11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass
by Reference, Temporary Objects, Constants, Const-References

Reference Types

® We can make functions change the values of the call arguments
m no new concept for functions, but a new class of types

Reference Types

Swap!

// POST: values of x and y are exchanged

void swap (in X, in ) {

int t = x;

X =7y;

y =t

}

int main(){
int a = 2;
int b = 1;
swap (a, b);

assert (a ==18& b ==2); // ok! ©
¥

Reference Types: Definition

T& read as “T-reference”

?

underlying type

m T& has the same range of values and functionality as T, ...
m but initialization and assignment work differently.



Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;

int& darth_vader = anakin_skywalker; // alias
darth_vader 22;

—— assignment to the L-value behind the alias

std::cout << anakin_skywalker; // 22

anakin_skywalker darth_vader

LTI T TR T

Reference Types: Intialization and Assignment Reference Types: Implementation

int& darth_vader = anakin_skywalker;

Internally, a value of type T& is represented by the address of an
darth_vader = 22; // anakin_skywalker = 22

object of type T.

m A variable of reference type (a reference) can only be initialized int& j; // Error: j must be an alias of something
with an L-Value .
m The variable is becoming an alias of the L-value (a different name int§ k = 5; // Error: the literal 5 has no address

for the referenced object).
m Assignment to the reference is to the object behind the alias.



Pass by Reference Pass by Reference
Reference types make it possible that functions modify the value of the call arguments:
void increment (int& i) < initialization of the formal arguments

{ // i becomes an alias of the call argument Formal argument has reference type:

++i;
} = Pass by Reference
int j = 5
increment (j);
std::cout << j << "\n"; // 6 Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.
il E
-
N R x
Pass by Value References in the Context of intervals intersect

// PRE: [al, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [al, bl], [a2, b2] intersect, in which case
// [1, h] contains the intersection of [al, bl], [a2, b2]
bool intervals_intersect (int& 1, int& h,
int al, int bl, int a2, int b2) {
sort (al, bl); a b
sort (a2, b2); '—||—|
1 = std::max (al, a2); // Assignments as b
h = std::min (b1, b2); // via references
Formal argument is initialized with the value of the actual parameter return 1 <= h;

(R-Value) and thus becomes a copy. }

Formal argument does not have a reference type:

= Pass by Value

int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3)) // Initialization
std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]




References in the Context of intervals_intersect Return by Value / Reference

// POST: a <= b

"°1idf SE’:") (;)“t& 2, inté b) { m Even the return type of a function can be a reference type (return
std::swap (a, b); // Initialization ("passing through" a, b by reference)

} m In this case the function call itself is an L-value

bool intervals_intersect (int& 1, int& h,

int al, int bl, int a2, int b2) { int, increment (int& i)
sort (al, bl); // Initialization {
sort (a2, b2); // Initialization return “k+i;
1 = std::max (al, a2);

= std::min (b1, b2); ex;ctly the semantics of the pre-increment
return 1 <= h;
}
Temporary Objects The Reference Guidline

What is wrong here?

Return value of type int& be- Reference Guideline

t return i: comes an alias of the formal argu- When a reference is created, the object referred to must “stay alive”
3} ’ ment. But the memory lifetime of i at least as long as the reference.
ends after the call!

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior



Const-References

m have type const T &

m type can be interpreted as “(const T) &”

® can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;

r is initialized with the address of Ivalue (efficient)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (pragmatic)

What exactly does Constant Mean?

Consider an L-value with type const T

m Case 1: Tis no reference type
Then the L-value is a constant.
const int n = 5;

int& i = n; // error: const-qualification is discarded
i=6;

The compiler detects our attempt to cheat

When const T& ?

Argument type const T & (pass by read-only reference) is used for
efficiency reasons instead of T (pass by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

What exactly does Constant Mean?

Consider L-value of type const T

m Case 2: Tis reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;

const int& i = n;// i: read-only alias of n

inté j = n; // j: read-write alias

i=6; // Error: i is a read-only alias

j 6; // ok: n takes on value 6



Vectors: Motivation

= Now we can iterate over numbers

for (int i=0; i<n ; ++i)

12' VeCtors I m Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C+ -+ Runner 2049” today)

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration m Vectors allow to store homogeneous data (example: schedules of

all cinemas in Zurich)

Vectors: a first Application Sieve of Erathostenes with Vectors
#include <tostream>
The Sieve Of Erathostenes :;:c;:?:(;v?ctur> // standard contai; with vector functionality
m computes all prime numbers < n ;t/d:v:‘izu\lxt << "Compute prime numbers in {2,...,n—1} for n =7 ";
unsigned int n;
m method: cross out all non-prime numbers std:sein > 1,

// definition and inmitialization

1/ 0 _out [0], » C d_out ]

// computation and output
at the end of the crossing out process, only prime numbers remain. srdspeont << rine e Ly SRTE e
. if (!crossed_out[il) /s e
= Question: how do we cross out numbers ?? 77 evane ous als peoper multiples of i
m Answer: with a vector. for (unsigned int m = 2%i; m < n; m += i)

crossed_out[m] = true;
¥

std::cout << "\n';
return 0:




Memory Layout of a Vector

m A vector occupies a contiguous memory area

example: a vector with 4 elements

memory cells for a value of type T each

Random Access

al expr]

m The value i of expr is called index
m [1: subscript operator
m alexpr] Is an L-value

Random Access
The L-value value i
al expr]

has type T and refers to the i-th element of the vector a (counting
from 0!)

[

a[0] a[t] af2] a[3]

Random Access

m Random access is very efficient:

: address of a ;rr s - i: address of a[i]

HEEEEE RN
——

s: memory consumption of afi]
T
(in cells)



Vector Initialization Attention

m std::vector<int> a (5);
The five elements of a are zero intialized)
B std::vector<int> a (5, 2);
the 5 elements of a are initialized with 2.
B std::vector<int> a {4, 3, 5, 2, 1};
the vector is initialized with an initialization list.
B std::vector<int> a;
An initially empty vector is created.

m Accessing elements outside the valid bounds of a vector leads to
undefined behavior.

std::vector arr (10);
for (int i=0; i<=10; ++i)
arr[i] = 30; // runtime error: access to arr[10]!

Attention Vectors are Comfortable

Bound Checks std::vector<int> v (10);

. . s v.at(5) = 3; // with bound check
When using a subscript operator on a vector, it is the sole v.push_back(8); // 8 is appended
responsibility of the programmer to check the validity of element std::vector<int> w = v; // w is initialized with v

accesses. int sz = v.size(); // sz = 11



13. Characters and Texts |

Characters and Texts, ASCIl, UTF-8, Caesar Code

The type char (“character”)

m represents printable characters (e.g. ’a’) and control characters
(e.g.’\n?)

char ¢ = ’a’

defines variable ¢ of | type
char with value ’a’
literal of type char

Characters and Texts

m We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";
String-Literal

m can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: std: :string ~ vector of char elements

The type char (“character”)

is formally an integer type

m values convertible to int / unsigned int

m all arithmetic operators are available (with dubious use: what is
a2 / ’p? ’7)

m values typically occupy 8 Bit

domain:
{=128,...,127} or {0,...,255}



The ASCII-Code

m defines concrete conversion rules
char — int / unsigned int

m is supported on nearly all platforms

Zeichen — {0, ..., 127}

JA’, °B’, ... , ’Z’ — 65,66,...,90
a’, ’b’, ... , ’z’ —» 97,98, ..,122
202, 17, ..., 9’ — 48,49, ..., 57

m for (char c = ’a’; c <= ’z2’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

Einige Zeichen in UTF-8
Symbol | Codierung (jeweils 16 Bit)

o’ 11101111 10101111 10111001

@,
% 11100010 10011000 10100000

&

GS 11100010 10011000 10011001
A

11100010 10011000 10000011

01000001

Extension of ASCII: UTF-8

m Internationalization of Software = large character sets required.

Common today: unicode, 100 symbol sets, 110000 characters.
m ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.
Bits | Encoding

7 | OXXXXXXX

11 | 110xxxxx [LOkxxXXX

16 | 1110xxxx [1OxxxxxX 10XXXXXX

21 | 11110xxx |10kxxxxx 10xxxxxX 10XXXXXX

26 | 111110xx [10xxxxxx 10xxxxxXx 10xxxXxXX 10XXXXXX

31| 1111110x [10xkxxxxx 10xxxxxx 10xxxxxXX 10XXXXXX 10XXXXXX
Interesting property: for each byte you can decide f a new UTF8 character begins

Caesar-Code

Replace every printable character in a text by its
pre-pre-predecessor.

B2 = ] (124
@83 — } (125) T

D (68) — A (65)
B (69)

1
w
3
2




Caesar-Code: shift-Function
int mod(int dividend, int divisor);
char shift(char c, int s) {

if (c >= 32 && c <= 126) {

c =32 + mod(c — 32 + s5,95)};

}

return c; - 32" transforms interval [32, 126] to [0, 94
3} "32 +" transforms interval [0, 94] back to [32, 126

mod(x,95) is the representative of z:(mod95) in interval [0, 94]

Caesar-Code: Main Program

Encode: shift by n (here: 3)

int main() {
int s;
std::cin >> s; Khoor#Zruog/#p | #sdvvzrug#lv#45671
// Shift input by s

caesar(s); Encode: shift by —n (here: -3)

return 0;

}

Hello World, my password is 1234.

Caesar-Code: caesar-Function

void caesar(int s) {

std::cin >> std::noskipws;g\\\\\\\\

char next; -
while (std::cin >> next)<f— Crcl)lnv”e;;lo?nm ‘;)?olénretlums false if and
std::cout << shift(next, sy 7 | 1€ INPULIS EMPLY.

}
} shifts only printable characters.

Caesar-Code: Generalisation

m Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink
(console, ...)

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

ot

std::cout << shift(next, s); vwmnw““W
}
}
m Currently only from std: :cin —

to std::cout



