
20. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer Arrays,
Array-based Vectors

585

Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v. push_front (e); // Prepend element
v. push_back (e); // Append element
...

A vector is a dynamic data structure, whose size may change at
runtime

586

Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only superficially)

587

Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?

588

new for Arrays

new T[expr]

underlying type

new-Operator type int, value n

Effect: new contiguous chunk of memory n elements of type T is
allocated

This chunk of memory is called an array (of length n)

589

new for Arrays

p = new T[expr]

underlying type

new-Operator type int, value n

p

Type: A pointer T∗ (more soon)
Value: the starting address of the memory chunk

590

Outlook: new and delete

new T[expr]

So far: memory (local variables, function arguments) “lives” only
inside a function call
But now: memory chunk inside vector must not “die” before the
vector itself
Memory allocated with new is not automatically deallocated (=
released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks

591

new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

Effect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T∗
Also true here: object “lives” until deleted explicitly (usefulness will
become clearer later)

592

Pointer Types

T∗ Pointer type for base type T

An expression of type T∗ is called pointer (to T)

int∗ p; // Pointer to an int
std::string∗ q; // Pointer to a std::string

593

Pointer Types

T∗ Pointer type for base type T

A T* must actually point to a T

int∗ p = ...;
std::string∗ q = p; // compiler error!

594

Pointer Types

Value of a pointer to T is the address of an object of type T

int∗ p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) p = addr

addr
(e.g. 0x7ffd89d5f7cc)

595

Address Operator

Question: How to obtain an object’s address?

1 Directly, when creating a new object via new

2 For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T∗ (of type T)

596

Address Operator

int i = 5; // i initialised with 5
int∗ p = &i; // p initialised with address of i

i = 5
addr

p = &i = addr

Next question: How to “follow” a pointer?

597

Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at the
address denoted by expr
Type of the expression: T

598

Dereference Operator

int i = 5;
int∗ p = &i; // p = address of i
int j = ∗p; // j = 5

i = 5
addr

p = &i = addrj = *p = 5

599

Address and Dereference Operator

pointer (R-value)

object (L-value)

& *

600

Mnenmonic Trick

The declaration

T* p; // p is of the type “pointer to T”

can be read as

T *p; // *p is of type T

Although this is legal, we do
not write it like this!

601

Null-Pointer

Special pointer value that signals that no object is pointed to
represented b the literal nullptr (convertible to T*)
int∗ p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid undefined behaviour
int∗ p; // p could point to anything
int∗ q = nullptr; // q explicitly points nowhere

602

Pointer Arithmetic: Pointer plus int

T∗ p = new T[n]; // p points to first array element

p

size
of a T

p+3 p+n

How to point to rear elements?→ Pointer arithmetic:

p yields the value of the first array element, ∗p its value
∗(p + i) yields the value of the ith array element, for 0 ≤ i < n
∗p is equivalent to ∗(p + 0)

603

Pointer Arithmetic: Pointer plus int

int∗ p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int∗ p3 = p0 + 3; // p3 points to 4th element
∗(p3 + 2) = 600; // set value of 6th element to 600
std::cout << ∗(p0 + 5); // output 6th element’s value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5

604

Pointer Arithmetic: Pointer minus int

If ptr is a pointer to the element with index k in an array a with
length n
and the value of expr is an integer i, 0 ≤ k − i ≤ n,

then the expression

ptr - expr

provides a pointer to an element of a with index k − i.

a (a[n])ptr

k

i

ptr-expr

605

Pointer Subtraction

If p1 and p2 point to elements of the same array a with length n

and 0 ≤ k1, k2 ≤ n are the indices corresponding to p1 and p2,
then

p1 - p2 has value k1 - k2

Only valid if p1 and p2 point into the same array.

The pointer difference describes “how far away the elements are
from each other”

606

Pointer Operators

Description Op Arity Precedence Associativity Assignment

Subscript [] 2 17 left R-value→ L-
value

Dereference * 1 16 right R-Wert →
L-Wert

Address & 1 16 rechts L-value →
R-value

Precedences and associativities of +, -, ++ (etc.) as in Chapter 2

607

Pointers are not Integers!

Addresses can be interpreted as house numbers of the memory, that is,
integers

But integer and pointer arithmetic behave differently.

ptr + 1 is not the next house number but the s-next, where s is the memory
requirement of an object of the type behind the pointer ptr.

Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to int*

int a = ptr; // error: invalid conversion from int* to int

608

Sequential Pointer Iteration

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit itit

for (char∗ it = p;
it != p + 3;
++it) {

std::cout << ∗it << ’ ’; // x y z
}

it points to first element

Abort if end reached

Output current element: ’x’

Advance pointer element-wise

609

Random Access to Arrays

char∗ p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression ∗(p + i)

can also be written as p[i]

E.g. p[1] == ∗(p + 1) == ’y’

610

Random Access to Arrays

iteration over an array via indices and random access:

char∗ p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less efficient than the previously shown sequential
access via pointer iteration

611

Random Access to Arrays

T∗ p = new T[n];

size s
of a T

Access p[i], i.e. ∗(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . .) costs one addition
and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . .) costs only one
addition per access
Sequential access is thus to be preferred for iterations

612

Reading a book . . . with random access . . . with
sequential access

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

613

Static Arrays

int∗ p = new int[expr] creates a dynamic array of size expr

C++has inherited static arrays from its predecessor language C:
int a[cexpr]
Static arrays have, among others, the disadvantage that their size
cexpr must be a constant. I.e. cexpr can, e.g. be 5 or 4∗3+2, but
kein von der Tastatur eingelesener Wert n.
A static array variable a can be used just like a pointer
Rule of thumb: Vectors are better than dynamic arrays, which are
better than static arrays

614

Arrays in Functions
C++covention: arrays (or a segment of it) are passed using two
pointers

begin end

begin: Pointer to the first element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of the
array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty) array
segment

615

Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int∗ begin, int∗ end, int value) {

for (int∗ p = begin; p != end; ++p)
∗p = value;

}

...
int∗ p = new int[5];
fill(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}

616

Functions with/without Effect

Pointers can (like references) be used for functions with effect.
Example: fill
But many functions don’t have an effect, they only read the data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;

617

Positioning of Const

Where does the const-modifier belong to?

const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis

618

Const and Pointers

Read the declaration from right to left

int const p; p is a constant integer

int const∗ p; p is a pointer to a constant integer

int∗ const p; p is a constant pointer to an integer

int const∗ const p; p is a constant pointer to a constant integer

619

Non-mutating Functions: print

There are also non-mutating functions that access elements of an array only in a
read-only fashion

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const∗ const begin,
const int∗ const end) {

for (int const∗ p = begin; p != end; ++p)
std::cout << ∗p << ’ ’;

}

Const pointer to const int

Likewise (but different keyword order)

Pointer, not const, to const int

Pointer p may itself not be const since it is mutated (++p)

620

const is not absolute

The value at an address can change even if a const-pointer
stores this address.

beispiel

int a[5];
const int* begin1 = a;
int* begin2 = a;
*begin1 = 1; // error *begin1 is const
*begin2 = 1; // ok, although *begin will be modified

const is a promise from the point of view of the const-pointer, not
an absolute guarantee

621

Wow – Palindromes!
// PRE: [begin end) is a valid range of characters
// POST: returns true if the range forms a palindrome
bool is_palindrome (const char∗ begin, const char∗ end) {

while (begin < end)
if (*(begin++) != *(--end)) return false;

return true;
}

R O T O R

begin end

622

Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n

T* p = new T[n]: pointer p points to the first array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more efficient than random
access
new T allocates memory for (and initialises) a single T -object, and yields a
pointer to it
Pointers can point to something (not) const, and they can be (not) const
themselves
Memory allocated by new is not automatically released (more on this soon)
Pointers and references are related, both “link” to objects in memory. See also
additional the slides pointers.pdf)

623

Array-based Vector

Vectors . . . that somehow rings a bell

Now we know how to allocate
memory chunks of arbitrary size . . .
. . . we can implement a vector, based
on such a chunk of memory
avec – an array-based vector of int
elements

624

Array-based Vector avec: Class Signature
class avec {

// Private (internal) state:
int∗ elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i); // Access an element
void print(std::ostream& sink) const; // Output elems.

}

625

Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Save size

Allocate memory

Side remark: vector is not initialised with a default value

626

Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (∗this).elements
Dereferencing a pointer (∗this) followed by a member access
(.elements) is such a common operation that it can be written
more concisely as this−>elements
Mnemonic trick: “Follow the pointer to the member variable”

627

Function avec::size()

int avec::size() const {
return this−>count;

}

Doesn’t modify the vector

Return size

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok

628

Function avec::operator[]

int& avec::operator[](int i) {
return this−>elements[i];

}
Return ith element

Element access with index check:

int& avec::at(int i) const {
assert(0 <= i && i < this−>count);

return this−>elements[i];
}

629

Function avec::operator[]

int& avec::operator[](int i) {
return this−>elements[i];

}

Usage example:

avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0

630

Function avec::operator[] is needed twice

int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

The first member function is not const and returns a non-const
reference
avec v = ...; // A non−const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Modifying elements is allowed

It is called on non-const vectors

631

Function avec::operator[] is needed twice

int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

The second member function is const and returns a const
reference
const avec v = ...; // A const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Compiler error: modifications are not

allowed

It is called on const vectors

Also see the example attached to this PDF

632

Function avec::print()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {
for (int∗ p = this−>elements;

p != this−>elements + this−>count;
++p)

{
sink << ∗p << ’ ’;

}
}

Pointer to first element

Advance pointer element-wise Abort iteration if
past last element

Output current element

633

Function avec::print()
Finally: overload output operator:

operator<<(sink,
vec) {

vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:

Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’

634

Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s size

635

Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be resized
later on

2 1 7

first last

Possibility:

Allocate more memory than initially necessary
Fill from inside out, with pointers to first and last element

636

Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use
Then unavoidable: Allocate larger memory block and copy data
over

637

Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding or
following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position

638

