2. Integers

Evaluation of Arithmetic Expressions, Associativity and Precedence,

Arithmetic Operators, Domain of Types int, unsigned int

Terminology: L-Values and R-Values

L-Wert (“Left of the assignment operator”)

m Expression identifying a memory location

m For example a variable
(we'll see other L-values later in the course)

m Value is the content at the memory location according to the type
of the expression.

m L-Value can change its value (e.g. via assignment)

Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a”8 for a = 7";
std::cin >> a;

r=axa; // r=2a2
r=rsxr; // r=2a4
std::cout << "a"8 = " << r¥r << ’\n’;

Terminology: L-Values and R-Values

R-Wert (“Right of the assignment operator”)

m Expression that is no L-value
m Example: integer literal 0
m Any L-Value can be used as R-Value (but not the other way round)

m ...by using the value of the L-value
(e.g. the L-value a could have the value 2, which is then used as
an R-value)

® An R-Value cannot change its value

L-Values and R-Values

Va R-Value

std::cout <<l"Compute a8 for a = 7 "k
int a;
std::cin >> [L-value (expression + address)

Celsius to Fahrenheit

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int mai
¢ T Lvalue(expresswon + address) int mainQ) {
int ﬁ axa; // T = //dInPut . . ot .
= - std::cout << emperature in degrees Celsius =7 ";
* ’ MRS int celsius;
A_—— R-Value 5

std::cout << a<< ""8 = " << std::cin >> celsius;

<< "\ n";

// Computation and output

return @; std::cout << celsius << " degrees Celsius are "
= R-Value (expression that is not an L-value) << 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;
}
9 * celsius / 5 + 32 Precedence

ivision before Additi

9 * celsius / 5 + 32
m Arithmetic expression,

m contains three literals, a variable, three operator symbols bedsutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence ("bind
more strongly") than additive operators (+, -)

How to put the expression in parentheses?

Associativity

From left to right

9 * celsius / 5 + 32
bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (, /, %, +, =) are left associative: operators of
same precedence evaluate from left to right

Parentheses

Any expression can be put in parentheses by means of
m associativities
m precedences
m arities (number of operands)

of the operands in an unambiguous way (Details in the lecture
notes).

Arity

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.
-3 -4
means

(-3) - 4

Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

Evaluation Order

"From top to bottom" in the expression tree

9 * celsius / 5 + 32

Expression Trees — Notation

Common notation: root on top

9 * celsius / 5 + 32

Evaluation Order

Order is not determined uniquely:

9 * celsius / 5 + 32

Evaluation Order — more formally

m Valid order: any node is evaluated after its children

e In C++, the valid order to
@ @ be used is not defined.
m "Good expression": any valid evaluation order leads to the same result.
m Example for a “bad expression™: ax(a=2)

Evaluation order

Avoid modifying variables that are used in the same expression
more than once.

Interlude: Assignment expression - in more detail

m Already known: a = b means
Assignment of b (R-value) to a (L-value).
Returns: L-value

® Whatdoesa = b = ¢ mean?

m Answer: assignment is right-associative

a=b=c = a=(b=c)

Example multiple assignment:
a=b=0=b=0; a=0

Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 6 right
Negation - 16 ight
Multiplication * 2 14 et
Division / 2 14 ft
Modulo 3 2 14 inks
Addition + 3 eft
Subtraction 2 13 eft

All operators: [R-value x] R-value — R-value

Division

m Operator / implements integer division

5 / 2hasvalue 2
m In fahrenheit.cpp
9 * celsius / 5 + 32
15 degrees Celsius are 59 degrees Fahrenheit
= Mathematically equivalent. . . but not in C++!
9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahremheit

Loss of Precision

ideline

m Watch out for potential loss of precision
m Postpone operations with potential loss of precision to avoid “error
escalation”

Increment and decrement

m Increment / Decrement a number by one is a frequent operation
m works like this for an L-value:

expr = expr + 1.

Disadvantages

m relatively long
m expr is evaluated twice

m Later: L-valued expressions whose evaluation is “expensive”
m expr could have an effect (but should not, cf. guideline)

Division and Modulo

m Modulo-operator computes the rest of the integer division

5 / 2 hasvalue 2, 5 % 2 hasvalue 1.

m It holds that:
(a/ b) * b+ a b hasthe value of a.

m From the above one can conclude the results of division and
modulo with negative numbers

In-/Decrement Operators

Post-Increment

expre+

Value of expr s increased by one, the old/value of expr is returned (as R-value)
Pre-increment

++expr

Value of expr s increased by one, the new value of expr is returned (as L-value)
Post-Dekrement

expr--

Value of expr is decreased by one, the 0/d value of expr is returned (as R-value)
Pri-Dekrement

—-expr

Value of expr is increased by one, the new value of expr is returned (as L-value)

In-/decrement Operators

use

arity

prec

assoz

L-/R-value

Post-increment expr++
Pre-increment ++expr
Post-decrement expr--

Pre-decrement --expr

1
1
3
4

> 3 > I

left
right
left

right

L-value — R-value
L-value — L-value
L-value — R-value

L-value — L-value

In-/Decrement Operators

Is the expression

++expr; « we favour this

equivalent to
expr++;?

Yes, but

m Pre-increment can be more efficient (old value does not need to

be saved)

m Post In-/Decrement are the only left-associative unary operators

(not very intuitive)

In-/Decrement Operators

int a = 7;

std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; //8
std::cout << a << "\n"; // 9

Arithmetic Assignments

a+=b

a=a+b

analogously for -, *, /and?¥

Arithmetic Assignments Binary Number Representations

Gebrauch Bedeutung Binary representation (Bits from {0, 1})
+= exprl += expr2 exprl = exprl + expr2 b,,b,,,l . Hblbo
-= exprl -= expr2 exprl = exprl - expr2

corresponds to the number b, - 2" + -+ +b; - 2+ by
*= exprl *= expr2 exprl = exprl * expr2

/= exprl /= expr2 exprl = exprl / expr2 Example: 101011 corresponds to 43.
%= exprl %= expr2 exprl = exprl J expr2

Least Significant Bit (LSB)

Arithmetic expressions evaluate expr1 only once.
P pri only Most Significant Bit (MSB)

Assignments have precedence 4 and are right-associative.

Computing Tricks Hexadecimal Numbers
Numbers with base 16
m Estimate the orders of magnitude of powers of two.: &
h,,h,,,,l cee h,lh(] 1 0001 1
210 = 1024 = 1Ki =~ 10°%. 2 |Gn| e
220 — 1Mi ~ 105, corresponds to the number 4 |owo| 4
2% = 1Gi ~ 10°, 3 | G
232 = 4. (1024)* = 4Gi. 16"+ 16 o ||| 5
264 — 16Ei ~ 16 - 10'S. fin - 167 -+ by - 16 4 ho. R
9 100 9
notation in C++: prefix 0x S DR
c 1100 12
Example: 0xff corresponds to 255. ERN D It
Decimal v f 1111 15

Kkilo (K, Ki) —

Why Hexadecimal Numbers?

m A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.
® “compact representation of binary numbers”

Example: Hex-Colors

Why Hexadecimal Numbers?

“For programmers and technicians” (Excerpt of a user manual of the

chess computers Mephisto II, 1981)

@
Rl
oo
=

80SE

IF80

Domain of Type int

// Output the smallest and the largest
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>:

<< "Maximum int value is "

<< std::numeric_limits<int>:

return 0;

3} Minimum int value is -2147483648.

value of type int.

min() << ".\n"

:max() << ".\n";

Maximum int value is 2147483647.

Where do these numbers come from?

Domain of the Type int

m Representation with B bits. Domain comprises the 2% integers:

{2871 9Bty —1,0,1,...,

28—1 — 9, 2B—1 _ 1}

m On most platforms B = 32
m For the type int C-++ guarantees B > 16

m Background: Section 2.2.8 (Binary Representation) in the lecture
notes.

The Type unsigned int

m Domain

m All arithmetic operations exist also for unsigned int.
m Literals: 1u, 17u...

Over- and Underflow

m Arithmetic operations (+, -, *) can lead to numbers outside the
valid domain.

m Results can be incorrect!
power8.cpp: 15° = —1732076671
m There is no error message!

Mixed Expressions

m Operators can have operands of different type (e.g. int and
unsigned int).
17 + 17u

m Such mixed expressions are of the “more general” type
unsigned int.

m int-operands are convertedto unsigned int.

Conversion

int Value Sign unsigned int Value

@ >0]

z\<i/x+23

Due to a clever representation (two’s complement
— not discussed), no addition is internally needed

Signed Numbers

Note: the remaining slides on signed numbers, computing with
binary numbers, and the two’s complement, are not relevant for the
exam

Conversion “reversed”

The declaration
int a = 3u;
converts 3u to int.

The value is preserved because it is in the domain of int; otherwise
the result depends on the implementation.

Signed Number Representation

m (Hopefully) clear by now: binary number representation without
sign, e.g.

(baibgo ... bolu = by -2+ by 20 -+ by
m Obviously required: use a bit for the sign.

m Looking for a consistent solution

The representation with sign should coincide with the unsigned solution as
much as possible. Positive numbers should arithmetically be treated equal in
both systems.

Computing with Binary Numbers (4 digits)
Simple Addition

2 0010
+3 +0011
5 0101
Simple Subtraction
5 0101
-3 —0011
2 0010

Computing with Binary Numbers (4 digits)
Simpler -1

1 0001
+(=1) 1111
0 (1)0000
Utilize this:
3 0011
+7 +7727
-1 1111

Computing with Binary Numbers (4 digits)
Addition with Overflow

7 0111
+9 +1001
16 (1)0000
Negative Numbers?
5 0101
+(=5) 777
0 (1)0000

Computing with Binary Numbers (4 digits)

Invert!
3 0011
+(—4) +1100
-1 1111228 -1
a a
+(—a—1) a

-1 1111228 —1

Computing with Binary Numbers (4 digits)

m Negation: inversion and addition of 1

—a = a+1

= Wrap around semantics (calculating modulo 27

—a = 2P —q

Negative Numbers (3 Digits)

a —a
0 000 000 O
1 001 111 -1
2 010 110 -2
3 011 101 -3
100 -4

The most significant bit decides about the sign and it contributes to
the value.

Why this works

Modulo arithmetics: Compute on a circle®

KRG Ny, X,
- - - - - e
2, S+ 2NN = 2,0S
1=23=-1= 1=16=...
. mod 12 mod 12
The arithmetics also work with decimal numbers (and for multiplication
Two’s Complement

m Negation by bitwise negation and addition of 1
—2 = —[0010] = [1101] + [0001] = [1110]

m Arithmetics of addition and subtraction identical to unsigned arithmetics
3—2=3+(—2) = [0011] + [1110] = [0001]

m Intuitive “wrap-around” conversion of negative numbers.
-n—28—n

m Domain: —258-1 . 28-1 1

