
6. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

197

Visibility

Declaration in a block is not visible outside of the block.

int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung“

198

Control Statement defines Block

In this respect, statements behave like blocks.

int main()
{

for (unsigned int i = 0; i < 10; ++i)
s += i;

std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

199

Scope of a Declaration
Potential scope: from declaration until end of the part that contains the declaration.

in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope
200

Scope of a Declaration
Real scope = potential scope minus potential scopes of declarations of symbols
with the same name

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

i 2
in

fo
r

in
m

ai
n

sc
op

e
of

i

201

Automatic Storage Duration

Local Variables (declaration in block)

are (re-)created each time their declaration is reached

memory address is assigned (allocation)
potential initialization is executed

are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

202

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << −−k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage
duration.

203

while Statement

while (condition)
statement

statement: arbitrary statement, body of the while statement.
condition: convertible to bool.

204

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

205

while-Statement: Semantics

while (condition)
statement

condition is evaluated

true: iteration starts
statement is executed

false: while-statement ends.

206

while-statement: why?

In a for-statement, the expression often provides the progress
(“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += i;

If the progress is not as simple, while can be more readable.

207

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1

2
, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

208

The Collatz Sequence in C++
// Program: collatz.cpp
// Compute the Collatz sequence of a number n.

#include <iostream>

int main()
{
// Input
std::cout << "Compute the Collatz sequence for n =? ";
unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {
if (n % 2 == 0)

n = n / 2;
else

n = 3 * n + 1;
std::cout << n << " ";

}
std::cout << "\n";
return 0;

} 209

The Collatz Sequence in C++

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,

121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,

700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,

668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,

638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,

7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,

4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,

244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,

10, 5, 16, 8, 4, 2, 1

210

The Collatz-Sequence

Does 1 occur for each n?

It is conjectured, but nobody can prove it!

If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some
n.

211

do Statement

do
statement

while (expression);

statement: arbitrary statement, body of the do statement.
expression: convertible to bool.

212

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

213

do-Statement: Semantics

do
statement

while (expression);

Iteration starts
statement is executed.

expression is evaluated
true: iteration begins
false: do-statement ends.

214

do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =? ";
std::cin >> a;
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);
215

Conclusion

Selection (conditional branches)

if and if-else-statement

Iteration (conditional jumps)

for-statement
while-statement
do-statement

Blocks and scope of declarations

216

Jump Statements

break;
continue;

217

break-Statement

break;

Immediately leave the enclosing iteration statement
useful in order to be able to break a loop “in the middle” 5

5and indispensible for switch-statements
218

Calculator with break
Sum up integers (if 0 then stop)

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
// irrelevant in last iteration:
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);
219

Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
220

Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
221

Calculator with break
Version without break evaluates a twice and requires an additional
block.

int a = 1;
int s = 0;
for (;a != 0;) {

std::cout << "next number =? ";
std::cin >> a;
if (a != 0) {

s += a;
std::cout << "sum = " << s << "\n";

}
}

222

continue-Statement

continue;

Jump over the rest of the body of the enclosing iteration statement
Iteration statement is not left.

223

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps (for- and backwards) and thus
potentially complicate the control flow
Their use is thus controversial, and should be carefully considered

224

Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
225

Equivalence of Iteration Statements

We have seen:

while and do can be simulated with for

It even holds: Not so simple if a continue is used!

The three iteration statements provide the same “expressiveness”
(lecture notes)

226

Control Flow
Order of the (repeated) execution of statements

generally from top to bottom. . .
. . . except in selection and iteration statements

condition

statement

true

false if (condition)
statement

227

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

228

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

229

Control Flow break in for

init-statement

condition

statement

expression
break

231

Control Flow continue in for

init-statement

condition

statement

expression

continue

232

Control Flow while

condition

statement

true

false

233

Control Flow do while

condition

statement

false

true

234

Control Flow: the Good old Times?

Observation

Actually, we only need if and jumps to
arbitrary places in the program (goto).

Languages based on them:
Machine Language
Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

235

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

h
t
t
p
:
/
/
d
e
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
C
o
m
m
o
d
o
r
e
_
6
4

236

Spaghetti-Code with goto

Output of of ???????????all prime num-
bers
using the programming language BASIC:

true

true

237

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

238

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}

239

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}

240

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

241

Jump Statements

implement unconditional jumps.
are useful, such as while and do but not indispensible
should be used with care: only where the control flow is simplified
instead of making it more complicated

242

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"

5, 4→ "You passed!"

3→ "Close, but ... You failed!"

2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

243

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not
quite obvious

244

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Fall-through

Exit switch

Fall-through

Exit switch
In all other cases

Advantage: Control flow clearly recognisable
245

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables
are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can be
enabled)

246

Semantics of the switch-statement

switch (condition)
statement

condition is evaluated.
If statement contains a case-label with (constant) value of
condition, then jump there
otherwise jump to the default-lable, if available. If not, jump over
statement.
The break statement ends the switch-statement.

247

Control Flow switch

switch

statement

case

case

default

break

break

248

7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

249

“Proper” Calculation

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

250

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Value range is getting even smaller than for integers.
Representability depends on the position of the decimal point.

third place truncated

251

Floating-point numbers

Observation: same number, different representations with varying
“efficiency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1
= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

252

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

253

Arithmetic Operators

Analogous to int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operator, i.e. no %

254

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

255

Computing with float: Example

Approximating the Euler-Number

e =
∞∑
i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.

256

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i−th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i−th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i−1)! −> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}

257

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

258

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

259

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

W
ha

ti
s

go
in

g
on

he
re

?

260

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

261

