complement

m Negation by bitwise negation and addition of 1
—2 = —[0010] = [1101] 4+ [0001] = [1110]

m Arithmetics of addition and subtraction identical to unsigned arithmetics
3—2=34(—2)=[0011] + [1110] = [0001]

m Intuitive “wrap-around” conversion of negative numbers.
—n—28—n

m Domain: —28-1  2B-1_1

142



3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation
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Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even'";
else
std::cout << "odd";

Behavior depends on the value of a Boolean expression
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Boolean Values in Mathematics

Boolean expressions can take on one of two values:

Oor 1

m O corresponds to “false”
m 7 corresponds to “frue”



The Type bool in C++

m represents logical values
m Literals false and true
m Domain {false, true}

bool b = true; // Variable with value true



Relational Operators

b (smaller than)
>= b (greater than)
== b (equals)

a !'= b (notequal)

arithmetic type x arithmetic type — bool

R-value x R-value — R-value



Table of Relational Operators

H Symbol ‘ Arity ‘ Precedence | Associativity

smaller < 2 11 left
greater > 2 11 left
smaller equal <= 2 11 left
greater equal >= 2 11 left
equal == 2 10 left
unequal 1= 2 10 left

arithmetic type x arithmetic type — bool

R-value x R-value — R-value



Boolean Functions in Mathematics

m Boolean function

f:{0,1}* = {0,1}

m 0 corresponds to “false”.
m 1 corresponds to “true”.



AND(z, y)

m “logical And”

f:{0,1}* = {0,1}

X
x|y | AND(z,
00 0
0|1 0
110 0
111 1




Logical Operator &&

a&& b (logical and)

bool X bool — bool

R-value x R-value — R-value

bool b = (n < 0) & (0 < p); // b = true



OR(z, y)

m “logical Or”

f:{0,1}* = {0,1}

- | == | O | O |8

- | O| = | 0O |w




Logical Operator | |

allb (logical or)

bool X bool — bool

R-value x R-value — R-value

int n = 1;
int p = 0;
bool b= (n < 0) || (0 <p); // b= false



m “logical Not”

f:4{0,1} = {0,1}

m 0 corresponds to “false”.
m lcorresponds to “true”.

NOT(z)
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Logical Operator !

b (logical not)

bool — bool

R-value — R-value

int n = 1;
bool b = !(n < 0); // b = true



Precedences

'b && a

0

('b) && a

a& b || c & d

0

(a && b) || (c && d)

allb && c |l d

0

all (b& c) || d



Table of Logical Operators

Symbol | Arity | Precedence | Associativity
Logical and (AND) && 2 6 left
Logical or (OR) Il 2 5 left
Logical not (NOT) ! 1 16 right




Precedences

The unary logical operator !
binds more strongly than
binary arithmetic operators. These
bind more strongly than
relational operators,
and these bind more strongly than
binary logical operators.

7+x<y&y!'=3*xz || !Db
7T+x<y&&y!'!'=3x*z]|| (Ib)



Completeness

x XOR(z,y)
m AND, OR and NOT are the boolean 00 0
functions available in C++.
m Any other binary boolean function can 01 !
be generated from them. 110 1
1)1 0




Completeness: XOR(z, y)

XOR(z,y) = AND(OR(z,y), NOT(AND(z,y))).

r@y=(xVy Ao(zAy).

(x Il y) && '(x && y)

TDYy



Completeness Proof

m Identify binary boolean functions with their characteristic vector.

XOR(z,y)

characteristic vector: 0110

XOR = fOllO

- =008
Ol = O
o= = O




Completeness Proof

[ | Step 1: generate the fundamental functions foool, fOOlO, f0100, f1000

fOOOl = AND( )

f0010 = AND(QZ NOT(y))
f0100 = AND( NOT(QZ))
(O

fio0o = NOT(OR(z,y))



Completeness Proof

m Step 2: generate all functions by applying logical or

fr1i01 = OR(f1000, OR( fo100 fooo1))

m Step 3: generate fyono

foooo = 0.



bool vs int: Conversion

B bool can be used whenever int is expected
— and vice versa.

m Many existing programs use int instead of
bool
This is bad style originating from the
language C'.

bool — int
true  — 1
false — 0
int — bool
#0  — frue
0 — false

bool b = 3; // b=true



DeMorgan Rules

m!'(a && b)
m!(a |l b)

(ta || 'b)
(la && !b)

! (rich and beautiful) == (poor or ugly)



Application: either ... or (XOR)

x Il y && !'(x && y)

x Il & (Ix |1 'y)

r(Ix && 'y) && !'(x && y)

' (1x && 'y || x && y)

x ory, and not both

x ory, and one of them not

not none and not both

not: both or none



Short circuit Evaluation

m Logical operators && and | | evaluate the left operand first.
m If the result is then known, the right operand will not be evaluated.

x!1=0&& z /x>y

= No division by 0



4. Defensive Programming

Constants and Assertions



Sources of Errors

m Errors that the compiler can find:
syntactical and some semantical errors

m Errors that the compiler cannot find:
runtime errors (always semantical)



The Compiler as Your Friend: Constants

Constants
m are variables with immutable value

const int speed_of_light = 299792458;
m Usage: const before the definition



The Compiler as Your Friend: Constants

m Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;

speed_of_light = 300000000;

compiler: error/‘

m Tool to avoid errors: constants guarantee the promise :“value
does not change”



Constants: Variables behind Glass
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The const-guideline

const-guideline

For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a

constant.

A program that adheres to this guideline is called const-correct.



Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

2. Check at many places in the code if the program is still on track

3. Question the (seemingly) obvious, there could be a typo in the
code



Against Runtime Errors: Assertions

assert (expr)

m halts the program if the boolean expression expr is false
B requires #include <cassert>
m can be switched off (potential performance gain)



Assertions for the gcd(x, y)

Check if the program is on track . ..

// Input x and y
std::cout << "x =7 ";
std::cin >> x;
std::cout << "y =7 ";
std::cin >> y;

Input arguments for calcula-
tion

// Check validity of inputs

assert(x > 0 && y > 0); <«—NREellehilelaR{efE{al-ReTale ol gleRelo gy oI EVilo)y
// Compute gcd(x,y), store result in variable a
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Assertions for the gcd(x, y)

... and question the obvious! ...

assert(x > 0 && y > 0) ;+—NEEeellilolgRRIgleRe e ol {aloNele g oI E=tilo]y

. // Compute gcd(x,y), store result in variable a

assert (a >= 1);

assert (X % a == O && y % a == O); Properties of the
for (int i = a+l; i <= x && i <= y; ++i) gcd

assert(!(x % i==0&& y % i==0));
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Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

assert(x > 0 & y > 0); // Ignored
. // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
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Fail-Fast with Assertions

m Real software: many C++
files, complex control flow

m Errors surface late(r) —
impedes error localisation

m Assertions: Detect errors
early




5. Control Structures |

Selection Statements, lteration Statements, Termination, Blocks



Control Flow

m Up to now: /inear (from top to bottom)
m Interesting programs require “branches” and “jumps”

0 1 2 3 4 5 6 7 8 9
?

B || e (=07 || 2R LN LR || springe (| R - L || springe || p

—L —R stop U6 — [8] zu 0 — [9] zu 0 Y )




Selection Statements

implement branches

m if statement

B if-else statement



i f-Statement

if ( condition)
Statement

int a;

std::cin >> a;

if (a % 2 == 0)
std::cout << "even'";

If condition is true then state-
ment is executed

m statement. arbitrary
statement (body of the
if-Statement)

m condition: convertible to
bool



if-else-statement

if ( condition)
statement1

else
statement2

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even'";
else
std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

m condition: convertible to
bool.

m statement1: body of the
if-branch

m statement2: body of the
else-branch



Layout!

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even";
else
std::cout << "odd";

A

Indentation

AN

Indentation



lteration Statements

implement “loops”

m for-statement
B while-statement
B do-statement



Compute 1 +2+ ... +n

// Program: sum_n.cpp
// Compute the sum of the first

#include <iostream>

int main()

{

// input

n natural numbers.

std::cout << "Compute the sum 1+...+n for n =? ";

unsigned int n;
std::cin >> n;

// computation of sum_

unsigned int s = 0;
for (unsigned int i =

// output
std::cout << "1+...+"
return O;

{i=1}*n

1; i <=

<< n <<

n;

++i) s += i;
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f or-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += 1i;

Assumptions: n == 2,5 ==
i s

i== wahr s ==
i== Wahr s ==

i==3 falsch



f or-Statement: Syntax

for (init statement; condition; expression)
body statement

m /nit statement. expression statement, declaration statement, null
statement

m condition: convertible to bool
B expression: any expression
m body statement. any statement (body of the for-statement)



f or-Statement: semantics

for ( init statement condition ; expression )
statement

B /nit-statement is executed
m condition is evaluated

B true: lteration starts
statement is executed
expression is executed

m false: for-statement is ended.



GauB as a Child (1777 - 1855)

m Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

m Gauf3 finished after one minute.



The Solution of GauB3

m The requested number is

14+2+3+---+983+99 + 100.

m This is half of

1+ 24 -+ 99 + 100
+ 100 + 99 + - + 2 4+ 1

= 101 + 101 + --- + 101 + 101

m Answer: 100 - 101/2 = 5050



f or-Statement: Termination

for (unsigned int i = 1; i <= n; ++1i)
s += 1i;

Here and in most cases:

m expression changes its value that appears in condition .

m After a finite number of iterations condition becomes false:
Termination



Infinite Loops

m Infinite loops are easy to generate:

for ( 5 ;) ;

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.

m ... but can in general not be automatically detected.

for (init; cond; expr) stmt;



Halting Problem

Undecidability of the Halting Problem

There is no C+-+ program that can determine for each
C+-+-Program P and each input I if the program P terminates with
the input 1.

This means that the correctness of programs can in general not be
automatically checked.*

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing
machine.



Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n— 1} dividesn .

A loop that can test this:

unsigned int d;
for (d=2; n)d != 0; ++d);



Example: Termination

unsigned int d;
for (d=2; ni%d '= 0; ++d); // for n >= 2

m Progress: Initial value d=2, then plus 1 in every iteration (++d)

m Exit: n%d !'= 0 evaluatesto false as soon as a divisor is found
— atthe latest,once d == n

m Progress guarantees that the exit condition will be reached



Example: Correctness

unsigned int d;
for (d=2; ni%d '= 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.



Blocks

m Blocks group a number of statements to a new statement
{statementl statement2 ... statementN}

m Example: body of the main function

int main() {

}

m Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += 1i;
std::cout << "partial sum is " << s << "\n";

}



6. Control Statements |

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements



main block

Visibility
Declaration in a block is not visible outside of the block.

int main ()

{
{

block

int 1 = 2;
+

std::cout << i; // Error: undeclared name
return O;

,Blickrichtung”




Control Statement defines Block
In this respect, statements behave like blocks.

int main()

{
«|for (unsigned int i = 0; i < 10; ++i)
s s += i;
std::cout << i; // Error: undeclared name
return O;



scope

Scope of a Declaration

Potential scope: from declaration until end of the part that contains the declaration.

in the block in function body
{ int main() {
int i = 2; int i = 2;
} 3 return O;
}

in control statement

for (int i = 0: i < 10; ++i) {s +=di: ... }

scope




Scope of a Declaration

Real scope = potential scope minus potential scopes of declarations of symbols
with the same name

int main()

{

int i = 2;

for (int i = 0; i < 5; ++i)

in.main

i in for

std::cout << 1i;

std::cout << i;
return O;

scope of i



Automatic Storage Duration

Local Variables (declaration in block)
m are (re-)created each time their declaration is reached

m memory address is assigned (allocation)
m potential initialization is executed

m are deallocated at the end of their declarative region (memory is
released, address becomes invalid)



Local Variables

int main()

{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << ——k; // outputs 1, 1, 1, 1, 1
}
}

Local variables (declaration in a block) have automatic storage
duration.



while Statement

while ( condition)
Statement

m statement. arbitrary statement, body of the while statement.
m condition: convertible to bool.



while Statement

while ( condition)
statement

is equivalent to

for (; condition ;)
statement



while-Statement: Semantics

while ( condition)
statement

m condition is evaluated
B true: iteration starts
statement is executed

m false: while-statement ends.
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while-statement: why?

m In a for-statement, the expression often provides the progress
(“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += 1i;

m If the progress is not as simple, while can be more readable.



Example: The Collatz-Sequence

B nyg=n

n;q .
- , ifn,_1 even
mn = 2 1>

3n;_1+1 if n;_; odd N

n=5:5,16,8,4,2,1,4,2,1, ... (repetition at 1)

(n € N)



The Collatz Sequence in C++

// Program: collatz.cpp
// Compute the Collatz sequence of a number n.

#include <iostream>
int main()

{
// Input

std: :cout << "Compute the Collatz sequence for n =? ";

unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {
if (n $ 2 == 0)
n=n/ 2;
else
n=3%mn+1;
std::cout << n << " ";
}
std::cout << "\n";
return 0;



The Collatz Sequence in C++

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1



The Collatz-Sequence

Does 1 occur for each n?

m It is conjectured, but nobody can prove it!

m If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some

n.



do Statement

do
Statement
while ( expression);

m statement: arbitrary statement, body of the do statement.
m expression: convertible to bool.



do Statement

do
statement
while ( expression);

is equivalent to

Statement
while ( expression)
Statement



do-Statement: Semantics

do
statement
while ( expression );

m lteration starts

m statementis executed.
m expression is evaluated

m true: iteration begins
m false: do-statement ends.



do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =7 ";

std::cin >> a;

s += a;

std::cout << "sum = " << s << "\n'";
} while (a !'= 0);



Conclusion

m Selection (conditional branches)
m if and if-else-statement

m lteration (conditional jumps)

m for-statement
m while-statement
m do-statement

m Blocks and scope of declarations



Jump Statements

B break,;
B continue;



break-Statement

break;

m Immediately leave the enclosing iteration statement
m useful in order to be able to break a loop “in the middle” °

5and indispensible for switch-statements
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Calculator with break

Sum up integers (if 0 then stop)

int a;
int s = 0;
do {
std::cout << '"next number =7 ";
std::cin >> a;
// irrelevant in last iteration:
s += a;
std::cout << "sum = " << g << "\n";
} while (a != 0);



Calculator with break

Suppress irrelevant addition of 0:

int a;
int s = 0;
do {
std::cout << '"next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n'";
} while (a !'= 0)



Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {
std::cout << '"next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << g << "\n";



Calculator with break

Version without break evaluates a twice and requires an additional
block.

int a = 1;
int s = 0;
for (;a !'= 0;) {
std::cout << "next number =7 ";
std::cin >> a;
if (a !'=0) {
s += a;
std::cout << "sum = " << s << "\n";



continue-Statement

continue;

m Jump over the rest of the body of the enclosing iteration statement
m lteration statement is not left.



break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

m But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow

m Their use is thus controversial, and should be carefully considered
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Calculator with continue

Ignore negative input:

for (;3;)

{
std::cout << '"next number =7 ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << g << "\n";



Equivalence of lteration Statements

We have seen:
m while and do can be simulated with for
|t even hO|dS: Not so simple if a continue is used!

m The three iteration statements provide the same “expressiveness”
(lecture notes)



Control Flow

Order of the (repeated) execution of statements

m generally from top to bottom...
m ...exceptin selection and iteration statements

condition

false if ( condition)
statement

statement




Control Flow if else

condition

true

statement1 false

statement2

if ( condition)
statementi

else
statement2



Control Flow for

for ( init statement condition ; expression )
Statement

init-statement

condition

statement
false

expression




Control Flow break in for

init-statement

condition

statement

expression

break



Control Flow continue in for

init-statement

condition

statement

expression

ontinue



Control Flow while

condition

statement

false



Control Flow do while

statement

condition

false

true



Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them: goto
m Machine Language
m Assembler (“higher” machine language)

m BASIC, the first prorgamming language
for the general public (1964)



BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

rg/wiki/Commodore_64

ikipedia.o:

p://de.w

Nhtt
W


http://de.wikipedia.org/wiki/Commodore_64

Spaghetti-Code with goto

bers
using the programming language BASIC:




The “right” Iteration Statement

Goals: readability, conciseness, in particular

m few statements

m few lines of code

m simple control flow
m simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbers in {0, ..., 100}

First (correct) attempit:

for (unsigned int i = 0; i < 100; ++i)
{
if (A% 2 ==0)
continue;
std::cout << i << "\n";



Odd Numbers in {0, ..., 100}

Less statements, /ess lines:

for (unsigned int i = 0; i < 100; ++i)

{
if (A% 2 !1=0)
std::cout << i << "\n";
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Odd Numbers in {0, ..., 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n'";

This is the “right” iteration statement



Jump Statements

m implement unconditional jumps.
m are useful, such as while and do but not indispensible

m should be used with care: only where the control flow is simplified
instead of making it more complicated



Outputting Grades

1. Functional requirement:

6 — "Excellent ... You passed!"
5,4 — "You passed!"
3 — "Close, but ... You failed!"
2,1 — "You failed!"
otherwise — "Error!"

2. Moreover: Avoid duplication of text and code



Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {
std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";
} else std::cout << "Error!'";

Disadvantage: Control flow — and thus program behaviour — not
quite obvious



Outputting Grades with switch Statement

switch (grade) { ¢ Jump to matching case
case 6: std::cout << "Excellent ... ";
case 5: Fall-through
case 4: std::cout << "You passed!";
break; 4 Exit switch
case 3: std::cout << "Close, but ... ";
case 2: Fall-through
case 1: std::cout << "You failed!";
break; 4 Exit switch

default: std::cout << "Error!"; &—— |n all other cases
}

Advantage: Control flow clearly recognisable



The switch-Statement

switch (condition)
statement

m condition: Expression, convertible to integral type

m statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.

m Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)



Semantics of the switch-statement

switch (condition)
statement

B condition is evaluated.

m If statement contains a case-label with (constant) value of
condition, then jump there

m otherwise jump to the default-lable, if available. If not, jump over
statement.

B The break statement ends the switch-statement.



Control Flow switch

switch
case

break
case

statement

break
default




7. Floating-point Numbers |

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range



“Proper” Calculation

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 % celsius / 5 + 32 << " degrees Fahrenheit.\n";
return O;




Fixed-point numbers
m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)
0.0824 = 0000000 .082+ third place truncated

Disadvantages

m Value range is getting even smaller than for integers.

m Representability depends on the position of the decimal point.



Floating-point numbers

m Observation: same number, different representations with varying
“efficiency”, e.g.
0.0824 = 0.00824 -10' =0.824-107!
=824-1072 =824-10"*

Number of significant digits remains constant

m Floating-point number representation thus:

m Fixed number of significant places (e.g. 10),
m Plus position of the decimal point via exponent

m Numberis Mantissa x 10Exponent



Types float and double

m are the fundamental C++ types for floating point numbers

m approximate the field of real numbers (R, +, x) from mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to £38
m double: approx. 15 digits, exponent up to +308

m are fast on most computers (hardware support)



Arithmetic Operators

Analogous to int, but ...

m Division operator / models a “proper” division (real-valued, not
integer)
m No modulo operator, i.e. no %
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Literals

are different from integers by providing

m decimal point 1.23e-7f

1.0 : type double, value 1 r\j K_/W

1.27f : type float, value 1.27 integer part S oTE
m and / or exponent.

fractional part

1e3 : type double, value 1000
1.23e-7 : type double, value 1.23 - 10~

1.23e-7f : type float, value 1.23 - 10~
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Computing with f1oat: Example

Approximating the Euler-Number
1=0

using the first 10 terms.

Zl ~ 2.71828 . ..



Computing with £1oat: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i—th iteration, initialized for i
float t = 1.0f; // term 1/i!
float e = 1.0f; // i—th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {
t /= 1i; // 1/(GE—-1)" —> 1/i!
e += t;
std::cout << "Value after term " << i << ": "
<< e << n\nn;

=0



Computing with £1oat: Euler Number

Value after term 1: 2

Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828



Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32



Holes in the value range

float ni;
std::cout << "First number =7 "; input 1.1
std::cin >> ni;

float n2;
std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;

std::cout << "Their difference =7 "; input 0.1

std::cin >> d;

std::cout << "Computed difference — input difference = "
<< nl — n2 — 4 << "\n"; output 2.23517e-8

What is going on here?



Value range

Integer Types:

m Over- and Underflow relatively frequent, but ...
m the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

m Overflow and Underflow seldom, but ...
m there are holes: R is “continuous”.



8. Floating-point Numbers i

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers
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Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

m 3 > 2, the base,

m p > 1, the precision (number of places),
B c,in, the smallest possible exponent,

B e,y the largest possible exponent.

Notation:
F(ﬁ, Ps €min, emax)
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Floating-point number Systems

F(3, p, €min, €max) CcOntains the numbers
p—1
£ dif ™
1=0
d; €{0,...,6—1}, e€{emm,---Cmax}-

represented in base £:

+ d().d1 ce dp—l X Be,



Floating-point Number Systems

Representations of the decimal number 0.1 (with 5 = 10):

1.0-107Y, 0.1-10° 0.01-10%,

Different representations due to choice of exponent



Normalized representation

Normalized number:

+ d().d1 . dp—l X 56, do 7é 0

Remark 1

The normalized representation is unique and therefore prefered.

Remark 2

The number 0, as well as all numbers smaller than 5=, have no
normalized representation (we will come back to this later)



Set of Normalized Numbers

F~ <67 P €min, emax)



Normalized Representation

Example F*(2,3,—-2,2) (only positive numbers)

do.d1d2‘62_2 e=—-1 e= e=1 e=2
1.005 0.25 0.5 1 2 4
1.01, 0.3125 0.625 1.25 2.5 5
1.104 0.375 0.75 1.5 3 6
1.11, 0.4375 0.875 1.75 3.5 7

0 8

T rrr T T I I I I I I +

1.00-272 =% 111-22 =7



Binary and Decimal Systems

m Internally the computer computes with § = 2
(binary system)

m Literals and inputs have 5 = 10
(decimal system)

m Inputs have to be converted!



Conversion Decimal — Binary

Assume, 0 < z < 2.
Binary representation:

0
r = Z 6221 = bo,bflbfgbfg Ce

o -1 0
= by + Z ;2" = by + Z b; 12071
b0+<z b 12)/2

-~

@/=b_1,b_ob_3b_4



Conversion Decimal — Binary

Assume 0 < z < 2.

m Hence: 2/ = bfl.bfgbfgbfgl .= 2- (SC — bo)
m Step 1 (for x): Compute by:

b 1, ifz>1
71 0, otherwise

m Step 2 (for x): Compute b_1,0_o, .. .:
Gotostep 1 (for 2’ =2 (z — b))



Binary representation of 1.1,

x by ©—0b 2(x—10)
11 by=1 0.1 0.2
02 b=0 0.2 0.4
04 b,=0 0.4 0.8
0.8 b3=0 0.8 1.6
1.6 by=1 0.6 1.2

bs =1 0.2 0.4

= 1.00011, periodic, not finite




Binary Number Representations of 1.1 and 0.1

m are not finite, hence there are errors when converting into a (finite)
binary floating-point system.

m 1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly inaccurate
approximation of these numbers.

m Indiff.cpp: 1.1 —1.0#0.1



Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178. ..
1.1f = 1.1000000238418...




Computing with Floating-point Numbers
Example (8 = 2, p = 4):

1.111-272
+ 1.011-271

— 1.001 - 2°

1. adjust exponents by denormalizing one number 2. binary addition of the
significands 3. renormalize 4. round to p significant places, if necessary



The IEEE Standard 754

m defines floating-point number systems and their rounding behavior
m is used nearly everywhere
m Single precision (float) numbers:
F*(2,24,—-126,127) (32 bit) plus 0, oo, ...
m Double precision (double) numbers:
F*(2,53,—1022,1023) (64 bit) plus 0, oo, ...

m All arithmetic operations round the exact result to the next
representable number



The IEEE Standard 754

Why
F*(2,24,—126,127)?

m 1 sign bit

m 23 bit for the significand (leading bit is 1 and is not stored)

m 8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0, co,...)

= 32 bit in total.



The IEEE Standard 754

Why
F*(2,53,—1022,1023)7

m 1 sign bit

m 52 bit for the significand (leading bit is 1 and is not stored)

m 11 bit for the exponent (2046 possible exponents, 2 special
values: 0, co,...)

= 64 bit in total.



Example: 32-bit Representation of a Floating Point
Number

[81][s0][20 ] 28 ] 27 | z¢ ] 25 | 2 = |/22] 1] 20] 9] &1 [v7] ][] ] ] ] ] vo] o e )= e s 2 ] o]

+ Exponent Mantisse

9126 9127 1.00000000000000000000000
0,00,... LT.IT111111111111111111111



Floating-point Rules

Rule 1
Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i !'=1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1

Rule 1




Floating-point Rules Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 - 2°
+1.000 - 2V
= 1.00001 - 2°
“="1.000 - 2° (Rounding on 4 places)

AAANAN AfF 1 AAane nAat havia Aanvy affart! 288



Harmonic Numbers Rule 2

n ] _ n

m This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent



Harmonic Numbers Rule 2

// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
// Input
std::cout << "Compute H.n for n =? ";
unsigned int n;
std::cin >> n;

// Forward sum

float fs = 0;

for (unsigned int i
fs += 1.0f / i;

n
[
"
A
n

n; ++i)

// Backward sum

float bs = 0;

for (unsigned int i = n; i >= 1; —--i)
bs += 1.0f / i;

// Output

std::cout << "Forward sum = " << fs << "\n"
<< "Backward sum = " << bs << "\n";

return 0;




Harmonic Numbers

Results:

|
Compute H_n for n =7
Forward sum = 15.4037
Backward sum = 16.686

|
Compute H_n for n =7
Forward sum = 15.4037
Backward sum = 18.8079

10000000

100000000

Rule 2



Harmonic Numbers Rule 2

Observation:

m The forward sum stops growing at some point and is “really”
wrong.

m The backward sum approximates H,, well.
Explanation:

mFor1+1/2+1/3+---,later terms are too small to actually
contribute

m Problem similar to 2° + 1 “=” 2°



Floating-point Guidelines Rule 3

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.



Literature

David Goldberg: What Every
Computer Scientist Should Know
About Floating-Point Arithmetic
(1991)

© 1996 Randy Glasbergen.
Randy Glasbergen, 1996



9. Functions |

Defining and Calling Functions, Evaluation of Function Calls, the
Type void
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Functions

m encapsulate functionality that is frequently used (e.g. computing
powers) and make it easily accessible

m structure a program: partitioning into small sub-tasks, each of
which is implemented as a function

= Procedural programming; procedure: a different word for function.
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Example: Computing Powers

double a;

int n;

std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;

if (m<0){//amn=(1/a) (-n) _j) "Funktion pow"
a=1.0/a;
n = —n;

}

for (int 1 = 0; i < n; ++i)
result *x= a;

std::cout << a << "7" << n << " = " << resultpow(a,n) << ".\n";



Function to Compute Powers

// PRE: e > =0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e)

{
double result = 1.0;
if (e <0) {// be=(1/b) (—e)
b =1.0/b;
e = —e;
}

for (int i = 0; i < e; ++1i)
result *x= b;
return result;




Function to Compute Powers

// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()

{
std::cout << pow( 2.0, —2) << "\n"; // outputs 0.25
std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(—2.0, 9) << "\n"; // outputs —512

return O;

}



Function Definitions

return type argument types

A a—— = AN

T fname (T, pnamey, T2 pname,, ..., Ty pnamey)
block

.

body

function name formal arguments



Defining Functions

m may not occur locally, i.e. not in blocks, not in other functions and
not within control statements
m can be written consecutively without separator in a program

double pow (double b, int e)
{

}

int main ()

{
}



// post: returns 1 XOR r
bool Xor(bool 1, bool r)
{

return 1 != r;

}
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Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number

// computed with backward sum
float Harmonic(int n)
{

float res = 0;

for (unsigned int i = n; i >= 1; ——1i)
res += 1.0f / i;

return res;



Example: min

// POST: returns the minimum of a and b
int min(int a, int b)
{
if (a<b)
return a;
else
return b;



Function Calls

fname ( expression,, expression,, ..., expressiony,)

m All call arguments must be convertible to the respective formal
argument types.

m The function call is an expression of the return type of the
function. Value and effect as given in the postcondition of the
function fname.

Example: pow(a,n): Expression of type double



Function Calls

For the types we know up to this point it holds that:

m Call arguments are R-values
— call-by-value (also pass-by-value), more on this soon

m The function call is an R-value.

fname: R-value x R-value x --- x R-value — R-value
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Evaluation of a Function Call

m Evaluation of the call arguments
m Initialization of the formal arguments with the resulting values

m Execution of the function body: formal arguments behave laike
local variables

m Execution ends with
return expression;

Return value yiels the value of the function call.



Example: Evaluation Function Call

double pow(double b, int e){
assert (e >=0 || b !'= 0);
double result = 1.0;

if (e<0) {
// b"e = (1/b)~(—e)
b =1.0/b;
e = —e;

}

for (int i = 0; i < e ; ++i)
result * = b;
return result;

Call of pow

((\
&

pow (2.0, —2)



sometimes em formal arguments

m Declarative region: function definition

m are invisible outside the function definition

m are allocated for each call of the function (automatic storage
duration)

m modifications of their value do not have an effect to the values of
the call arguments (call arguments are R-values)



Scope of Formal Arguments

double pow(double b, int e){ int main(){
double r = 1.0; double b = 2.0;
if (e<0) { —r int e = —2;
b =1.0/b; double z = pow(b, e);
e = —e;
} std::cout << z; // 0.25
for (int i = 0; i < e ; ++i) std::cout << b; // 2
r * = b; std::cout << e; // —2
return r; return O;
} +
Not the formal arguments b and e of pow but the variables

defined here locally in the body of main



The type void

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {
Std::cout << Il(ll << i << II, n << J' << ll)\nll;

3

int main() {
print_pair(3,4); // outputs (3, 4)
return O;



The type void

m Fundamental type with empty value range
m Usage as a return type for functions that do only provide an effect



void-Functions

m do not require return.
m execution ends when the end of the function body is reached or if

B return; is reached
or

B return expression; is reached.

Expression with type void (e.g. a call of
a function with return type void



10. Functions i

Pre- and Postconditions Stepwise Refinement, Scope, Libraries and
Standard Functions
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Pre- and Postconditions

m characterize (as complete as possible) what a function does

m document the function for users and programmers (we or other
people)

m make programs more readable: we do not have to understand
how the function works

m are ignored by the compiler

m Pre and postconditions render statements about the correctness
of a program possible — provided they are correct.



Preconditions

precondition:
m what is required to hold when the function is called?

m defines the domain of the function

0¢ is undefined for e < 0

// PRE: e >= 0 || b != 0.0
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Postconditions

postcondition:
m What is guaranteed to hold after the function call?
m Specifies value and effect of the function call.

Here only value, no effect.
// POST: return value is b~e



Pre- and Postconditions

m should be correct:
m /fthe precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b # 0



Pre- and Postconditions

m We do not make a statement about what happens if the
precondition does not hold.

m C-+-+-standard-slang: “Undefined behavior”.

Function pow: division by 0



Pre- and Postconditions

m pre-condition should be as weak as possible (largest possible
domain)

m post-condition should be as sfrong as possible (most detailed
information)



White Lies...

// PRE: e >=0 || b !'= 0.0
// POST: return value is b~e

is formally incorrect:

m Overflow if e or b are too large

m b° potentially not representable as a double (holes in the value range!)



White Lies are Allowed

// PRE: e > =0 || b !'= 0.0
// POST: return value is b~e

The exact pre- and postconditions are platform-dependent and often complicated.
We abstract away and provide the mathematical conditions. = compromise
between formal correctness and lax practice.



Checking Preconditions...

m Preconditions are only comments.
m How can we ensure that they hold when the function is called?



... With assertions

#include <cassert>

// PRE: e >=0 || b !'= 0.0

// POST: return value is b~e

double pow(double b, int e) {
assert (e >=0 || b !'= 0);
double result = 1.0;



Postconditions with Asserts

m The result of “complex” computations is often easy to check.
m Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant pxp/4 — q is nonnegative
// POST: returns larger root of the polynomial x"2 + p x + q
double root(double p, double q)
{
assert(pxp/4 >= q); // precondition
double x1 = — p/2 + sqrt(pxp/4 — q);
assert (equals(x1xx1+pxx1+q,0)); // postcondition
return x1;



Exceptions

m Assertions are a rough tool; if an assertions fails, the program is
halted in a unrecoverable way.

m C+-+provides more elegant means (exceptions) in order to deal
with such failures depending on the situation and potentially
without halting the program

m Failsafe programs should only halt in emergency situations and
therefore should work with exceptions. For this course, however,
this goes too far.



Stepwise Refinement

m A simple technique to solve complex problems

ACM 14, 4, 1971

rth. Program development by stepwise refinement. Commun

%N\k\aus Wi
(o)



Stepwise Refinement

m Solve the problem step by step. Start with a coarse solution on a high level of
abstraction (only comments and abstract function calls)

m At each step, comments are replaced by program text, and functions are
implemented (using the same principle again)

m The refinement also refers to the development of data representation (more
about this later).

m If the refinement is realized as far as possible by functions, then partial
solutions emerge that might be used for other problems.

m Stepwise refinement supports (but does not replace) the structural
understanding of a problem.



Example Problem

Find out if two rectangles intersect!




Coarse Solution

(mcludien Birectives omitted)
' // input rectangles

// intersection?

// output solution

return O;



Refinement 1: Input Rectangles

hi

(z1,91)

(5617 Y1, Wy, hl)

w1

(3727 Y2, W2, h‘Q)

(z2,92) wa

ha



Refinement 1: Input Rectangles

Width w and height 7 may be negative.

h>0

(z,y,w, h)

w < 0

(z,y)



Refinement 1: Input Rectangles

int main()

{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, wl, hi;

std::cin >> x1 >> y1 >> wl >> hil;

int x2, y2, w2, h2;

std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?
// output solution

return O;



Refinement 2: Intersection? and Output

int main()

{

input rectangles

bool clash = rectangles_intersect(xl,yl,wl,hl,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";
else

std::cout << "no intersection!\n";

return O;



Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int x2, int y2, int w2, int h2)
{

return false; // todo

}

int main() {

input rectangles
intersection?

output solution

return O;



Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int x2, int y2, int w2, int h2)
{

return false; // todo

}

Function main



Refinement 3: ...Wwith PRE and POST

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles,

// where wil, hl, w2, h2 may be negative.
// POST: returns true if (x1, y1, wi, hl) and
// (x2, y2, w2, h2) intersect

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int %2, int y2, int w2, int h2)
{
return false; // todo

}



Refinement 4: Interval Intersection

Two rectangles intersect if and only if their x and y-intervals
intersect.

e [y1,y1 + hi)

(z1,91) w1
h
2 [y2,y2 + ha]

(x2,y2) wa

x1, w1 + wi)

[x2, z2 + wa]



Refinement 4: Interval Intersections

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles, where
// wl, hl, w2, h2 may be negative.
// POST: returns true if (x1, yi1, wil, hl),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int wl, int hil,
int %2, int y2, int w2, int h2)

{

return intervals_intersect(xl, x1 + wl, x2, x2 + w2)

&& intervals_intersect(yl, yl1 + hl, y2, y2 + h2); /



Refinement 4: Interval Intersections

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b

// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)

{

return false; // todo

}

Function rectangles_intersect .

Function main



Refinement 5: Min and Max

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return max(al, bl) >= min(a2, b2)
&% min(al, bl) <= max(a2, b2);



Refinement 5: Min and Max

// POST: the maximum of x and y is returned
int max(int x, int y)
if (x>y) return x; else nys;
¥ already exists in the standard library

// POST: the minimum Zf/f/ggd/y’igzzéturned
int min(int x, int y)

if (x<y) return x; else return y;

}

Function intervals_intersect .
Function rectangles_intersect .

Function main



Back to Intervals

// PRE: [al, bl], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return std::max(al, bl) >= std::min(a2, b2)
&& std::min(al, bl) <= std::max(a2, b2);



Look what we have achieved step by step!

#include <iostream> int main ()
#include <algorithm>
std::cout << "Enter two rectangles [x y w h each]\n";

// PRE: [al, bl], [a2, h2] are (generalized) intervals, int x1, y1, wi, hi;
// with [a,b] := [b,a] if a>b std::cin >> x1 >> y1 >> wil >> hi
// POST: returns true if [al, bl],[a2, b2] intersect int x2, y2, w2, h2;
bool intervals_intersect(int al, int bl, int a2, int b2) std::cin >> x2 >> y2 >> w2 >> h2;
{ bool clash = rectangles_intersect(x1,yl,wl,h1,x2,y2,w2,h2)
return std::max(al, bl) >= std::min(a2, b2) if (clash)

&& std::min(al, bl) <= std::max(a2, b2); std::cout << "intersection!\n";

} else
std::cout << "no intersection!\n";

// PRE: (x1, yi1, wi, hl), (x2, y2, w2, h2) are rectangles, where return 0;
// wl, hl, w2, h2 may be negative. b

// POST: returns true if (x1, y1, wi, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int wl, int hi,
int x2, int y2, int w2, int h2)
{
return intervals_intersect(xl, x1 + wl, x2, x2 + w2)
&& intervals_intersect(yl, y1 + hi, y2, y2 + h2);



Result

m Clean solution of the problem

m Useful functions have been implemented
intervals_intersect
rectangles_intersect

Ergebnis

Saubere Losung des Problems
sind entstanden




Giiltigkeit f

Where can a Function be Used?

#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return O;

}

int f(int i) // Scope of f starts here
{

return i;

}



Scope of a Function

m is the part of the program where a function can be called

m is defined as the union of all scopes of its declarations (there can
be more than one)

declaration of a function: like the definition but without {. . .}.

double pow(double b, int e);



Gilltigkeit f

This does not work...

#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return O;

}

int f(int i) // Scope of f starts here
{

return i;

}



... but this works!

#include <iostream>
int f(int i); // Gueltigkeitsbereich von f ab hier

int main()

{
std::cout << f(1);

return O;

}

int f£(int i)
{

return i;

}



Forward Declarations, why?

Functions that mutually call each other:

int g(...); // forward declaration

int £(...) // f valid from here
{

9 g(...) // ok
8 .|>
3 e
Slint g(...)
ME
£f(...) // ok




Reusability

m Functions such as rectangles_intersect and pow are useful in
many programs.

m “Solution”: copy-and-paste the source code

m Main disadvantage: when the function definition needs to be
adapted, we have to change all programs that make use of the
function



Level 1: Outsource the Function

// PRE: e >=0 || b != 0.0
// POST: return value is b~e
double pow(double b, int e)

{
double result = 1.0;
if (e <0 1 // “e = (1/b)~(—e)
= 1.0/b;
e = —e;
}

for (int 1 = 0; i < e; ++i)
result *x= b;
return result;




Level 1: Include the Function

// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp" «—— file in working directory

int main()
{
std::cout
std::cout
std::cout
std::cout

return O;

<< pow( 2.0, —2) << "\n";
<< pow( 1.5, 2) << "\n";
<< pow( 5.0, 1) << "\n";
<< pow(—2.0, 9) << "\n";



Disadvantage of Including

m #include copies the file (mymath. cpp) into the main program
(callpow2.cpp).

m The compiler has to (re)compile the function definition for each
program

m This can take long for many and large functions.



Level 2: Separate Compilation

of mymath. cpp independent of the main program:

double pow(double b,
int e)
{ g++ -c mymath.cpp

" Funktion pow
3>8§111100001101010001

3

mymath.cpp mymath.o
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Level 2: Separate Compilation

Declaration of all used symbols in so-called header file.

// PRE: e >=0 || b != 0.0
// POST: return value is b~e
double pow(double b, int e);

mymath.h



Level 2: Separate Compilation

of the main program, independent of mymath. cpp, if a declaration
from mymath is included.

#include <iostream>

#include "mymath.h" . .
int main() Funktion main

{ —

std::cout << pow(2,—2) << "\n";

X

callpow3.cpp callpow3.o




The linker unites...

mymath.o

‘Funktion main
111100001101010001

010101101011010001
111111101000111010

callpow3.0



... What belongs together

mymath.o

‘Funktion main

010101101011010001
111111101000111010

callpow3.0

Executable callpow3

Funktion main
111100091101010001
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Availability of Source Code?

Observation

mymath. cpp (source code) is not required any more when the
mymath.o (object code) is available.

Many vendors of libraries do not provide source code.
Header files then provide the only readable informations.



Open-Source Software

m Source code is generally available.

m Only this allows the continued development of code by users and dedicated
“hackers”.

m Even in commercial domains, open-source software gains ground.

m Certain licenses force naming sources and open development. Example GPL
(GNU Genereal Public License)

m Known open-source software: Linux (operating system), Firefox (browser),
Thunderbird (email program)...



Libraries

m Logical grouping of similar functions
pow
exp
cmath

log

sin



Name Spaces...

// cmath
namespace std {

double pow(double b, int e);

double exp(double x);



... Avoid Name Conflicts

#include <cmath>
#include "mymath.h"

int main()

{
double x = std::pow(2.0, —2); // <cmath>
double y = pow(2.0, —2); // mymath.h



Name Spaces / Compilation Units

In C++ the concept of separate compilation is independent of the
concept of name spaces

In some other languages,e.g. Modula / Oberon (partially also for
Java) the compilation unit can define a name space.



Functions from the Standard Library

m help to avoid re-inventing the wheel (such as with std: : pow);
m lead to interesting and efficient programs in a simple way;

m guarantee a quality standard that cannot easily be achieved with
code written from scratch.



Example: Prime Number Test with sqrt

n > 2 is a prime number if and only if thereisno din {2,...,n — 1}
dividing n .

unsigned int d;
for (d=2; n % d != 0; ++d);



Prime Number test with sqrt

n > 2 is a prime number if and only if thereisno din {2,...,|/n]}
dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound & n % d '= 0; ++d);

m This works because std: :sqrt rounds to the next
representable double number (IEEE Standard 754).



Prime Number test with sqrt

// Test if a given natural number is prime.

#include
#include
#include

int main

{

<iostream>
<cassert>
<cmath>

O

// Input

unsigned int n;

std::cout << "Test if n>1 is prime for n =7 ";
std::cin >> n;

assert

(n > 1);

// Computation: test possible divisors d up to sqrt(m)
unsigned int bound = std::sqrt(n);
unsigned int d;

for (d = 2; d <= bound & n % d != 0; ++d);@
// Output
if (d <= bound)
// d is a divisor of n in {2,...,[sqrt(n)]}
std::cout << n << " = " << d<< " % "< n/d<< ".\n"
else

// no proper divisor found
std::cout << n << " is prime.\n"

return 0;



Functions Should be More Capable!

void swap(int x, int y) {
int t = x;
X = y;
y =1t
+
int main(){
int a =
int b =
swap(a, b);

2;
1;

assert(a==1 && b==2); // fail! &

Swap ?



Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(in X, in y) {
int t = x;
X =7;
y =1
}
int main(){
int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // ok! ()



Sneak Preview: Reference Types

m We can enable functions to change the value of call arguments.
m Not a new concept specific to functions, but rather a new class of
types

S

Reference types (e.g. int&)



11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References

378



Swap!

// POST: values of x and y are exchanged
void swap (int X, int y) {
int t = x;
X =y;
y =1
}
int main(){
int a = 2;
int b = 1;
swap (a, b);

assert (a == 1 && b == 2); // ok! (©



Reference Types

m We can make functions change the values of the call arguments
m no new concept for functions, but a new class of types

[

Reference Types



Reference Types: Definition

T&  read as “T-reference”

:

underlying type

m 7% has the same range of values and functionality as T, ...
m but initialization and assignment work differently.



Anakin Skywalker alias Darth Vader

s =i \




Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
darth_vader = 22;

*__— assignment to the L-value behind the alias

std::cout << anakin_skywalker; // 22

anakin_skywalker darth_vader

—

HNEEEEEFINEEEEEEEEEEE




Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

m A variable of reference type (a reference) can only be initialized
with an L-Value .

m The variable is becoming an alias of the L-value (a different name
for the referenced object).

m Assignment to the reference is to the object behind the alias.



Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address
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Pass by Reference

Reference types make it possible that functions modify the value of the call arguments:
void increment (int& i) <« initialization of the formal arguments

{ // i becomes an alias of the call argument
++1i;

}

int j = 5;

increment (j);

std::cout << j << "\n"; // 6




Pass by Reference

Formal argument has reference type:

= Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.
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Pass by Value

Formal argument does not have a reference type:

= Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.



References in the Context of intervals _intersect

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// POST: returns true if [al, bl], [a2, b2] intersect, in which case
// [1, h] contains the intersection of [al, bl], [a2, b2]
bool intervals_intersect (int& 1, int& h,
int al, int b1, int a2, int b2) {

sort (al, bl); a @
sort (a2, b2); . } - i
1 = std::max (al, a2); // Assignments as by

h = std::min (bl, b2); // via references
return 1 <= h;

}

int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization
Std::cout << ll[ll << 10 << II’H << hi << ll]ll << ll\nll; // [1,2]



References in the Context of intervals _intersect

// POST: a <= b
void sort (int& a, int& b) {
if (a > b)
std::swap (a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect (int& 1, int& h,
int al, int bl, int a2, int b2) {
sort (al, bl); // Initialization
sort (a2, b2); // Initialization
1 = std::max (al, a2);
h = std::min (bl, b2);
return 1 <= h;



Return by Value / Reference

m Even the return type of a function can be a reference type (return
by reference)

m In this case the function call itself is an L-value

int&

increment (int& i)
{
return k+i;
.

exactly the semantics of the pre-increment



Temporary Objects

What is wrong here?

int& foo (int i)
{

return i;

}

int k = 3;

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior



The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must “stay alive”
at least as long as the reference.



Const-References

m have type const T&

m type can be interpreted as “(const 7T) &”

m can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = Ivalue;

r is initialized with the address of /value (efficient)

const T& r = rvalue;

r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)



When const T& ?

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course



What exactly does Constant Mean?

Consider an L-value with type const T

m Case 1: Tis no reference type

Then the L-value is a constant.

/

const int n = 5;
int& i = n; // error: const-qualification is discarded
i=6;

The compiler detects our attempt to cheat



What exactly does Constant Mean?

Consider L-value of type const T

m Case 2: Tis reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;

const int& i = n;// i: read-only alias of n

int& j = n; // j: read-write alias

i= 6; // Error: i is a read-only alias

j = 6; // ok: n takes on value 6



12. Vectors and Strings |

Vector Types, Sieve of Erathostenes, Memory Layout, lteration,
Characters and Texts, ASCII, UTF-8, Caesar-Code
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Vectors: Motivation

m Now we can iterate over numbers
for (int i=0; i<n ; ++i)

m Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C++ Runner 2049” today)

m Vectors allow to store homogeneous data (example: schedules of
all cinemas in Zurich)



Vectors: a first Application

The Sieve of Erathostenes

m computes all prime numbers < n

m method: cross out all non-prime numbers

2

3

5

7

4

11

13

/

17

19

7

23

at the end of the crossing out process, only prime numbers remain.

m Question: how do we cross out numbers ??

m Answer: with a vector.



Sieve of Erathostenes with Vectors

#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {
// input
std::cout << "Compute prime numbers in {2,...,n—1} for n =7 ";
unsigned int n;
std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n—1], initialized to false
std: :vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n—1 << "}:\n";
for (unsigned int i = 2; i < nj; ++i)
if (!crossed_out[il) { // i is prime
std::cout << i << " ",
// cross out all proper multiples of i
for (unsigned int m = 2%i; m < n; m += i)
crossed_out[m] = true;
}
std::cout << "\n";
return 0; 403



Memory Layout of a Vector

m A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each



Random Access

The L-value value i

|

al expr]

has type T and refers to the i-th element of the vector a (counting
from 0!)

[

a[0] af1] a[2] a[3]



Random Access

al expr ]

The value ¢ of expr is called index.
[1: subscript operator



Random Access

m Random access is very efficient:

T address of a

+ s - 2. address of ai]

pl

\/

s: memory consumption of
T
(in cells)

\/

ali]



Vector Initialization

m std::vector<int> a (5);
The five elements of a are zero intialized)
B std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
m std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
B std::vector<int> a;
An initially empty vector is created.



Attention

m Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)
arr[i] = 30; // runtime error: access to arr[10]!



Attention

Bound Checks

When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of element
accesses.



Vectors are Comfortable

std::vector<int> v (10);

v.at(5) = 3; // with bound check

v.push_back(8); // 8 is appended

std::vector<int> w = v; // w is initialized with v
int sz = v.size(); // sz = 11



Characters and Texts

m We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";
String-Literal

m can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std: :string ~ vector of char elements



The type char (“character”)

m represents printable characters (e.g. >a’) and control characters
(e.9. ’\n?)

char ¢ = ’a’

defines variable ¢ of]\type
char with value ’a’
literal of type char



The type char (“character”)

is formally an integer type

m values convertible to int / unsigned int

m all arithmetic operators are available (with dubious use: what is
>a’/’b’ ?)

m values typically occupy 8 Bit

domain:
{—128,...,127} or {0, ..., 255}



The ASCII-Code

m defines concrete conversion rules
char — int / unsigned int

m is supported on nearly all platforms

Zeichen — {0, ..., 127}

'A’, "B, ... , ’Z’ —>65,66,...,90
a’, b, ... , 'z’ —>97.98,...122
207, 21, ... , ’9 —48.49, .. 57

m for (char ¢ = ’a’; ¢ <= ’z’; ++c)
std::cout << c; abcdefghi jklmnopqrstuvwxyz



Extension of ASCII: UTF-8

m Internationalization of Software = large character sets required.
Common today:

unicode, 100 symbol sets, 110000 characters.

m ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits | Encoding

7 | 0XXXXXXX
11 | 110xxxxx
16 | 1110xxxx
21 | 11110xxx
26 | 111110xx
31| 1111110x

10kxxxxx

10xxxxxx 10XXXXXX

10xxxxxx 10xxxxXxXx 10XXXXXX

10xxxxxx 10xxxxxXx 10xXxXxxXXXx 10XXXXXX

10xxxxxx 10xxxxxX 10xxxxxxX 10XXxXXXX 10XXXXXX

Interesting property: for eac

h byte you can decide if a new UTF8 character begins.



Einige Zeichen in UTF-8

Symbol

Codierung (jeweils 16 Bit)

<

[
¥
)

A

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

01000001

P.S.: Search for apple "unicode of death"

p://t-a-w.blogspot.ch/2008/12/funny-characters-in-unicode.html

htt



Caesar-Code

Replace every printable character in a text by its
pre-pre-predecessor.

(32) — I (124)
I (33) — 7 (125)
D (68) — ‘A’ (65)
E (69) — 'B (66)

e
g
N
2
Py
—
N
N
w
N




Caesar-Code: shift-Function

int mod(int dividend, int divisor);

char shift(char c, int s) {
if (c >= 32 && c <= 126) {
c =32 + mod(c — 32 + s,95)};

}
return c; - 32"transforms interval [32,126] to [0, 94]

} "32 +" transforms interval [0, 94] back to [32, 126]
mod(x,95) is the representative of z(mod95) in interval [0, 94]



Caesar-Code: caesar-Function

void caesar(int s) {

std::cin >> std::noskipws;ﬁ\\\\\\\\

char mext; Conversion fo b "1' rettjrns false if and
while (std::cin >> next)«{f— , ; 00~
only if the input is empty.

std::cout << shiftf{next, s)
}

} shifts only printable characters.



Caesar-Code: Main Program

Encode: shift by n (here: 3)

int main() {
int s;

std::cin >> s; Khoor#Zruog/#p |#sdvvzrug#lv#45671

// Shift input by s
caesar(s);

Encode: shift by —n (here: -3)

return O;

}

Hello World, my password is 1234.



Caesar-Code: Generalisation

m Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
char next; (console, ...)
while (std::cin >> next) {

std::cout << shift(next, s);
}
}

void caesar(int s) {
std::cin >> std::noskipws;

m Currently only from std: :cin
to std::cout




Caesar-Code: Generalisation

4 (std N B std::istream/std::ostream
void caesar(std::istream& in, . ..
std: :ostreamt out, is an generic input/output
int 8) { stream of chars

in >> std::noskipws; . . . s
P m Function is called with specific

char next; streams, e.g.: Console
while (in >> next) { (std::cin/cout), Files
) out << shift(next, s); (std: :i/ofstream), Strings

} (std::i/ostringstream)



Caesar-Code: Generalisation, Example 1

#include <iostream>
// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std: :cin to
std: :cout



Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>

// in void main():

std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file



Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <sstream>

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to std

. :cout



13. Vectors and Strings I

Strings, Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments
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Texts

m Text “to be or not to be” could be represented as
vector<char>

m Texts are ubiquitous, however, and thus have their own typ in the
standard library: std: :string

m Requires #include <string>



Using std: :string

Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"
Initialise with variable length:

std::string text(n, ’a’)

text is filled with n ’a’s

Comparing texts:

if (textl == text2)

true if character-wise equal



Using std: :string

m Querying size:
for (unsigned int i = 0; i < text.size(); ++i)

Size not equal to text length if multi-byte encoding is used, e.g. UTF-8

m Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

text [0] does not check index bounds, whereas text.at (0) does

m Writing single characters:

text[0] = ’b’; // or text.at(0)



Using std: :string

m Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

m Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string
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https://en.cppreference.com/w/cpp/string

Multidimensional Vectors

m For storing multidimensional structures such as tables, matrices,

m ... vectors of vectors can be used:

std::vector<std::vector<int>> m; // An empty matrix



Multidimensional Vectors

In memory: flat

m[0] [0] m[0] [1]

m[0] [2]

m[1] [0]

m[1] [1]

m[1] [2]

W_JW_J

m[0]

in our head: matrix

columns

m([1]

0

1

\
4

2

m[0] [0]

m[0] [1]

m[0] [2]

rows 0
1

m[1] [0]

m[1] [1]

m[1] [2]




Multidimensional Vectors: Initialisation Examples

Using literals®:

// A 3—by—5 matrix
std::vector<std::vector<std::string>> m = {
{IIZHII, "BE", "LU", "BS", "GE"},

{IIFRII, "VD", uvsn, "NE", "JU"},

{"AR", "AI", nown’ qun’ "ZG"}

};

assert(m[1] [2] == "VS");

8initialisation lists, actually



Multidimensional Vectors: Initialisation Examples

Fill to specific size:

unsigned int a = ..

unsigned int b

// An a—by—b matrix with all ones
std: :vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

m (type std: :vector<std::vector<int>>) is a vector of length a, whose elements (type std: :vector<int>) are vectors
of length b, whose Elements (type int) are all ones

(Many further ways of initialising a vector exist)



Multidimensional Vectors and Type Aliases

m Also possible: vectors of vectors of vectors of ...:
std: :vector<std::vector<std::vector<...>>>

m Type names can obviously become looooooong

m The declaration of a type alias helps here:

using Name = Typ;
(7 ~

Name that can now be used to ac- existing type
cess the type



Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was printed to stream ’to’
void print(imatrix m, std::ostream to);

int main() {
imatrix m = ...;
print(m, std::cout);

}



Application: Shortest Paths

Factory hall (n x m square cells)
obstacle

free cell

SHEHI SN v

v4

L]

Starting position of the robot

target position of the robot

L~

Goal: find the shortest path
- of the robot from S to T via

=

free cells. RRRRRRS




Application: shortest paths

Solution




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 | 17 18 | 19

9 10 14 | 15 | 16 | 17 | 18

10 11 12 12 14 15 16 17
target position,

| shortest  path: : 18
starting position T length 21 ‘ A

19

9 | 10 | 11 [ 20

5 4 3

This solves the original problem also: start in T; fol-

low a path with decreasing lenghts 1 o3| 22| 21 | 22
| I I | | | | Lo

21




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.




Preparation: Input Format

rows columns

SZ 1 214 obstacle

______ X<~ - free cell
~XXX--X-- -
—-SX---¥%

X XKK-- —
N G R

SN S, S

X -X-T--
N

start position targe\t position




Preparation: Sentinels
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Preparation: Initial Marking




The Shortest Path Program

m Read in dimensions and provide a two dimensional array for the
path lengths

#include<iostream>
#include<vector>

int main()
{
// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns :
Sentinel
// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int> > floor (n+2, std::vector<int>(m+2));



The Shortest Path Program

m Input the assignment of the hall and intialize the lengths

int tr = 0;
int tc = 0;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+l; ++c) {

char entry = ’-7;

std::cin >> entry;

if (entry == ’S’) floor[r]l[c] = 0;

else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floorl[r][c] = -2;

else if (entry == ’-’) floorl[r][c] = -1;



Das Kirzeste-Wege-Programm

m Add the surrounding walls

for (int r=0; r<n+2; ++r)

floor[r] [0] = floor([r] [m+1] = -2;
for (int c=0; c<m+2; ++c)
floor[0] [c] = floor([n+1][c] = -2;



Mark all Cells with their Path Lengths
Step 2: all cells with path length 2

unmarked neighbours of R

cells with length 1 RS




Main Loop
Find and mark all cells with path lengths : = 1,2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1l; ++c) {
if (floor[r][c] != —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor[r] [c—1] == i—1 || floor([r][c+1] == i—1 ) {
floor[r]l[c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;

}



The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.

int r = tr; int c = tc;

while (floorl[r][c] > 0) {
const int d = floor[r]l([c] — 1;
floor[r][c] = —3;
if (floor[r—1][c] == 4d) ——r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r]l[c—1] == d) ——c;
else ++c; // (floor[r] [c+1] == d)



Finish




The Shortest Path Program: output
Output

for (int r=1; r<n+1l; ++r) {

for (int c=1; c<m+1l; ++c)
if (floor[r][c] == 0)
std::cout << ’S’;

X _____
else if (r == tr && c == tc) 000000

oXXX-oX-----

std::cout << °T°; 00SX-000000-

else if (floor([r][c] == -3) ———X———XXXo-
std::cout << ’0’;

: ; ———X---X-o00-

else if (floor[r][c] == -2) e—X———X-0——
.. ) ) .

std::cout << ’X’; —X——-X-T--

else 0 _______ ) G-

std::cout << ’-’;
std::cout << "\n";

}



The Shortest Paths Program

m Algorithm: Breadth First Search

m The program can become pretty slow because for each : all cells
are traversed

m Improvement: for marking with ¢, traverse only the neighbours of
the cells marked with 7 — 1.

m Improvement: stop once the goal has been reached



Printing a Matrix: Version 1

m Recall the following:
// POST: Matrix ’m’ was printed to std::cout

void print(std::vector<std::vector<int>> m);
print(m);

m Disadvantage: When calling print (m) the (potentially large)
matrix m will be copied (call-by-value) = inefficient



Printing a Matrix: Version 2

m Better: Pass by reference (call-by-reference)
// POST: Matrix ’m’ was printed to std::cout

void print(std::vector<std::vector<int>>& m);
print (m);

m Disadvantage: print (m) could modify the matrix = potentially
error-prone



Printing a Matrix: Version 3

m Better: Pass by const reference

// POST: Matrix ’m’ was printed to std::cout
void print(const std::vector<std::vector<int>>& m);

print (m);

m Now: Efficient, but nevertheless not more error-prone



14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. lteration, n-Queen Problem, Lindenmayer Systems



Mathematical Recursion

m Many mathematical functions can be naturally defined recursively.
m This means, the function appears in its own definition

1 ifn<l1

n-(n—1)!, otherwise

nl=<"



Recursion in C++-: In the same Way!

' {1, if n <1
n! —

n-(n—1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)

{

if (n <= 1)
return 1;
else

return n * fac (n-1);



Infinite Recursion

m is as bad as an infinite loop. ..
m ...but even worse: it burns time and memory

void f()

{
£QO; // £ -> £f() -> ... stack overflow

}



Recursive Functions: Termination

As with loops we need
m progress towards termination
fac(n):

terminates immediately for n < 1, otherwise the function is called
recusively with < n .

[

“n is getting smaller for each call”



Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

}

Initialization of the formal argument: n = 4
recursive call with argument n — 1 ==



The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

n=1 10 =1]
fac(l)A 1
ln=2 2 1—2)
fac(Q)A 2
n=3 391 = 6]
fac(S)A 6
ln=4 4-3?:24\
fac(4)A 24

std:cout << fac(4)



Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b

m is based on the following mathematical recursion (proof in the
lecture notes):

a, ifb=20

ged(a, b) =
ged(b, @ mod b), otherwise



Euclidean Algorithm in C+-+

a, if b=20

ged(a, b) = .
gced(b, @ mod b), otherwise

unsigned int gcd (unsigned int a, unsigned int b)

{

if (b == 0) —
Termination: a mod b < b, thus b
return a; . .
gets smaller in each recursive call.
else

return gcd (b, a % b);



Fibonacci Numbers

0 if =0
F, =41, ifn=1
\Fn_l—i_Fn_Q, iftn>1

0,1,1,2,3,5,8.13,21.34,55.89.. ..



Fibonacci Numbers in C++4-

Laufzeit
fib(50) takes “forever”’ because it computes

Fis two times, Fy; 3 times, Fys 5 times, Fy5 8 times, Fiy 13 times,
Fy3 21 times ... Iy ca. 10? times (!)

unsigned int fib (unsigned int n)

{ Correctness
if (n == 0) return O; and
if (n == 1) return 1; termination

return fib (n-1) + fib (n-2); // n > 1 are clear.
}



Fast Fibonacci Numbers

ldea:

m Compute each Fibonacci number only once, in the order
Ey, B Fs, .. F)

m Memorize the most recent two numbers (variables a and b)!

m Compute the next number as a sum of a and b!



Fast Fibonacci Numbers in C+-+-

unsigned int fib (unsigned int n){
if (n == 0) return O;
if (n <= 2) return 1;
unsigned int a = 1; //
unsigned int b = 1; //
for (unsigned int i = 3

unsigned int a_old = a; // F_i-2

1
2 very fast, also for £ib(50)

a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i
’ (Fi—s, Fi_1) — (Fi_1, F3)

return b;
¥ -t\\\\;§;>><=::::::Z;“;S>\§§§\

a b



Recursion and lteration

Recursion can always be simulated by

m lteration (loops)
m explicit “call stack” (e.g. array)

Often recursive formulations are simpler, but sometimes also less
efficient.



The Power of Recursion

m Some problems appear to be hard to solve without recursion. With
recursion they become significantly simpler.

m Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting)
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The n-Queens Problem

m Provided is a n timesn chessboard
m Forexamplen =6

m Question: is it possiblt to position n
queens such that no two queens
threaten each other?

m If yes, how many solutions are
there?




Solution?

m Try all possible placements?

m (:‘f) possibilities. Too many!

m n" possibilities. Better — but still too many.

m Idea: Do not follow paths that obviously fail. (Backtracking)



Solution with Backtracking

mﬁy \ | / Second Queen in

——— —
g next row (no colli-
/ \ sion)

queens

o O | DN | O




Solution with Backtracking

X X w All squares in next
= row forbiden. Track
N B back !

queens

o |~ | DD O




Solution with Backtracking

N . B w Move queen one
= step further and try
again

queens

o | O w o




Search Strategy Visualized as a Tree

g ><4/§<>< X/O/>>X .//\\
< W A A



Check Queen

using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.

// does not share a common row, column or diagonal

// with any of the queens on rows O to row—1

bool valid(const Queens& queens, unsigned int row){
unsigned int col = queens[row];

for (unsigned int r = 0; r != row; ++r){
unsigned int c = queens[r];
if (col == |l col — row == cO — r || col + row == ¢c + r)

return false; // same column or diagonal
}

return true; // no shared column or diagonal

}



Recursion: Find a Solution

// pre: all queens from row O to row—1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row){
if (row == queens.size())
return true;
for (unsigned int col = 0; col != queens.size(); ++col){
queens [row] = col;
if (valid(queens, row) && solve(queens,row+1))
return true; // (else check next position)
}

return false; // no valid configuration found

}
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Recursion: Count all Solutions

// pre: all queens from row O to row—1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the

// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row){
if (row == queens.size())
return 1;
int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col){

queens [row] = col;
if (valid(queens, row))
count += nSolutions(queens,row+l);
}
return count;

}



Main Program

// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main(){
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)){
print (queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;
} else
std::cout << "no solution" << std::endl;
return O;

}



Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles

L-Systems have been invented by the Ungarian Biologist Aristid
Lindenmayer (1925 — 1989) to model growth of plants.



Definition and Example

m{F, +, -}
m alphabet X . ‘ P(c)
m X" finite words over X FIF+F +
m production P : Y — X* " + +
m initial word sy € X* - -

m I

The triple £ = (X, P, sp) is an L-System.



The Language Described

Worter wq, wq, ws, ... € X*: P(F)=F+F+
wy = Sp wy = F
F+F+
wy; = Pwp) wy = |FHE+
wy = P(w) wy = F+F+m
P(F)P(+)P(F)P(+)

P(cicy...cp) = P(c1)P(ca) ... P(cy)




Turtle Graphics

Turtle with position and direction

L3

Turtle understands 3 commands:

F': move one step || + : rotate by 90 de-
forwards v/ grees v’

= .k

—: rotate by —90
degrees v

»




’LU1=F+F+\/
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lindenmayer:

word wy € X*:

int main () {
std::cout << "Maximal Recursion Depth =7 ";
unsigned int n;

std::cin >> n;

std::string w = "F"; // w_0 w=wy=F
produce (w,n) ;

return O;

Main Program



lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth){
if (depth > 0){ W=w; > W= Wi
for (unsigned int k = 0; k < word.length(); ++k)
produce(replace(word[k]), depth—1);
} else { draw w = w,,!
draw_word (word) ;
}
}



lindenmayer: replace

// POST: returns the production of c
std::string replace (const char c)

{
switch (c) {
case ’F’:
return "F+F+";
default:

return std::string (1, c¢); // trivial production ¢ —> ¢
}
}



lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word (const std::string& word)
{
for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’'F’:
turtle::forward(); // move one step forward
break;
case ’+7:
turtle::1left(90); // turn counterclockwise by 90 degrees
break;

case ’—’:
turtle::right(90); // turn clockwise by 90 degrees

}



The Recursion




L-Systeme: Erweiterungen

m arbitrary symbols without graphical interpetation
m arbitrary angles (snowflake)
m saving and restoring the state of the turtle — plants (bush)




15. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus Naur
Form (EBNF), Parsing Expressions



Motivation: Calculator

Goal: we build a command line calculator

Example

Input: 3 + 5

Output: 8

Input: 3 / 5

Output: 0.6

Input: 3 + 5 * 20
Output: 103

Input: (3 + 5) * 20
Output: 160

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses

unary operator -



Naive Attempt (without Parentheses)

double 1lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != ’=’) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;

else if (op == ’+’) Imput 2 + 3 * 3 =
lval %= rval; Result 15

else ...

}

std::cout << "Ergebnis " << 1lval << "\n";



Analyzing the Problem

Example

Input:

13 4 4% (15 — 7 3) =

\\____\\/,____,/

Needs to be stored such that
evaluation can be performed



Analyzing the Problem

13+ 4% (15— 7x%3)

“Understanding an expression requires lookahead to upcoming
symbols!

We will store symbols elegantly using recursion.
We need a new formal tool (that is independent of C+-+).
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Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)



Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Ziirich, and
Xerox Palo Alto Research Center

Kcy“’ord.lndl’h-u syntactic description

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight.
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure to these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defned hy a symu But even notation for
agreed stan-
dard form, although the \md:rlym; ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF each time
another language definition appears, and without any
ity, 1 venture to submit a simpl
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it:

Copyright © 1977, Association for Computing Machincry, nc.

G rmission (0 republish, but not for profit, all or part of

this material is granted provided that ACM's copyright notice is

given and that reference is made o the publication, 10 its date of

issue, and o the fact that reprinting privileges were granted by per-

siseion of the Amocistin for Compuring
Xes

inery
present : ., Palo Alto Re-
search C‘nl:l. 3333 Coyote Hill Road, Palo Alln CA 94304,

Communications November 1977
of Volume 20

the ACM Number 11

‘The notation distinguishes clearly between meta-,
terminal, and nonterminal symbols.

2. It does not exclude characters used as metasymbols
from use as symbols of the language (as e.g. " in
BNF).

3. It contains an explicit iteration construct, and

thereby avoids the heavy use of recursion for
expressing simple repetition.

4. It avoids the use of an explicit symbol for the
empty string (such as (empty) or €).

5. Itis based on the ASCII character set.

This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symbol. For brevity, idenifier and character are
not defined in further detail.

syntax = .
production = =" expression ".".
expression = term}.

term = factor {factor}.

factor = ifier | hier | "(" expression ")" |

xpression "
* character {character}

Repetition is denoted by curly brackets, i.e. {a}
stands for e | a|aa|aaa| . . . . Optionality is expressed
by square brackets, i.c. [a] stands for a | €. Parentheses
merely serve for grouping, e.g. (a|b)c stands for ac | be.
Terminal symbols, i.e. literals, are enclosed in quote
marks (and, if a quote mark appears as a literal itself, it
is written twice), which is consistent with common
practice in programming languages.

"|"{"" expression "

literal -

Received January 1977; revised February 1977



Expressions

-(3-(4-5))*(3+4*5) /6

What do we need in a grammar?

m Number , ( Expression )
-Number, - ( Expression )
m Factor * Factor, Factor

Factor / Factor, ...

m Term + Term, Term Expression

Term - Term, ...



The EBNF for Expressions

A factor is

® a number,

m an expression in parentheses or

E a negated factor. non-terminal SymbO/

factor = number/

| " (" expression ")}

| "—" factor.
/ terminal symbol

alternative



The EBNF for Expressions

Atermis

m factor,
m factor * factor, factor / factor,

m factor * factor * factor, factor / factor * factor, ...

term = factor {<"*" factor | "/" facty}.

optional repetition



The EBNF for Expressions

factor = number
| " (" expression ")"
| "—" factor.
term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"—" term }.



Numbers

An integer comprises at least one digit, followed by an arbitrary
number of digits.

number = digit { digit }.
digit 0 | 1 27 | Lo 1790,



Parsing

m Parsing: Check if a string is valid according to the EBNF.
m Parser: A program for parsing.

m Useful: From the EBNF we can (nearly) automatically generate a
parser



Construct a Parser

m Rules become functions

m Alternatives and options become if—statements.

m Nonterminial symbols on the right hand side become function calls
m Optional repetitions become while—statements



Rules (except number)

factor = number
| "(" expression ")"
| "—" factor.
term = factor { "«" factor | "/" factor }.

expression = term { "+" term |"—" term }.



Functions (Parser)

Expression is read from an input stream.

// POST: returns true if and only if is = factor ...
// and in this case extracts factor from is
bool factor (std::istream& is);

// POST: returns true if and only if is = term ...,
// and in this case extracts all factors from is
bool term (std::istream& is);

// POST: returns true if and only if is = expression ...,
// and in this case extracts all terms from is
bool expression (std::istream& is);



Functions (Parser with Evaluation)

Expression is read from an input stream.

// POST: extracts a factor from is
// and returns its value
double factor (std::istream& is);

// POST: extracts a term from is
// and returns its value
double term (std::istream& is);

// POST: extracts an expression from is
// and returns its value
double expression (std::istream& is);
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One Character Lookahead...

...to find the right alternative.

// POST: leading whitespace characters are extracted

// from input, and the first non—whitespace character
// input returned (0 if there input no such character)
char lookahead (std::istreamé& input)
{
input >> std :: ws; // skip whitespaces
if (input.eof())
return O; // end of stream
else
return input.peek(); // next character in input



Cherry-Picking

...to extract the desired character.

// POST: if ch matches the next lookahead then consume it and return true
// otherwise return false
bool consume (std ::istreamé& input, char c)
{
if (lookahead (input) == c) {
input >> c;
return true;
} else
return false ;



Evaluating Factors

double factor (std::istreamé& input)
{
double value;
if (consume (input, '(’)) {
value = expression (input);
consume (input, ')’);

} else if (consume (input, '—’))
value = —factor (input);
else

value = number(input);
return value,

/

// "(" expression

// II)II

// — factor

factor = " (" expression ")"
| "—" factor
|



Evaluating Terms

double term (std::istreamé& input)

{

double value = factor (input); // factor

while (true) {

if (consume (input, '*’))

value *= factor (input); // "x" factor
else if (consume (input, ’/’))

value /= factor (input); // "/" factor
else

return value;

term = factor { "+" factor | "/" factor }.



Evaluating Expressions

double expression (std ::istreamé& input)
{
double value = term (input); // term
while (true) {
if (consume (input, '+’))

value += term (input); // "+" term
else if (consume (input, '—’))

value —= term (input); // "—" term
else

return value;

expression = term { "+" term |"—" term }.



Digits ...

// POST: returns the digit that could be consumed from a stream
// (0 if no digit available)
// digit = 0’ | *1° | ... | ’9’.
char digit(std::istream& input){
char ch = input.peek(); // one symbol lookahead
if (input.eof()) return 0; // nothing available on the stream
if (ch >= 0’ && ch <= ’9°){
input >> ch; // consume
return ch;
}

return O;

}
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... and Numbers

// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int number (std::istream& input){
input >> std::skipws;// skip whitespaces before the first digit
char ch = digit(input);
input >> std::noskipws; // no whitespaces allowed within a number
unsigned int num = O;
while(ch > 0){ // skip remaining digits
num = num *x 10 + ch — ’0’;
ch = digit(input);
}
return num;

}
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Recursion!

number

expression



EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = number

| " (" expression ")"

| "—" factor.
term = factor { "+" factor | "/" factor }.
expression = term { "+" term | "—" term }.

std::stringstream input ("1-2-3");
std::cout << expression (input) << "\n"; // —4



16. Structs

Rational Numbers, Struct Definition, Function- and Operator
Overloading
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Calculating with Rational Numbers

m Rational numbers (Q) are of the form % with n and d in Z

m C-+-+does not provide a built-in type for rational numbers

We build a C-++-type for rational numbers ourselves! ©



Vision

priﬂpﬁnﬂd(MMDlookae

std::cout << "Rational number r =7 ";
rational r;

std::cin >> r;

std::cout << "Rational number s =7 ";
rational s;

std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << " \n";



A First Struct

Invariant:  specifies valid
value combinations (infor-
struct rational { mal).

int n;+<— member variable{riumerator)
int d4;.// INV: 4 '= 0

Yo

member variable (denominator)

m struct defines a new fype

m formal range of values: cartesian product of the value ranges of
existing types

m real range of values: rational C int X int.



Accessing Member Variables

struct rational {

int n;

int d; // INV: d '= 0
};

rational add (rational a, rational b){
rational result;
result.n = a.n *x b.d + a.d *x b.n;
result.d a.d x b.d;
return result;

Tn . Qp, bn . ap - bd + aq -

Td ag by

g - by



A First Struct: Functionality

A struct defines a new type, not a variable!

// new type rational

struct rational { Meaning: every object of the new type is rep-
int n; ¢ resented by two objects of type int the ob-
int d; // INV: d != 0 jectsarecallednandd.

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;

result.n = am%
result.d a.d * b.d;

return result; member access to the int objects of a.



Input

// Input r

rational r;

std::cout << "Rational number r:\n";
std::cout << " numerator =7 ";
std::cin >> r.n;

std::cout << " denominator =7 ";
std::cin >> r.d;

// Input s the same way
rational s;



Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";



Struct Definitions

name of the new type (identifier)

|

struct T {

T1 name;«
names of the underlying . names of the member
types T2 nam92 ) variables

T,, name,«;

1

Range of Valuesof T: Ty x To x ... x T,



Struct Defintions: Examples

struct rational vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined



Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and —value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different



Structs: Accessing Members

expression of struct-type T name of a member-variable of type T.

N

expression of type Ty ; value is the value of

eXpr. namek the object designated by namey,

member access operator .



Structs: Initialization and Assignment

Default Initialization:

rational t;

m Member variables of t are default-initialized

m for member variables of fundamental types nothing happens
(values remain undefined)



Structs: Initialization and Assignment

Initialization:
rational t = {5, 1};

m Member variables of t are initialized with the values of the list,
according to the declaration order.
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Structs: Initialization and Assignment

Assignment:

rational s;
rational t = s;

m The values of the member variables of s are assigned to the
member variables of t.



Structs: Initialization and Assignment

t.n .n
e o B s ) g

Initialization: f—/

rational t = add (r, s);

m t is initialized with the values of add(r, s)
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Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

m t is default-initialized
m The value of add (r, s) isassignedtot
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Structs: Initialization and Assignment

rational s; «— member variables are uninitialized

{1.5}: . member-wise initialization:
U tn=1, t.d =5

rational t

rational u = t; «— member-wise copy

t = u; +— member-wise copy

rational v = add (u,t); «— member-wise copy



Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...
4

2
m ...otherwise we had, for example, 3 #* 6



Structs as Function Arguments

void increment(rational dest, const rational src)
{

dest = add (dest, src); // modifies local copy only
}

Call by Value !

rational a;

rational b;

a.d=1;, a.n = 2;

b = a;

increment (b, a); // no effect!

std:icout << b.n << "/" <<b.d; // 1/ 2



Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference

rational a;

rational b;

a.d=1;, a.n = 2;

b = a;

increment (b, a);

std:icout << b.n << "/" << b.d; // 2/ 2



User Defined Operators

Instead of
rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading.
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Overloading Functions

m Functions can be addressed by name in a scope

m It is even possible to declare and to defined several functions
with the same name

m the “correct” version is chosen according to the signature of the
function.



Function Overloading

B A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

m the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses £f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4

std::cout << pow (3,3); // compiler chooses £f3



Operator Overloading

m Operators are special functions and can be overloaded
m Name of the operator op:

operatorop

m we already know that, for example, operator+ exists for different
types
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Adding rational Numbers — Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{
rational result;
result.n = a.n *x b.d + a.d *x b.n;
result.d a.d x b.d;
return result;

}

const ratiomal t = add (r, s);



Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d *x b.n;
result.d = a.d *x b.d;
return result;
}

const rational t = r + s;
4\

infix notation



Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator— (rational a, rational b);

// POST: return value is the product of a and b
rational operatorx (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE:b!=0
rational operator/ (rational a, rational b);



Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is —a
rational operator— (rational a)
{

a.n = —a.n;

return a;



Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a ==
bool operator== (rational a, rational b)

{

return a.n * b.d == a.d *x b.n;

}

v



Arithmetic Assignment

We want to write

rational r;
r.n=1; r.d = 2;

rational s;
s.n=1; s.d = 3;

r += s;
std::cout << r.n << "/" << r.d;

// 1/2

// 1/3

// 5/6



Operator+=  First Trial

rational operator+= (rational a, rational b)

{
a.n = a.n *x b.d + a.d *x b.n;
a.d x= b.d;
return a;

}

does not work. Why?

m The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

m The result of r += s is, against the convention of C++ no L-value.



Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n x b.d + a.d *x b.n;

a.d x= b.d;
return a;

}

this works

m The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.



In/Output Operators

can also be overloaded.

m Before:

std::cout << "Sum is "
<< t.n << n/n << t.d << H\n";

m After (desired):

std: :cout << "Sum is "
<L t << "\n";



In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std: :ostream& operator<< (std::ostream& out,
rational r)

{

return out << r.n << "/" << r.d;

}

writes r to the output stream
and returns the stream as L-value.



Input

// PRE: in starts with a rational number
// of the form "n/4"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,
rational& r){
char c¢; // separating character ’/’
return in >> r.n >> ¢ >> r.d;

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>cr; operator >>

std::cout << "Rationa
rational s;
std::cin >> s;

g =7 ".

’

operator +
// computation and output J/

std::cout << "Sum is " << r + s << " . \n";

~—

operator<<



17. Classes

Encapsulation, Classes, Member Functions, Constructors
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A new Type with Functionality...

struct rational {

int n;

int d; // INV: d '= 0
};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d = a.d * b.d;

return result;



...Should be in a Library!

rational .h:

m Definition of a struct rational
m Function declarations

rational.cpp:

m arithmetic operators (operator+, operator+=, ...)
m relational operators (operator==, operator>, ...)
m in/output (operator >>, operator <<, ...)



Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer

We found a startup: RAT PACK®!

m Selling the rational library to customers
m ongoing development according to customer’s demands



The Customer is Happy

...and programs busily using rational.

m output as double-value (3 — 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;

return result / r.d;

}



The Customer Wants More

“Can we have rational numbers with an extended value range?”

m Sure, no problem, e.g.:

strist ratiomnal

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};



New Version of RAT PACK®

@;@ It sucks, nothing works any more!
m What is the problem?

@i’%} —g Is sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to double
is the problem, our library is correct.

\ggl Up to now it worked, therefore the new
version is to blame!
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Liability Discussion

// POST: double approximation of r

double to_double (ratiomal r){
double result = r.n;
return result / r.d;

}

r.is_positive and result.is_positive
do not appear.

correct using. .. ... hot correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

struct rational {
int n;
int d;
}.
’ };



We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

m When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

m No customer is willing to adapt the programs when the version of
the library changes.

= RAT PACK® is history. ..



Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

m = The customer is not provided with representation but with
functionality!

T

str.length(),
v.push_back(1),...



Classes

m provide the concept for encapsulation in C++
m are a variant of structs
m are provided in many object oriented programming languages



Encapsulation: public/private

Cli;;—;;;;;;;EETff\\\\‘_is used instead of struct if anything at all

] shall be “hidden”
int n;

int d; // INV: 4 !'= 0
};

only difference

m struct: by default nothing is hidden
m class : by default everything is hidden



Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rational { any more by accident.

int n;

i . . =

int d; // INV: d 1= 0 Bad news: the customer cannot do any-
}; thing any more ...
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private



Member Functions: Declaration

class ratiomnal {
public:

f// POST: return value is the numerator of this instance

int numerator () const member function
return n;

(4]
Qo
© < }
(&) . .
3 // POST: return value is the denominator of this instance
3 . .
int denominator () const { .
o member functions have ac-
return d; 4= .
\} cess to private data
private: R ;
int n: N the scope of members in a
)

};

int d; // INV: di= 0 ¢ class is the whole class_, inde-
pendent of the declaration or-
der



Member Functions: Call

// Definition des Typs
class ratiomnal {

};

// Variable des Typs
rational r; member access

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner



Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n;

}

m A member function is called for an expression of the class. in the function, this
is the name of this implicit argument. this itself is a pointer to it.

m const refers to the instance this, i.e., it promises that the value associated with
the implicit argument cannot be changed

m nis the shortcut in the member function for this->n (precise explanation of
“=>" next week)



const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)
{n=0N;}

rational x;
x.set_numerator(10); // ok;
const rational y = x;

int n = y.numerator(); // ok;
y.set_numerator(10); // error;

}

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.



Comparison
Roughly like this it were ...

class rational {
int n;

public:
int numerator () const

{

return this->n;
}
};

rational r;

std::cout << r.numerator();

... without member functions

struct bruch {
int n;

};

int numerator (const bruch& dieser)

{
return dieser.n;
}

bruch r;

std: :cout << numerator(r);



Member-Definition: In-Class vs. Out-of-Class

class rational { class rationmal {

int n; int n;
public: public:

int numerator () comnst int numerator () const;

{

return n; };

}

ceee int rational: :numerator () const
}; {

return n;

m No separation between }

declaration and definition (bad
for libraries) m This also works.



Constructors

m are special member functions of a class that are named like the
class

m can be overloaded like functions, i.e. can occur multiple times with
varying signature

m are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.

m if there is no matching constructor, the compiler emits an error
message.



Initialisation? Constructors!

class rational

{
public:
rational (int num, int den) o
. n (num), d (den) Inltlallzatlon. of the
{ member variables
assert (den != 0); <—— function body.
}
}

rational r (2,3); // r = 2/3



Constructors: Call

m directly

rational r (1,2); // initialisiert r mit 1/2

m indirectly (copy)

rational r = rational (1,2);
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Initialisation “rational = int”?

class rational
{
public:
rational (int num)
: n (num), d (1)
{} «+—— empty function body

}

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion



User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) <—— rational. values of type int can now
:n (num), d (1) be converted to rational.

{}

rational r = 2; // implizite Konversion



The Default Constructor

class rational

{

public: empty list of arguments

1:.a.tiona1 ()/

:n (0), d (1)
{3

}
rational r; //t =0

= There are no uninitiatlized variables of type rational any more!



Alterantively: Deleting a Default Constructor

class rational

{
public:
r”a.tional () = delete;
Y
Iiéltional r; // error: use of deleted function ’rational::rational()

= There are no uninitiatlized variables of type rational any more!



The Default Constructor

m is automatically called for declarations of the form
rational r;

m is the unique constructor with empty argmument list (if existing)
m must exist, if rational r; is meant to compile

m if in a struct there are no constructors at all, the default
constructor is automatically generated



RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)

{

double result = r.numerator();
return result / r.denominator();

}

m We can adapt the member functions together with the
representation v’



RAT PACK® Reloaded ...

class rational { int numerator () const
® e {
o) private: return n;
"'q__) int n; }
©] int d;
};
class rational { int numerator () const{
.. if (is_positive)
private: return n;
!_ unsigned int n; else {
g unsigned int 4; int result = n;
(4] bool is_positive; return —result;
}; }

3



RAT PACK® Reloaded ?

class rational { int numerator () comst

{
private: if (is_positive)
i i return n;
unsigned int n;
i i else {
unsigned int d; :
i iti int result = n;
bool is_positive;
}; return —result;
’ }
}

m value range of nominator and denominator like before
m possible overflow in addition



Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of x*this
int numerator () const;

private:
// none of my business

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.



Fix: “our” type rational: :integer

Customer’s point of view (rational.h):
public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.qg:

m implicit conversion int — rational: :integer
m function double to_double (rational::integer)



RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
}



Separate Declaration and Definition

class rational {

public:
rational (int num, int denum); .
using integer = long int; rational.h

integer numerator () const;
private:

};

rational::rational (int num, int den):
n (num), d (den) {}

rational::integer rational::numerator () const rational.cpp
~
{ A
return n; class name :: member name

} 593



18. Dynamic Data Structures |

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors



Recap: vector<i™>

m Can be initialised with arbitrary size n

m Supports various operations:
e = vl[i]; //
v[i] = e; //
1 = v.size(); //
v.push_front(e); //
v.push_back(e); //

Get element

Set element

Get size
Prepend element
Append element

m A vector is a dynamic data structure, whose size may change at

runtime



Our Own Vector!

m Today, we’ll implement our own vector: vec
m Step 1: vec<int> (today)
m Step 2: vec<T'> (later, only superficially)



Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?
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new for Arrays

underlying type

!

new I [expr]

/ \

new-Operator type int, value n

m Effect: new contiguous chunk of memory n elements of type Tis

allocated
| | | | | | | |

m This chunk of memory is called an array (of length n)




new for Arrays

underlying type

!
p = new [[expr]

\

new-Operator type int, value n

P—— I I I I I I |

m Type: A pointer T« (more soon)
m Value: the starting address of the memory chunk



Outlook: new and delete

new [ [expr]

m So far: memory (local variables, function arguments) “lives” only
inside a function call

m But now: memory chunk inside vector must not “die” before the
vector itself

m Memory allocated with new is not automatically deallocated (=
released)

m Every new must have a matching delete that releases the
memory explicitly — in two weeks



new (Without Arrays)

underlying type
new 71(...)

SN

new-Operator constructor arguments

m Effect: memory for a new object of type Tis allocated ...
m ...and initialized by means of the matching constructor
m Value: address of the new T’ object, Type: Pointer 7T'x

m Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)



Pointer Types

T X Pointer type for base type T

An expression of type Tx is called pointer (to T)

int*x p; // Pointer to an int
std::string*x q; // Pointer to a std::string



Pointer Types

Value of a pointer to T is the address of an object of type T

intx p = ...

std::cout << p; // e.g. 0x7££d89d5f7cc

T

int (e.g. 5)

p = adar

adar

(e.g. 0x7T££d89d5£7cc)



Address Operator

Question: How to obtain an object’s address?

Directly, when creating a new object via new

For existing objects: via the address operator &

&expr«— expr: l-value of type T

m Value of the expression: the address of object (I-value) expr
m Type of the expression: A pointer T« (of type T')



Address Operator

int i = 5; // i initialised with 5
!1intx p = &i; // p initialised with address of i

e

i=5 p = &i = addi

Next question: How to “follow” a pointer?



Dereference Operator

Answer: by using the dereference operator *

* expr<—- expr: r-value of type 7™

m Value of the expression: the value of the object located at the
address denoted by expr

m Type of the expression: T'



Dereference Operator

int i = 5;

intx p = &i; // p = address of i
llint j = *p; // ]

= b

T

j=*p =5

i

5

p = &i = adds

adadr



Address and Dereference Operator

pointer (R-value)

object (L-value)




Pointer Types

A T must actually pointtoa T’

intx p = ...; // p points to an int
doublex q = p; // but q to a double — compiler
error!



Mnenmonic Trick

The declaration

b

T* p; // pis of the type “pointer to T

can be read as

T *p;wis of type T

Although this is legal, we do
not write it like this!



Null-Pointer

m Special pointer value that signals that no object is pointed to
m represented b the literal nullptr (convertible to Tx*)
int* p = nullptr;

m Cannot be dereferenced (runtime error)
m Exists to avoid undefined behaviour
intx p; // p could point to anything
int* q = nullptr; // q explicitly points nowhere



Pointer Arithmetic: Pointer plus int

T« p =new T[n]l; // p points to first array element

P p+3 p+n

i | I . .
Y

size
ofaT

How to point to rear elements? — Pointer arithmetic:

m p yields the value of the first array element, xp its value
m x(p + i) yields the value of the ith array element, for0 <i <n

m xp is equivalentto x(p + 0) i



Pointer Arithmetic: Pointer plus int

int*x p0 = new int[7]{1,2,3,4,5,6,7}; // pO points to
1st element

I1intx p3 = pO + 3; // p3 points to 4th element

11—2x(p3 + 2) = 600; // set value of 6th element to
600

11—-3std::cout << *(p0 + 5); // output 6th element’s
value (i.e. 600)




Pointer Arithmetic: Pointer minus int

m If ptr is a pointer to the element with index k in an array a with

length n
m and the value of expr is an integer¢, 0 < k — i < n,

then the expression
ptr - expr
provides a pointer to an element of a with index k£ — 1.

ptr-expr (ptr)

| | |

[




Pointer Subtraction

m If p7 and p2 point to elements of the same array a with length n
m and 0 < k4, ko < n are the indices corresponding to p7 and p2,
then
p1 - p2has value ki - ko

|

Only valid if p7 and p2 point into the same array.

m The pointer difference describes “how far away the elements are
from each other”



Pointer Operators

Description | Op | Arity | Precedence | Associativity | Assignment
Subscript 0|2 17 left R-value — L-
value
Dereference || * 1 16 right R-Wert —
L-Wert
Address & |1 16 rechts L-value —

R-value

Precedences and associativities of +, -, ++ (etc.) as in Chapter 2



Pointers are not Integers!

m Addresses can be interpreted as house numbers of the memory, that is,
integers

m But integer and pointer arithmetic behave differently.

ptr + 1is notthe next house number but the s-next, where s is the memory
requirement of an object of the type behind the pointer ptr.

m Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to intx
int a = ptr; // error: invalid conversion from int* to int
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Sequential Pointer lteration

charx p = new char[3]{’x’, ’y’, ’z’};

for (3chars it = p;
4,7,10,13it != JolR ~5oit i end reached

++it) ¢ £ Advance pointer element-wise
std::icout << it << 7

-



Random Access to Arrays

charx p = new char[3]{’x’, ’y’, ’z’};

L x | vy | z |

m The expression *(p + i)
m can also be written as p[il

m E.g pll] == x(p + 1) == "y’



Random Access to Arrays

iteration over an array via indices and random access:

charx p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << 7 7;

But: this is less efficient than the previously shown sequential
access via pointer iteration



Random Access to Arrays

Tx p = new T'[n];
| | | | | | | |

—

size s
ofaT

m Access p[il,i.e. x(p + i), “costs” computationp +i - s

m lteration via random access (p [0], p[1], ...) costs one addition
and one multiplication per access

m lteration via sequentiall access (++p, ++p, ...) costs only one
addition per access

m Sequential access is thus to be preferred for iterations



Reading a book ... with random access

sequential access

Random Access

open book on page 1
close book

open book on pages 2-3
close book

open book on pages 4-5
close book

Sequential Access

open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page

...with



Static Arrays

m intx p = new int[expr] creates a dynamic array of size expr

m C--+has inherited static arrays from its predecessor language C:
int alcezpr]

m Static arrays have, among others, the disadvantage that their size
cexpr must be a constant. l.e. cexpr can, e.g. be 5 or 4x3+2, but
kein von der Tastatur eingelesener Wert n.

m A static array variable a can be used just like a pointer

m Rule of thumb: Vectors are better than dynamic arrays, which are
better than static arrays



Arrays in Functions

C-++covention: arrays (or a segment of it) are passed using two
pointers
begin end

\: \
I I I I I I I I I |

m begin: Pointer to the first element

m end: Pointer past the last element

m [begin, end) Designates the elements of the segment of the
array

m [begin, end) is empty if begin == end

m [begin, end) must be a valid range, i.e. a (pot. empty) array
segment



Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to
value
void fill(1—int* begin, 1—intx end, int value) {
for (intx p = begin; p != end; ++p)
xp = value;

int*x p = new int[5];
£ill1(2—p, 2—p+5, 1); // Array at p
becomes {1, 1, 1, 1, 1}



Functions with/without Effect

m Pointers can (like references) be used for functions with effect.
Example: £i11

m But many functions don’t have an effect, they only read the data

m = Use of const

m So far, for example:

const int zero = 0;
const int& nil Zero;



Positioning of Const

Where does the const-modifier belong to?
const T'is equivalent to 7' const (and can be written like this):

<— 1int const zero
<— int const& nil

const int zero
const int& nil

Both keyword orders are used in praxis



Const and Pointers

Read the declaration from right to left

int const p;
int constx p;
int* const p;

int const* const p;

p is a constant integer
p is a pointer to a constant integer
p is a constant pointer to an integer

p is a constant pointer to a constant integer



Non-mutating Functions: print

There are also non-mutating functions that access elements of an array only in a
read-only fashion

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed

void print( ) Const pointer to const int
2—int const* const begin,

2—const int* const end) " " "
Likewise (but different keyword order)

for (3—int const* p
std::cout << xp <<’

begin; p != end; ++p)

}
Pointer, not const, to const int

Pointer p may itself not be const since it is mutated (++p)



const is not absolute

m The value at an address can change even if a const-pointer
stores this address.

int a[5];

const int* beginl = a;

intx* begin2 = a;

*beginl = 1; // error *beginl is const

*begin2 = 1; // ok, although *begin will be modified

m const is a promise from the point of view of the const-pointer, not
an absolute guarantee



Wow - Palindromes!

// PRE: [begin end) is a valid range of characters
// POST: returns true if the range forms a palindrome
bool is_palindrome (const charx begin, const charx end) {
while (begin < end)
if (*(begin++) != *(--end)) return false;
return true;

}

begin end




Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new 7'[n] allocates a T-array of size n

T* p = new T [n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements

Sequentially iterating over arrays via pointers is more efficient than random
access

new 7' allocates memory for (and initialises) a single T-object, and yields a
pointer to it

Pointers can point to something (not) const, and they can be (not) const
themselves

Memory allocated by new is not automatically released (more on this soon)

Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)



Array-based Vector

m Vectors ...that somehow rings a bell

m Now we know how to allocate
memory chunks of arbitrary size ...

m ...we can implement a vector, based
on such a chunk of memory

B avec — an array-based vector of int
elements

Unser eigener Vektor!

m Wir implementieren unseren eigenen Vektor: vec
m Schritt 1: vec<int> (heute)
m Schritt 2: vec<T> (spéter, nur kurz angeschnitten)



Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
lint* elements; // Pointer to first element
2unsigned int count; // Number of elements

public: // Public interface:
3avec(unsigned int size); // Constructor
4unsigned int size() const; // Size of vector
5int& operator[] (int i); // Access an element

6void print(std::ostream& sink) const; // Output elems.

}



Constructor avec: :avec ()

avec: :avec(unsigned int size)
: lcount(size) <%

2elements = new int[size];

Side remark: vector is not initialised with a default value



Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

B elements is a member variable of our avec instance
m That instance can be accessed via the pointer this
B elements is a shorthand for (xthis) .elements

m Dereferencing a pointer (xthis) followed by a member access
(.elements) is such a common operation that it can be written
more concisely as this—>elements

m Mnemonic trick: “Follow the pointer to the member variable”



Function avec: :size ()

int avec::size() 1lconst £
2return this—>count; ¢

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok



Function avec: :operator[]

int& avec::operator[] (int i) {

lreturn this—>elements[i];
+

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this—>count);

return this—>elements[i];

}



Function avec: :operator[]

int& avec::operator[] (int i) {
return this—>elements[i];

}
Usage example:

avec v = avec(7);

std::cout << v[6]; // Outputs a "random" value
v[6] = 0;

std::cout << v[6]; // Outputs O



Function avec: :operator[] is needed twice

int& avec::operator[] (int i) { return elements[i]; }
const int& avec::operator[](int i) const { return
elements[i]; }

m The first member function is not const and returns a non-const
reference

avec v = ...; // A non—const vector
std::cout << v.get[0]; // Reading elements is
allowed

v.get[0] = 123; // Modifying elements is allowed

m It is called on non-const vectors



Function avec: :operator[] is needed twice

int& avec::operator[] (int i) { return elements[i]; }
const int& avec::operator[](int i) const { return
elements[i]; }

m The second member function is const and returns a const
reference

const avec v = ...; // A const vector
std::cout << v.get[0]; // Reading elements is
allowed

v.get[0] = 123; // Compiler error: modifications
are not allowed

m It is called on const vectors "



#include <iostream>



// A simple cell class, basically a degenerated vector with just one element,

// is used to demonstrate how const and non-const getter functions can (or

// cannot) be used with const and non-const cell instances.



// Class cell, version 1

class cell_v1 {

  int value; // Private state

public:

   // A simple constructor.

  cell_v1(int v): value(v) {}

  

  // A getter (not const whatsoever).

  // For a vector, the getter would be operator[](unsigned int i).

  int& get() { return value; }

};





// // Class cell, version 2: This class is *rejected* by the compiler since its

// // getter, if accepted, would allow modifying a const cell.

// class cell_v2 {

//   int value;

// public:

//   cell_v2(int v): value(v) {}

 

//   // This getter is marked as const, and as such could be called on const cells.

//   // However, the getter returns a non-const reference, through which the

//   // const cell could be modified. To prevent this, the compiler rejects this

//   // getter.

//   int& get() const { return value; } // COMPILER ERROR

// };





// Class cell, version 3

class cell_v3 {

  int value;

public:

  cell_v3(int v): value(v) {}

  

  int& get() { return value; } // Non-const getter

  const int& get() const { return value; } // Const getter

};





int main() {

  // Using cell version 1

  cell_v1 c1{1};

  std::cout << c1.get() << '\n'; // OK: reading from the cell

  c1.get()++; // OK: modifying the non-const cell

  std::cout << c1.get() << '\n'; // OK: reading



  const cell_v1 cc1{1};

  // std::cout << cc1.get() << '\n'; // COMPILER ERROR (although only reading)

        // cc1 is const and the compiler therefore tries to find a const getter.

        // However, cell_v1 does not declare a const getter.





  // const cell_v2 cc2{1}; // const cell

  // c2.get()++; // Would modify the const cell





  // Using cell version 3

  cell_v3 c3{1};

  std::cout << c3.get() << '\n'; // OK: reading

  c3.get()++; // OK: modifying

  std::cout << c3.get() << '\n'; // OK: reading



  const cell_v3 cc3{1};

  std::cout << cc3.get() << '\n'; // OK: reading

  // cc3.get()++; // COMPILER ERROR: would modify the const cell 



  return 0;

}




Function avec: :print ()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (lintx p = this—>elements;

2p != this—>elements + this—>count;
3++p) 4 Aoor eration
{ past last element

4sink << #p << 7 7
}

}



Function avec: :print ()

Finally: overload output operator:

operator<<( sink,
vec) {

vec.print(sink) ;
return ;

}

std: :ostream& operator<<(std::ostream& sink,
const avec& vec) {
vec.print(sink);
return sink;

¥



Further Functions?

class avec {

void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element

}

Commonalities: such operations need to change the vector’s size



Resizing arrays

An allocated block of memory (e.g. new int [3]) cannot be resized
later on

21117

T T
first last

Possibility:
m Allocate more memory than initially necessary
m Fill from inside out, with pointers to first and last element



Resizing arrays

first last

m But eventually, all slots will be in use

m Then unavoidable: Allocate larger memory block and copy data
over



Resizing arrays

3lo[3[2[1]7 0998
T T
first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3/0(3(2{1|/7[9/9/|8

T T
first last

Similar: inserting at arbitrary position

647



19. Dynamic Data Structures I

Linked Lists, Vectors as Linked Lists



Different Memory Layout: Linked List

m No contiguous area of memory and no random
access

m Each element points to its successor
m Insertion and deletion of arbitrary elements is simple

1 >S5 > 6 >3 > 8 > 8

pointer ‘

=- Our vector can be implemented as a linked list



Linked List: Zoom

element (type struct 1llnode)

S| OT—>

value (type int) next (type 1lnodex)

struct llnode {
int value;
llnodex* next;

llnode(int v, llnodex n): value(v), next(n) {} //
Constructor

};



Vector = Pointer to the First Element

element (type struct 1llnode)

*——> S| OT—>

value (type int) next (type 1lnodex)

class llvec {
llnodex head;
public:
// Public interface identical to avec’s
llvec(unsigned int size);
unsigned int size() const;



Function 11vec: :print ()

struct llnode {
int value;
llnodex next;

};...

void llvec::print(std::ostream& sink) const {
for (1llnodex n = this—>head;

2n != nullptr; ¢ Abort if end reached
3n = n—>next) ¢ Advance pointer element-wise

{
4sink << n—>value << ’ ’;
}
}



Function 11vec: :print ()

void llvec::print(std::ostream& sink) const {
for (1llnodex n = this—>head;
258n != nullptr;
n = n—>next)
{
sink << n—>value << ’ ’; // 1 56
}
}

this—>head




Function 11vec: :operator[]

Accessing ith Element is implemented similarly to print ():

int& llvec::operator[] (unsigned int i) {

11lnodex n = this—>head;

2for (; 0 <i; ——1) |,

2n = n—>next;

3return n—>value; <




Function 11vec: :push_front ()

Advantage 11vec: Prepending elements is very easy:

void 1llvec::push_front(int e) {
4this—>head =
2new llnode{3e, this—>head};

this—>head

y

4 &—> 1 | @

2
o1

o— 6/

Attention: If the new 11node weren’t allocated dynamically, then it would be deleted
(= memory deallocated) as soon as push_front terminates



Function 11vec: :11vec()

Constructor can be implemented using push_front ():

llvec::1lvec(unsigned int size) {

ithis—>head = nullptr;

2for (; 0 < size; ——size)
2this—>push_front (0);

Use case:

llvec v = 1llvec(3);
std::cout << v; // 0 0 0



Function 11vec: : push_back()

Simple, but inefficient: traverse linked list to its end and append new
element

void llvec: :push_back(int e) {
11lnodex n = this—>head;

Start at first element ...
... and go to the last
element

2for (; n—>next != nullptr; n = n—>next);

3n—>next =

3new llnode{e, nullptr}; ‘



Function 11vec: : push_back()

m More efficient, but also slightly more complex:

E Second pointer, pointing to the last element: this—>tail
Using this pointer, it is possible to append to the end directly

1 @

\ 4

N

this—>head

m But: Several corner cases, e.g. vector still empty, must be

accounted for

this—>tail




Function 11vec: :size ()

Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {
lunsigned int ¢ = 0; ¢

2for (llnodex n = this—>head;

| = .
2n 1= nullptr;
2n = n—>next)
2++c;
3return c; <

}



Function 11vec: :size ()

More efficient, but also slightly more complex: maintain size as
member variable

Add member variable unsigned int count to class 11vec

this—>count must now be updated each time an operation
(such as push_front) affects the vector’s size



Efficiency: Arrays vs. Linked Lists

m Memory: our avec requires roughly n ints (vector size n), our
11lvec roughly 3n ints (a pointer typically requires 8 byte)

m Runtime (with avec = std: :vector, 11lvec = std: :1list):

s Prepending (insert at front) [100,000x]:
>

’ » Lllvec: 10 ms
B appending (insert at back) [100,000x]:

inserting randomly [10,000x]:

» avec: 2 ms » avec: 16 ms

>

removing first [100,000x]:
»

>
fully iterate sequentially (5000 elements) [5,000x]:

> avec: 354 ms

» llvec: 4 ms >

removing last [100,000x]:
» avec: 0 ms
»




20. Containers, Iterators and Algorithms

Containers, Sets, lterators, const-lterators, Algorithms, Templates



Vectors are Containers

m Viewed abstractly, a vector is
A collection of elements
Plus operations on this collection

m In C++, vector<7™> and similar data structures are called
container

m Called collections in some other languages, e.g. Java



Container properties

m Each container has certain characteristic properties
m For an array-based vector, these include:

Efficient index-based access (v[i])

Efficient use of memory: Only the elements themselves require space
(plus element count)

Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient

Can contain the same element more than once

Elements are in insertion order (ordered but not sorted)



Containers in C++

m Nearly every application requires maintaining and manipulating
arbitrarily many data records

m But with different requirements (e.g. only append elements, hardly
ever remove, often search elements, .. .)

m That's why C+-+’s standard library includes several containers
with different properties, see
https://en.cppreference.com/w/cpp/container

m Many more are available from 3rd-party libraries, e.g. https://
www.boost.org/doc/libs/1_68_0/doc/html/container.html,
https://github.com/abseil/abseil-cpp


https://en.cppreference.com/w/cpp/container
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://www.boost.org/doc/libs/1_68_0/doc/html/container.html
https://github.com/abseil/abseil-cpp

Example Container: std: :unordered_set<7>

m A mathematical setis an unordered, duplicate-free collection of
elements:

(1,2,1} = {1,2} = {2,1}
m In C+-+: std: :unordered_set<T>
m Properties:

Cannot contain the same element twice

Elements are not in any particular order

Does not provide index-based access (s [1] undefined)
Efficient “element contained?” check

Efficient insertion and removal of elements

m Side remark: implemented as a hash table
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Use Case std: :unordered_set<7>

Problem:

m given a sequence of pairs (name, percentage) of Code Expert
submissions ...

Friedrich 90
Schwerhoff 10
Lehner 20
Schwerhoff 11

m ... determine the submitters that achieved at least 50%

Friedrich



Use Case std: :unordered_set<7>

1std::ifstream in("submissions.txt");
2std: :unordered_set<std::string> names;

3std::string name; ¢
3unsigned int score;
while (4in >> name >> score) { ¢ Input next pair
. R if f=
5if (50 <= score) ¢ fi(;aecsf)rdnamelscoresu

Snames.insert (name) ;

6std::cout << "Unique submitters: " ‘

Rl Mmamaoaa £ \n)). 669



Example Container: std: :set<7>

m Nearly equivalent to std: :unordered_set<7>, but the elements
are ordered

{1,2,1} ={1,2} # {2,1}
m Element look-up, insertion and removal are still efficient (better

than for std: : vector<1™), but less efficient than for
std: :unordered_set<[™>

m That’'s because maintaining the order does not come for free
m Side remark: implemented as a red-black tree



Use Case std: :set<T>

std::ifstream in("submissions.txt");

1std: :set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)
names.insert (name) ;

2std::cout << "Unique submitters: "
NCE Nnamaa £ \n).

... and the output is in al-
phabetical order




Printing Containers

m Recall: avec: :print () and 1lvec: :print ()
m What about printing set, unordered_set, ...?
m Commonality: iterate over container elements and print them



Similar Functions

m Lots of other useful operations can be implemented by iterating
over a container:

contains(c, e): true iff container c contains element e
min/max (c): Returns the smallest/largest element

sort (c): Sorts c’s elements

replace(c, el, e2): Replaces each el in c with e2
sample(c, n): Randomly chooses n elements from c



Recall: Iterating With Pointers

m lteration over an array:

m Point to start element: p = this—>arr ¥ ¥

m Access current element: xp ElEEEEEEEE
m Check if end reached: p == p + size

m Advance pointer:p = p + 1

m lteration over a linked list:
m Point to start element: p = this—>head
m Access current element: p—>value Lo [e] [e—
m Check if end reached: p == nullptr
m Advance pointer: p = p—>next




lterators

m lteration requires only the previously shown four operations
m But their implementation depends on the container

m = Each C++-container implements their own /terator

m Given a container c:

it = c.begin(): lterator pointing to the first element
it = c.end(): lterator pointing behind the last element
*xit: Access current element

++it: Advance iterator by one element

m lterators are essentially pimped pointers



lterators

m lterators allow accessing different containers in a uniform way: «it, ++it,
etc.

m Users remain independent of the container implementation

m lterator knows how to iterate over the elements of “its” container
m Users don’t need to and also shouldn’t know internal details
=

container container container

[TTTT11] %@ﬁ%




Example: Iterate over std: : vector

it is an iterator specific to std: : vect

for (1std::vector<int>::iterator it v.begin() §

3it != v.end();

std: :vector<int> v = {1, 2, 3};

4++it) £
xit = —xit; ¢ Negate current element (¢ — —e)

}

6std::cout << v; // -1 -2 -3



Example: Iterate over std: : vector

Recall: type aliases can be used to shorten often-used type names

lusing ivit = std::vector<int>::iterator; // int—
vector iterator

for (livit it = v.begin();



Negate as a Function

void neg(std::vector<int>& v) {
for (std::vector<int>::iterator it = v.begin();
it != v.endQ);
++it) {

¥it = —xit;
}
+

std: :vector<int> v = {1, 2, 3};
neg(v) ;



Negate as a Function

Better. negate inside a specific range (interval)

. . . . Negate elements i
void neg(lstd::vector<int>::iterator begin; |

1std: :vector<int>::iterator end) {

for (std::vector<int>::iterator it = 1lbegin;

it != lend;
++it) {
xit = —x*it;

}
}



Negate as a Function

Better. negate inside a specific range (interval)

void neg(std::vector<int>::iterator start;
std: :vector<int>::iterator end);

// in main():
std::vector<int> v = {1, 2, 3};
lneg(v.begin(), v.begin() + (v.size() / 2));

Negate first half



Algorithms Library in C++

m The C+-+standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin, end)

m For example find, £i11 and sort
m See also https://en.cppreference.com/w/cpp/algorithm


https://en.cppreference.com/w/cpp/algorithm

An iterator for 11vec

We need:

An 11vec-specific iterator with at least the following
functionality:

m Access current element: operator*
m Advance iterator: operator++
m End-reached check: operator!= (or operator==)

Member functions begin() and end () for 11vec to get an
iterator to the beginning and past the end, respectively



lterator avec: :iterator (Step 1/2)

1class llvec {

public:
lclass iterator {
1 ...
1};

}

m The iterator belongs to our vector, that's why iterator is a public
inner class of 11vec
m Instances of our iterator are of type 11vec: :iterator



lterator 11vec: :iterator (Step 1/2)

class iterator {
11lnodex node; ¢

public:

2iterator (1lnodes n);

3iterator& operator++();
4int& operatorx() const;

5bool operator!=(const iterator& other) const;
} ’ Compare with other iterator



lterator 11vec: :iterator (Step 1/2)

// Constructor

llvec::iterator::iterator(llnodex n): 2node(n)
Let iterator point to n initially

// Pre-increment
llvec: :iterator& llvec::iterator: :operator++() {
assert(this—>node != nullptr);

4this—>node = this—>node—>next;

Sreturn *this;



lterator 11vec: :iterator (Step 1/2)

// Element access

int& llvec::iterator::operatorx() const {
2return this—>node—>value;

}

// Comparison

bool llvec::iterator::operator!=(const llvec::
iterator& other) const {
4return this—>node != other.node;

}

this iterator different from other if they

point to different element




An iterator for 11vec (Repetition)

We need:
[ |

Member functions begin() and end () for 11vec to get an
iterator to the beginning and past the end, respectively



lterator avec: :iterator (Step 2/2)

1class llvec {

public:
class iterator {...};

literator begin();
literator end();

}

11lvec needs member functions to issue iterators pointing to the
beginning and past the end, respectively, of the vector



lterator 11vec: :iterator (Step 2/2)

llvec::iterator llvec::begin() {

lreturn llvec::iterator(this—>head);
+ .
Iterator to first vector element

llvec::iterator llvec::end() {

2return llvec::iterator (nullptr);
} Iterator past last vector element



Const-lterators

m In addition to iterator, every container should also provide a
const-iterator const_iterator
m Const-iterators grant only read access to the underlying Container
m For example for 11vec:
llvec::1—const_iterator llvec::1—cbegin() const;
llvec::1—const_iterator llvec::1—cend() const;

1—const int& llvec::const_iterator::operatorx()
const;

m Therefore not possible (compiler error): «(v.cbegin()) = 0



Const-lterators

Const-lterator can be used to allow only reading:

llvec v = ...;
for (llvec::lconst_iterator it = v.1lcbegin();
std::cout << xit;

It would also possible to use the non-const iterator here

2)



Const-lterators

Const-lterator must be used if the vector is const:

lconst llvec v = ...;
for (llvec::1const_iterator it = 1v.cbegin();
std::cout << xit;

It is not possible to use iterator here (compiler error)



Excursion: Templates

m Goal: A generic output operator << for iterable Containers: 11lvec,
avec, std: :vector, std: :set, ...

m l.e. std::cout << c << ’n’ should work for any such container
C



Excursion: Templates

Templates enable type-generic functions and classes:

m Templates enable the use of types as arguments

2template
35& operatd

<typename 3S, typename 3C2>
<<(3S& sipk, const 3C& coatainer);

We already know the pointy brackets from Intuition: operator works for every output
vectors. Vectors are also implemented as stream sink of type S and every container
templates. container of type C



Excursion: Templates

Templates enable type-generic functions and classes:

m Templates enable the use of types as arguments

template <typename S, typename C>
S& operator<<(S& sink, const C& container);

m The compiler infers suitable types from the call arguments

std::set<int> s = ...;
std::cout << s << ’\Il’; S = std::ostream, C = std: :set<int>




Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {
for (typename 1C::const_iterator it = 1container.

} C must appropriate iterators
— with appropriate functions




Excursion: Templates

Implementation of << constrains S and C (Compiler errors if not
satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {
for (typename C::const_iterator it = container.
begin();
it != container.end();
++it) {

. s y ). S must support outputting elements
1sink << xit << ’ (*it) and characters (* *)

}



21. Dynamic Datatypes and Memory
Management



Problem

Last week: dynamic data type

Have allocated dynamic memory, but not released it again. In
particular: no functions to remove elements from 1lvec.

Today: correct memory management!
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Goal: class stack with memory management

class stack{
public:
// post: Push an element onto the stack
void push(int value);
// pre: non-empty stack
// post: Delete top most element from the stack
void pop();
// pre: non-empty stack
// post: return value of top most element
int top() const;
// post: return if stack is empty
bool empty() const;
// post: print out the stack
void print(std::ostream& out) const;



Recall the Linked List

element (type 11lnode)

50—
AN

value (type int) next (type 11lnodex)

struct llnode {

int value;

llnodex next;

// constructor

llnode (int v, llnodex n) : value (v), next (n) {}
i



Stack = Pointer to the Top Element

element (type 11lnode)

o— 5 —

value (type int) next (type 11lnodex)

class stack {
public:
void push (int value);

private:
llnode* topn;
};



Recall the new Expression

underlying type
]
new I (...) type T*
T o
constructor arguments

new-Operator

m Effect: new object of type T is allocated in memory ...
m ...and initialized by means of the matching constructor.
m Value: address of the new object
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The new Expression push(4)

m Effect: new object of type T is allocated in memory ...
m ...and intialized by means of the matching constructor
m Value: address of the new object

void stack::push(int value){
topn = new llnode (value, topn);

}

topn

T~
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The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

delete eXpr type void
E N

pointer of type T* pointing to an object
that had been created with new.

delete-Operator

m Effect: object is deconstructed (explanation below)
... and memory is released.
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delete for Arrays

delete[] expr type void
/ pointer of type T that points

to an array that previously
had been allocated using
new

delete-Operator

m Effect: array is deleted and memory is released



Who is born must die...

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks

m old objects that occupy memory...
m ...until it is full (heap overflow)



Careful with new and delete!

rational* t = new rational; <————— memory for i is allocated
rationalx* s t; +——— other pointers may point to the same object
delete s; < ... and used for releaseing the object

int nominator = (*t).denominator(); < error: memory released!
PN

Dereferencing of ,dangling pointers”

m Pointer to released objects: dangling pointers

m Releasing an object more than once using delete is a similar
severe error



Stack Continued:

void stack::pop(){
assert (lempty());
llnodex p = topn;
topn = topn->next;
delete p; &\

¥ reminder: shortcut for (*topn) .next

topn

L 2
(0))

pop )



Print the Stack print ()

void stack::print (std::ostream& out) const {
for(const llnodex p = topn; p != nullptr; p = p—>next)
out << p—>value << " "; // 1 56

\

topn




Output Stack: operator<<

class stack {
public:
void push (int value);
void pop();
void print (std::ostream& o) const;

private:
llnodex topn;
};

// POST: s is written to o

std::ostream& operator<< (std::ostream& o, const stack& s){
s.print (o);
return o;

}



empty (), top()

bool stack::empty() const {
return top == nullptr;

}

int stack::top() const {
assert (lempty());
return topn—>value;

}



class stack{
public:
stack() : topn (nullptr) {} // default constructor

void push(int value);
void popQ);
void print(std::ostream& out) const;
int top() const;
bool empty() const;
private:
llnodex topn;
b
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Zombie Elements

{
stack s1; // local variable
sl.push (1);
sl.push (3);
sl.push (2);
std::cout << s1 << "\n"; // 2 3 1
}

// s1 has died (become invalid)...

m ...but the three elements of the stack s1 continue to live (memory
leak)!

m They should be released together with s1.



The Destructor

m The Destructor of class T is the uniqgue member function with
declaration

~T();
m is automatically called when the memory duration of a class object

ends —i.e. when delete is called on an object of type Tx or when
the enclosing scope of an object of type T ends.

m If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers topn, no effect
— reason for zombie elements



Using a Destructor, it Works

// POST: the dynamic memory of xthis is deleted
stack::~stack(){
while (topn != nullptr){
llnodex t = topn;
topn = t—>next;
delete t;
}
}

m automatically deletes all stack elements when the stack is being
released

m Now our stack class seems to follow the guideline “dynamic
memory” (?)



Stack Done? Obviously not...

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2 = si;
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!



What has gone wrong?

Sl.\
3 ®

./Pointer to “zombie”!
s2 e L :
member-wise initialization: copies the
topn pointer only.

\ 4
—

stack 82 = sl;+—
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!



The actual problem

Already this goes wrong:
{

stack si;
s1.push(1);
stack s2 = si;

}

When leaving the scope, both stacks are deconstructed. But both
stacks try to delete the same data, because both stacks have
access to the same pointer.
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Possible solutions

Smart-Pointers (we will not go into details here):

m Count the number of pointers referring to the same objects and
delete only when that number goes down to 0
std: :shared_pointer

m Make sure that not more than one pointer can point to an object:
std::unique_pointer.

or.

m We make a real copy of all data — as discussed below.



We make a real copy

sl @ > 3 | @

I

s2 @

L 4
w
L 4
L 2
—
I

stack s2 = si;
std::cout << 82 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop O; // ok
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The Copy Constructor

m The copy constructor of a class T is the unique constructor with
declaration

T(const T& x);
m is automatically called when values of type T are initialized with
values of type T
Tx=t; (t of type T)
T x (t);
m If there is no copy-constructor declared then it is generated

automatically (and initializes member-wise — reason for the
problem above
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It works with a Copy Constructor

// POST: xthis is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {
if (s.topn == nullptr) return;
topn = new llnode(s.topn—>value, nullptr);
llnodex prev = topn;
for(llnodex n = s.topn—>next; n != nullptr; n = n—>next){
llnodex copy = new llnode(n—>value, nullptr);
prev—>next = copy;
prev = copy; s.topn @&—— 2 |~ 3 | o~ 1

|

}
} this->topn &— 2 &~ 3 @&~ 1

|




Aside: copy recursively

llnodex copy (nodex that){
if (that == nullptr) return nullptr;
return new llnode(that—>value, copy(that—>next));

}

Elegant, isn’t it? Why did we not do it like this?
Reason: linked lists can become very long. copy could then lead to

stack overflow’. Stack memory is usually smaller than heap memory.

"not an overflow of the stack that we are implementing but the call stack



Initialization -* Assignment!

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = sl; // Zuweisung

sl.pop O;
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!



The Assignment Operator

m Overloading operator=as a member function
m Like the copy-constructor without initializer, but additionally

m Releasing memory for the “old” value
m Check for self-assignment (s1=s1) that should not have an effect

m If there is no assignment operator declared it is automatically
generated (and assigns member-wise — reason for the problem
above



It works with an Assignment Operator!

// POST: xthis (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){
if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std: :swap(topn, copy.topn); // now copy has the garbag
} // copy is cleaned up -> deconstruction
return *xthis; // return as L-Value (convention)

}
Cooool trick! ©)
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Done

class stack{
public:
stack(); // constructor
~stack(); // destructor
stack(const stack& s); // copy constructor
stack& operator=(const stack& s); // assignment operator

void push(int value);

void pop();

int top() const;

bool empty() const;

void print(std::ostream& out) const;
private:

1lnodex topn;
}



Dynamic Datatype

m Type that manages dynamic memory (e.g. our class for a stack)
m Minimal Functionality:

m Constructors _ _

m Destructor Rule of Three: if a class defines at
m Copy Constructor } least one of them, it must define all
m Assignment Operator three



(Expression) Trees

-(3-(4-5))*(3+4%5) /6




Nodes: Forks, Bends or Leaves

node 0
° <— node

lue left operand
operﬁ ﬁ [[ nght operand
tnode \

HESZIEN =6 |*x|*

*: unused




Nodes (struct tnode)

tnode |op|vallleft nqgﬂ
/%

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’—’, ’x’ or ’/?
double val;
tnodex left; // == nullptr for unary minus

tnodex right;

tnode(char o, double v, tnodex 1, tnodex r)
: op(o), val(v), left(l), right(r) {}
};



Size = Count Nodes in Subtrees

m Size of a leave: 1
m Size of other nodes: 1 + sum of child nodes’ size
m E.g. size of the "+"-node is 5
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Count Nodes in Subtrees

// POST: returns the size (number of nodes) of
// the subtree with root n
int size (const tnodex n) {
if (n){ // shortcut for n != nullptr
return size(n—>left) + size(n—>right) + 1;
}
return O;

}



Evaluate Subtrees

// POST: evaluates the subtree with root n
double eval(const tnodex n){

assert(n);
if (n—>op == ’=’) return n—>val; < leaf...
double 1 = 0; ...or fork:

if (n—>left) 1 = eval(n—>left); <— op unary, or left branch
double r = eval(n—>right);«——— right branch
switch(n—>op){

case ’+’: return l+r;

case ’—’: return 1l—r;

case ’x’: return lxr;

case ’/’: return 1/r;

default: return O;



Cloning Subtrees

// POST: a copy of the subtree with root n is made
// and a pointer to its root node is returned
tnodex copy (const tnodex n) {
if (n == nullptr)
return nullptr;
return new tnode (n—>op, n—>val, copy(n—>left), copy(n—>right));

}



Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnodex n) {
if(m){
clear(n—>left);
clear(n—>right);
delete n;
}
}




Using Expression Subtrees

// Construct a tree for 1 — (—(3 + 7))

tnodex
tnodex
tnodex
tnodex
tnodex
tnodex

nl =
n2 =
n3 =
nd =
nb =
root

// Evaluate

std::cout << "1 —

new tnode(’=’, 3, nullptr, nullptr);
new tnode(’=’, 7, nullptr, nullptr);
new tnode(’+’, 0, nl, n2);

new tnode(’—’, 0, nullptr, n3);

new tnode(’=’, 1, nullptr, nullptr);
= new tnode(’—’, 0, n5, n4);

the overall tree

// Evaluate a subtree
std::cout << "3 + 7 = " << eval(n3) << ’\n’;

clear(root); // free memory

(—(3 + 7)) =" << eval(root) <<



Planting Trees

class texpression { creates a tree with
public: one leaf
texpression (double d) «
: root (new tnode (’=’, d, 0, 0)) {}
private:

tnodex root;

};



Letting Trees Grow

texpression& texpression::operator—= (const texpression& e)

{

assert (e.root);

root = new tnode (’—’, 0, root, copy(e.root));
return *xthis;

} root

xthis copy (e.root) e.root

e’ e



Raising Trees

texpression operator— (const texpression& 1,

const texpression& r){

texpression result = 1;

return result —= r;
texpression a = 3;
texpression b = 4;
texpression c 5;
texpression d a—b—c;




Rule of three: Clone, reproduce and cut trees

texpression::~texpression(){
clear(root);

}

texpresssion: :texpression (const texpression& e)
: root(copy(e.root)) { }

texpression: :texpression& operator=(const texpression& e){
if (root != e.root){
texpression cp = e;
std: :swap(cp.root, root);
}
return *xthis;

}



Concluded

class texpression{

public:
texpression (double d); // constructor
~texpression(); // destructor
texpression (const texpression& e); // copy constructor
texpression& operator=(const texpression& e); // assignment op
texpression operator—();
texpression& operator—=(const texpression& e);
texpression& operator+=(const texpression& e);
texpression& operatorx=(const texpression& e);
texpression& operator/=(const texpression& e);
double evaluate();

private:

tnodex root;

};



From values to trees!
using number__type = texpression ;

// term = factor { "x" factor | "/" factor }
number_type term (std:: istreamé& is){
number_type value = factor (is);
while (true) {
if (consume (is, '*’))
value *= factor (is);

clse if (consume (is, '/’)) double_calculator.cpp
value /= factor (is); (expression value)
else -
) return value; texpression_calculator.cpp

} (expression tree)



Concluding Remark

m In this lecture, we have intentionally refrained from implementing
member functions in the node classes of the list or tree.®

m When there is inheritace and polymorphism used, the
implementation of the functionality such as evaluate, print, clear
(etc:.) is better implemented in member functions.

m In any case it is not a good idea to implement the memory
management of the composite data strcuture list or tree within the
nodes.

8Parts of the implementations are even simpler (because the case n==nullptr can be caught more easily
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22. Conclusion



Purpose and Format

Name the most important key words to each chapter. Checklist:
“does every notion make some sense for me?”

® motivating example for each chapter

© concepts that do not depend from the implementation (language)

O language (C++): all that depends on the chosen language
® examples from the lectures
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1. Introduction

©6

Euclidean algorithm

algorithm, Turing machine, programming languages, compilation, syntax
and semantics

values and effects, fundamental types, literals, variables

include directive #inciude <iostream>

main function int mainO<{...}

comments, layout // kommentar

types, variables, L-value a , R-value a+v

expression statement v=v+b; , declaration statement int a3, return
statement return o;



2. Integers

®
©

Celsius to Fahrenheit

associativity and precedence, arity
expression trees, evaluation order

arithmetic operators

binary representation, hexadecimal numbers
signed numbers, twos complement

arithmetic operators 9  ceisius / 5 + 32
increment / decrement expr++
arithmetic assignment expri += expr2
conversion int <> unsigned int

Celsius to Fahrenheit, equivalent resistance



3. Booleans

®
u

Boolean functions, completeness
DeMorgan rules

the type bool

logical operators a «z v

relational operators x < y

precedences 7 + x <y ez y '= 3 * z

short circuit evaluation x 1= o et z / x > y

the assert-statement, #include <cassert>

Div-Mod identity.



4. Definsive Programming

Assertions and Constants

O ©
|

The assert-statement, #include <cassert>
const int speed_of_light=2999792458

@)
|

Assertions for the GCD



5./6. Control Statements

linear control flow vs. interesting programs

selection statements, iteration statements
(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

if statements it a 4 2 ==0) {..}
for statements for (unsigned int i = 1; i <= n; ++i) ...
while and do-statements while > 1) {...}

blOCkS and branches it a < 0 continue;
Switch statement switch(grade) {case 6: }

sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades

©
i EE B D EEEE B



7./8. Floating Point Numbers

®
©

correct computation: Celsius / Fahrenheit

fixpoint vs. floating point

holes in the value range

compute using floating point numbers

floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

types float, double
floating point literals 1.23e-7¢

Celsius/Fahrenheit, Euler, Harmonic Numbers
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9./10. Functions

®
©

Computation of Powers

Encapsulation of Functionality

functions, formal arguments, arguments

scope, forward declarations

procedural programming, modularization, separate compilation
Stepwise Refinement

declaration and definition of functions doub1e pow(double b, int e){ ...

function call pow (2.0, -2)
the type void

powers, perfect numbers, minimum, calendar



11. Reference Types

®
©

Swap

value- / reference- semantics, pass by value, pass by reference, return by
reference

lifetime of objects / temporary objects

constants

reference type inte a
call by reference, return by reference inte increment (int& i)
const guideline, const references, reference guideline

swap, increment



12./13. Vectors and Strings

®
©

lterate over data: sieve of erathosthenes

vectors, memory layout, random access
(missing) bound checks

vectors

characters: ASCII, UTFS8, texts, strings

vector typeS std::vector<int> a {4,3,5,2,1};

characters and texts, the type char char ¢ = »a’;, Konversion nach int
vectors of vectors

Streams std::istream, std::ostream

sieve of Erathosthenes, Caesar-code, shortest paths



14./15. Recursion

® m recursive math. functions, the n-Queen problem, Lindenmayer systems, a
command line calculator

recursion

call stack, memory of recursion

correctness, termination,

recursion vs. iteration

Backtracking, EBNF, formal grammars, parsing

® m factorial, GCD, sudoku-solver, command line calcoulator



16. Structs and Overloading

®
©

build your own rational number

heterogeneous data types
function and operator overloading
encapsulation of data

struct definition struct rational {int n; int d;};

member access result.n = a.n * b.d + a.d * b.n;

initialization and assignment,

function overloading pow(2) vs. pow(3,3) ;, Operator overloading

rational numbers, complex numbers



17. Classes

®
©
@)

rational numbers with encapsulation

Encapsulation, Construction, Member Functions

classes class rational { ... };

access control public: /private:

member functions int rational::denominator () const
The implicit argument of the member functions

finite rings, complex numbers



18./19. Dynamic Datastructures

®
©
@

Our own vector
linked list, allocation, deallocation, dynamic data type

The new statement
pointer int+ x;, Null-pointer nuiiptr.

address and derference operator int *ip = &i; int j = *ip;

pointer and const const int *a;

linked list, stack



20. Containers, Iterators and Algorithms

®
©

vectors are containers

iteration with pointers
containers and iterators
algorithms

lterators std: :vector<int>::iterator

Algorithms of the standard library std::fi11 (a, a+5, 1);
implement an iterator

iterators and const

output a vector, a set



21. Dynamic Datatypes and Memory Management

®  w Stack
Expression Tree

©

Guideline "dynamic memory*
Pointer sharing

Dynamic Datatype
Tree-Structure

new and delete

Destructor stack: : ~stack()

Copy-Constructor stack: :stack(const stack& s)

Assignment operator stack& stack::operator=(const stack& s)
Rule of Three

Binary Search Tree



End of the Course
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