2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence. Arithmetic Operators, Domain of Types int, unsigned int

```
Terminology: L-Values and R-Values
```

L-Wert ("Left of the assignment operator")

Terminology: L-Values and R-Values

- Expression identifying a *memory location*
- For example a variable (we'll see other L-values later in the course)
- Value is the content at the memory location according to the type of the expression.
- L-Value can change its value (e.g. via assignment)

int a: // Input

Example: power8.cpp

```
int r; // Result
std::cout << "Compute a^8 for a = ?":
std::cin >> a:
r = a * a: // r = a^2
r = r * r: // r = a^4
std::cout << "a^8 = " << r*r << '\n':
```

- R-Wert ("Right of the assignment operator")
- Expression that is no L-value
- Example: integer literal 0
- Any L-Value can be used as R-Value (but not the other way round)
- ...by using the value of the L-value (e.g. the L-value a could have the value 2, which is then used as an R-value)
- An R-Value cannot change its value

L-Values and R-Values

```
R-Value
std::cout << "Compute a^8 for a = ? ";
int a:
std::cin >> a ----- L-value (expression + address)
             L-value (expression + address) >
int r = a * a: // r = a >
r = r * r; // r = a^4
        B-Value —
std::cout << a<< "^8 = " << r * r << ".\ n";
return 0:
          - R-Value (expression that is not an L-value)
```

* celsius / 5 + 32

- Arithmetic expression.
- contains three literals, a variable, three operator symbols

How to put the expression in parentheses?

Celsius to Fahrenheit

```
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>
int main() {
 // Input
 std::cout << "Temperature in degrees Celsius =? ";</pre>
 int celsius:
 std::cin >> celsius:
 // Computation and output
 std::cout << celsius << " degrees Celsius are "
          << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
 return 0:
```

Precedence

9 * celsius / 5 + 32

- bedeutet
- (9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*. /. %) have a higher precedence ("bind more strongly") than additive operators (+, -)

Multiplication/Division before Addition/Subtraction

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity Arithmetic operators (*, /, %, +, -) are left associative: operators of

Parentheses

same precedence evaluate from left to right

Any expression can be put in parentheses by means of

- associativities
- precedences
- arities (number of operands)

of the operands in an unambiguous way (Details in the lecture notes).

Arity

Rule 3: Arity

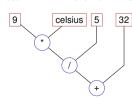
Unary operators +, - first, then binary operators +, -.

- -3 4
- means
- (-3) 4

Expression Trees

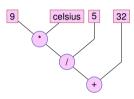
Parentheses yield the expression tree

$$(((9 * celsius) / 5) + 32)$$



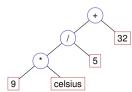
Evaluation Order

"From top to bottom" in the expression tree



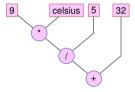
Expression Trees – Notation

Common notation: root on top



Evaluation Order

Order is not determined uniquely:



Evaluation Order – more formally

■ Valid order: any node is evaluated *after* its children

In C++, the valid order to be used is not defined.

- "Good expression": any valid evaluation order leads to the same result.
- Example for a "bad expression": a* (a=2)

Evaluation order

Arithmetic operations

Guideline

Avoid modifying variables that are used in the same expression more than once

	Symbol	Arity	Precedence	Associativity
Unary +	+	1	16	right
Negation	-	1	16	right
Multiplication	*	2	14	left
Division	/	2	14	left
Modulo	%	2	14	links
Addition	+	2	13	left
Subtraction	-	2	13	left

All operators: [R-value \times] R-value \rightarrow R-value

Interlude: Assignment expression – in more detail

- Already known: a = b means
- Assignment of b (R-value) to a (L-value). Returns: L-value
- What does a = b = c mean?
- Answer: assignment is right-associative

$$a = b = c \iff a = (b = c)$$

Example multiple assignment: $a = b = 0 \implies b=0$: a=0

Division

- Operator / implements integer division
 - 5 / 2 has value 2
- In fahrenheit.cpp
 - 9 * celsius / 5 + 32
 - 15 degrees Celsius are 59 degrees Fahrenheit
- Mathematically equivalent...but not in C++!
 - 9 / 5 * celsius + 32
 - 15 degrees Celsius are 47 degrees Fahrenheit

Loss of Precision

Division and Modulo

Guideline

- Watch out for potential loss of precision
- Postpone operations with potential loss of precision to avoid "error escalation"
- Modulo-operator computes the rest of the integer division 5 / 2 has value 2. 5 % 2 has value 1.
- It holds that:

(a / b) * b + a % b has the value of a.

From the above one can conclude the results of division and modulo with negative numbers

Increment and decrement

- Increment / Decrement a number by one is a frequent operation
- works like this for an L-value:

expr = expr + 1.

Disadvantages

relatively long expr is evaluated twice

Later: L-valued expressions whose evaluation is "expensive"

Poet-Increment

expr++

Value of expr is increased by one, the old value of expr is returned (as R-value) Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value) Drä-Dakramant

--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

In-/Decrement Operators

expr could have an effect (but should not, cf. guideline)

In-/decrement Operators

In-/Decrement Operators

	use	arity	prec	assoz	L-/R-value
Post-increment	expr++	1	17	left	L-value → R-value
Pre-increment	++expr	1	16	right	$\text{L-value} \rightarrow \text{L-value}$
Post-decrement	expr	1	17	left	L -value $\rightarrow R$ -value
Pre-decrement	expr	1	16	right	L-value → L-value

```
Example
int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9</pre>
```

In-/Decrement Operators

```
Is the expression
```

++expr;
$$\leftarrow$$
 we favour this

equivalent to

Yes, but

- Pre-increment can be more efficient (old value does not need to be saved)
- Post In-/Decrement are the only left-associative unary operators (not very intuitive)

Arithmetic Assignments

$$a += b$$
 \Leftrightarrow
 $a = a + b$

analogously for – ,
$$\,\ast\,$$
 , $\,$ / and $\,\%\,$

Arithmetic Assignments

	Gebrauch	Bedeutung
+=	expr1 += expr2	expr1 = expr1 + expr2
-=	expr1 -= expr2	expr1 = expr1 - expr2
*=	expr1 *= expr2	expr1 = expr1 * expr2
/=	expr1 /= expr2	expr1 = expr1 / expr2
%=	expr1 %= expr2	expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.

Computing Tricks

■ Estimate the orders of magnitude of powers of two.²:

$$\begin{array}{l} 2^{10} = 1024 = 1 \mathrm{Ki} \approx 10^3. \\ 2^{20} = 1 \mathrm{Mi} \approx 10^6, \\ 2^{30} = 1 \mathrm{Gi} \approx 10^9, \\ 2^{32} = 4 \cdot (1024)^3 = 4 \mathrm{Gi}. \\ 2^{64} = 16 \mathrm{Ei} \approx 16 \cdot 10^{18}. \end{array}$$

Binary Number Representations

Binary representation (Bits from $\{0,1\}$)

$$b_n b_{n-1} \dots b_1 b_0$$

corresponds to the number $\ b_n \cdot 2^n + \cdots + b_1 \cdot 2 + b_0$

Example: 101011 corresponds to 43.

Least Significant Bit (LSB)

Most Significant Bit (MSB)

Hexadecimal Numbers

Numbers with base 16

$$h_n h_{n-1} \dots h_1 h_0$$

corresponds to the number

$$h_n \cdot 16^n + \dots + h_1 \cdot 16 + h_0.$$

notation in C++: prefix 0x

Example: 0xff corresponds to 255.

Hex Nibbles				
hex	bin	dec		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
а	1010	10		
b	1011	11		
C	1100	12		
d	1101	13		
0	1110	14		
f	1111	15		

²Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.) kilo (K, Ki) - meoa (M, Mi) - giga (G, Gi) - tera(T, Ti) - peta(P, Pi) - exa (E, Ei)

Why Hexadecimal Numbers?

- A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8 represent bits 0, 1, 2 and 3.
- "compact representation of binary numbers"

Example: Hex-Colors

Why Hexadecimal Numbers?

"For programmers and technicians" (Excerpt of a user manual of the chess computers *Mephisto II*, 1981)

```
BOOD

18 / Design Company Company Company In Superior Company In Visit Access From Company Com
```

Domain of Type int

Domain of the Type int

 \blacksquare Representation with B bits. Domain comprises the 2^B integers:

$$\{-2^{B-1}, -2^{B-1}+1, \dots, -1, 0, 1, \dots, 2^{B-1}-2, 2^{B-1}-1\}$$

- \blacksquare On most platforms B=32
- For the type int C++ quarantees B > 16
- Background: Section 2.2.8 (Binary Representation) in the lecture notes.

The Type unsigned int

Domain

$$\{0, 1, \dots, 2^B - 1\}$$

- All arithmetic operations exist also for unsigned int.
- Literals: 1u, 17u ...

Over- and Underflow

- Arithmetic operations (+,-,*) can lead to numbers outside the valid domain.
- Results can be incorrect!

power8.cpp: $15^8 = -1732076671$

■ There is *no error message!*

Mixed Expressions

Operators can have operands of different type (e.g. int and unsigned int).

- Such mixed expressions are of the "more general" type unsigned int.
- int-operands are *converted* to unsigned int.

Conversion

Due to a clever representation (two's complement – not discussed), no addition is internally needed

Signed Numbers

Note: the remaining slides on signed numbers, computing with binary numbers, and the two's complement, are *not* relevant for the exam

Conversion "reversed"

The declaration

$$int a = 3u;$$

converts 3u to int.

The value is preserved because it is in the domain of int; otherwise the result depends on the implementation.

Signed Number Representation

(Hopefully) clear by now: binary number representation without sign, e.g.

$$[b_{31}b_{30}\dots b_0]_u \quad \widehat{=} \quad b_{31}\cdot 2^{31} + b_{30}\cdot 2^{30} + \dots + b_0$$

- Obviously required: use a bit for the sign.
- Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as much as possible. Positive numbers should arithmetically be treated equal in both systems.

Computing v	with Binary Nu	mbers (4 digits)	Computing with Binary	Numbers (4 digits)	
Simple Addition	1		Addition with Overflow		
	2	0010	7	0111	
	+3	+0011	+9	+1001	
	5	0101	16	(1)0000	
Simple Subtrac	ction		Negative Numbers?		
	5	0101	5	0101	
	-3	-0011	+(-5)	????	
	2	0010	0	(1)0000	
Computing with Binary Numbers (4 digits)		mbers (4 digits)	Computing with Binary Numbers (4 digits)		
Simpler -1			Invert!		
	1	0001	3	0011	
	+(-1)	1111	+(-4)	+1100	
	0	(1)0000		$1111 = 2^B - 1$	
Utilize this:					
	3	0011	a	a	
	+?	+????	+(-a-1)	\bar{a}	
	-1	1111	——————————————————————————————————————	$1111 = 2^B - 1$	

Computing with Binary Numbers (4 digits)

Negation: inversion and addition of 1

$$-a = \bar{a} + 1$$

■ Wrap around semantics (calculating modulo 2^B

$$-a = 2^B - a$$

Negative Numbers (3 Digits)

The most significant bit decides about the sign and it contributes to the value.

Why this works

Modulo arithmetics: Compute on a circle³

³The arithmetics also work with decimal numbers (and for multiplication).

Two's Complement

Negation by bitwise negation and addition of 1

$$-2 = -[0010] = [1101] + [0001] = [1110]$$

Arithmetics of addition and subtraction identical to unsigned arithmetics

$$3-2=3+(-2)=[0011]+[1110]=[0001]$$

Intuitive "wrap-around" conversion of negative numbers.

$$-n \rightarrow 2^B - n$$

Domain: -2^{B-1} . $2^{B-1}-1$