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The first program and the C++ syntax and semantics

We defined the scope of the course and that of computer science, followed by a discussion
of its essential notion with the oldest handed down example: the Euclidian algorithm. We
looked at how a computer actually works. We learned to know the important concepts of
a Turing Machine and Von Neumann Architecture.

We saw an overview of what it means to program, how to program, and why it is
important to be able to program. The main point we made is that basic programming
skills are becoming increasingly important in a world "run” by software (programs).

Then we discussed our first C++ program and the main syntactical and semantical
terms necessary to understand it.

// Program: power8.cpp
// Raise a number to the eighth power.

#include <iostream>

int main ()

{
// input
std::cout << "Compute a”8 for a =7 ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a2
b = Db * b; // b = a4
// output b * b, 1.e., a”8
std::cout << a << ""8 = " <K< b * b << "\n";
return O;
}

The two most important syntactical concepts are expressions and statements. An
expression represents a computation (for example b * b), and expressions can be combined
through operators to new expressions (such asinb = b * b). Every expression has a type,
a value, possibly an effect, and (if it is an lvalue) an address. Value and effect materialize
only in an evaluation of the expression. A statement is the basic building block of every
program. It has an effect, and often this effect results from evaluating an expression.

Learning Goals: Students should be able to:

e Determine types and values of simple expressions. These are expressions involving



literals or variables of type int, unsigned int, bool, float, double, char, and
arithmetic, relational and logical operators (with short-circuit evaluation).

The types int, unsigned int, arithmetic operators

Here we introduced the arithmetic operators (on the types int and unsigned int), along
with their precedences (binding power), associativities (evaluation from left to right, or
right to left?), and arities (number of operands).

’ Description \ Operator \ Arity \ Prec. \ Assoc. ‘
post-increment ++ 1 17 left
post-decrement - 1 17 left
pre-increment ++ 1 16 right
pre-decrement -= 1 16 right
sign + 1 16 right
sign - 1 16 right
multiplication * 2 14 left
division (integer) / 2 14 | left
modulus /A 2 14 left
addition + 2 13 left
subtraction - 2 13 left
assignment = 2 3 right
mult assignment *= 2 3 right
div assignment = 2 3 right
mod assignment %= 2 3 right
add assignment += 2 3 right
sub assignment -= 2 3 right

Table 1: Arithmetic operators

Most importantly, the division / is the integer division, meaning that 5/2 has value 2,
for example, where the remainder 1 can be obtained through the modulus operator (5%2).
The three main rules one needs to remember are:

Arithmetic Evaluation Rule 1: Multiplicative operators have higher precedence
than additive operators.




Arithmetic Evaluation Rule 2: Binary arithmetic operators are left associative.

Arithmetic Evaluation Rule 3: Unary operators + and - have higher prece-
dence than their binary counterparts.

We have also talked about the value ranges of the types int and unsigned int.
Under a b-bit representation (think of b = 32), int has value range {—2°"1, —2°"T 4+
1,...,—1,0,1,...,2*"" — 1} C Z, while unsigned int has value range {0,1,...,2% —1}.

Learning Goals: Students should be able to:
e convert natural numbers from and to decimal, binary and hexadecimal representation.

e Determine the behavior of simple expressions involving integer numbers.

The type bool

We have introduced the type bool to work with truth values, along with the logical op-
erators (that combine boolean expressions), and the relational operators (that compare
arithmetic expressions and return boolean expressions). A specialty of boolean expressions

’ Description \ Operator \ Arity \ Prec. \ Assoc. ‘

logical not ! 1 16 right
less < 2 11 left
greater > 2 11 left
less or equal <= 2 11 left
greater or equal >= 2 11 left
equality == 2 10 left
inequality I= 2 10 left
logical and && 2 6 left
logical or |l 2 5 left

Table 2: Logical and relational operators

built from && or || is the short circuit evaluation: if the value is already known after eval-
uation of the left operand, the right operand is not evaluated. This allows for expressions
such asx == 0 || y / x > 2 where the second operand is valid only if x # 0.

We learned to know the important concept of assertions to detect errors in a program.
An assertion can be used to formulate invariants or preconditions in a program. We
discussed differences between compile-time and run-time errors.



Learning Goals: Students should be able to:

e Determine the behavior of simple expressions involving integer numbers and boolean
expressions.

e Formulate invariants to check pre- or postconditions in a running program.

Control statements

The major part of this lecture was about control statements that allow us to deviate from
linear control flow (statements are executed from top to bottom in the program). The
control statements are

e the if- and the if-else statement (selection statements);

if ( condition )
statement
else
statement

e the for-statement (iteration statement); this is at the same time the most used, the
most important, and most complex control statement;

for ( init statement condition ; expression )
statement

e the while and the do-statements (two more iteration statements); since they can both
easily be simulated using the for-statement, they are redundant from a functional
point of view, so we called them syntactic sugar. However, they still make sense and
allow for more readable code;

while ( condition )
statement

e break; and continue; (jump statements). The typical use of break; is to terminate
a loop in the middle, and the use of continue; is to skip the remainder of a loop
iteration.

In this context, we discussed undecidability of the halting problem: there is no C++
program that can check any C++ programs for termination.

We also discussed blocks as a means to group several statements into one, and we said
that each block is a scope in the sense that variables defined in the block start to live
(are accessible and get memory assigned) when the program control enters the block and
die (get their memory freed and become inaccessible) when the block is left. This is the
concept of automatic storage duration.
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Learning Goals: Students should be able to:

e Determine the behavior of simple code. These are complete programs or sequenes
of statements containing simple expressions, in- and output, selection statements (if,
if-else) and iterations statements (for, while, do)

e Write simple code for given tasks.

Floating point numbers

We have discussed how to compute with ”real” numbers in C++ using floating point
numbers and the types float and double. Floating point numbers are numbers of the
form +s - 2%, where both s (the significand) and e (the exponent) are integers. Concrete
floating point number systems (such as IEEE single precision and IEEE double precision)
prescribe bounds for s and e.

We have seen that floating point numbers are very useful for a wide range of applications
(we have computed the Euler number and Harmonic numbers in the lecture), but that
they come with some pitfalls that one needs to know. Most prominently, we discussed that
floating point inputs and literals are usually decimal (such as 0.1, meaning 1/10), but that
internally, a binary representation is used. In converting between these two representations,
errors are unavoidable, since numbers with finite decimal representation may have infinite
binary representation. This can lead to small errors (0.1 internally not being 0.1 but very
close to it), and large errors (Excel 2007 bug).

We established three guidelines for safely computing with floating point numbers.

Floating Point Arithmetic Guideline 1: Never compare two floating point
numbers for equality, if at least one of them results from inexact floating point compu-
tations.




Floating Point Arithmetic Guideline 2: Avoid adding two numbers that
considerably differ in size.

Floating Point Arithmetic Guideline 3: Avoid subtracting two numbers of
almost equal size, if these numbers are results of other floating point computations.

What happens when we violate the second one was demonstrated by a program for
computing Harmonic numbers in two ways (forward and backward); only the backward
way is approximately correct, while in the forward way, the numbers 1/1 added last are
too small to still contribute.

// Forward sum, yields large errors for large n
float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / 1i;

// Backward sum, approzimately correct also for large n
float bs = 0;
for (unsigned int i = n; i >= 1; --1i)

bs += 1.0f / 1i;

Learning Goals: Students should be able to:

e Work with floating point number systems. In particular be able to convert numbers
between decimal and binary floating point number systems.

e Understand the limits of floating point numbers.

Functions

We have discussed functions as a way to realize functionality that is frequently used (for
example, power computations) in such a way that it is implemented only once (as a func-
tion) but can be used very often, and even from different programs. We have seen that the
standard library contains many of such functions (e.g. std::sqrt).

We have made the point that functions should be properly documented through pre- and
postconditions, and that assertions should be used to check pre- but also other conditions
at any time during a program.

We have also seen that function calls are expressions, and how the evaluation of a
function call proceeds (evaluation of call arguments, initialization of formal arguments,
execution of function body, return of function value (optional for void functions)).



We have learned how to structure a problem into manageable blocks by using the
concept of stepwise refinement applied to procedural programming. We used the example
of intersecting rectangles.

#include<iostream>
#include<algorithm >
// PRE: [al, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, b1],[a2, b2] intersect
bool intervals_intersect (int al, int bl, int a2, int b2) {
return std::max(al, bl) >= std::min(a2, b2)
&& std::min(al, bl) <= std::max(a2, b2);
}
// PRE: (z1, yl1, wl, h1), (z2, y2, w2, h2) are rectangles, where
// wl, hl, w2, h2 may be negative.
// POST: returns true if (z1, yl, wil, hl),(z2, y2, w2, h2) intersect
bool rectangles_intersect (int x1, int yl, int wl, int hl,
int x2, int y2, int w2, int h2){
return intervals_intersect (x1, x1 + wl, x2, x2 + w2)
&& intervals_intersect (yl, yl + hl, y2, y2 + h2);

}

int main (){
bool clash = rectangles_intersect (x1,yl,wl,hl,x2,y2,w2,h2);

return 0;

We learned to know the concept of separate compilation: components of a program
can be compiled independent of each other provided that their interface is given in some
header-file. In order to avoid name-clashes in large libraries we discussed the notion of
namespaces.

Learning Goals: Students should be able to:
e Find pre- and postcondions of functions and evaluate function calls

e Understand and write simple functions for given tasks. A simple function is a function
whose body consists of simple code, and which provides call-by-value arguments.

Reference types

In order to motivate reference types we looked at a simple but often required functionality:
swap the values of two variables. A first trial to write a swap function without reference



parameters failed. We learned that the application of reference types at the parameters of
a function provides a solution.

// POST: walues of a and b are exchanged
void swap (int& a, & b) {

int t = a;

a = b;

b = t;

}

int main(){
int a = 2;
int b = 1

As another concept that helps to write more failsafe code we learned to know the
concept of constants. The compiler guarantees that any variable declared as constant will
not be modified. We learned a rule for writing const-correct programs:

Const Guideline: Whenever you define a variable in a program, think about
whether its value is supposed to change or not. In the latter case, use the const keyword
to turn the variable into a constant.

If a formal argument is of reference type, we have call by reference, otherwise call by
value. For large types, call by value can be inefficient, since the whole value is copied. We
can avoid this by using const references instead and are still able to pass rvalues.

We learned that even return by reference is possible, a concept that gave rise to the
following guideline.

Reference Guideline: When you define a reference, the referred to object must
be live at least as long as the reference itself.

Learning Goals: Students should be able to:

e Understand and write simple code and simple functions that deal with functions that
call other functions and that use call-by-reference.
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Arrays and vectors

We have seen the concept of an array as a container that stores a sequence of data of the
same type, and allows fast random access (by index) to the elements. This is possible since
an array occupies a consecutive piece of memory, so the address of any element is easy to
compute as p + si, where p is the address of the first element, 1 is the index of the element,
and s is the number of memory cells required to store a single element.

We have seen two models of the array concept: static arrays (the number of elements
has to be known at compile time) and vectors (the number of elements can be determined
at runtime). Static arrays turn out to be primitive (they originate from C), in the sense
that initialization and assignment don’t work as for other types, and we have to ”copy
arrays by hand”.

As applications for arrays, we have considered (i) Eratosthenes’ sieve for computing all
prime number up to a given upper bound, and (ii) Cesary-code encoding and decoding:
replace all printable characters in a text by their predecessor and successor, respectively.

For the latter, we also needed the type char to represent single (ASCII) characters.

We introduced strings and operations on strings with the very appealing example of
Lindenmayer-systems. We learned to know an alphabet and production rules on the set of
finite words over the alphabet and how to implement such rules in a program.

Then we have discussed multidimensional arrays (arrays of arrays of arrays...), with
one (twodimensional) application: finding shortest paths for a robot on a factory floor from
a start to a goal position that avoids all obstacles.
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The main idea in the solution was to label every cell with the length of the shortest
path from the start to the cell (a twodimensional array stores these labels), and use an
expanding wavefront to assign labels in increasing order. In the left picture, the cell labeled
0 is the start, and the cell labeled 21 is the goal. The indicated path of increasing labels
is the shortest path. A single step of expanding the wavefront to label i is really simple
(right picture): all unlabeled neighbors of cells with label i — 1 receive label i.
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Learning Goals: Students should be able to:

e Understand and write simple code and simple functions that deal with one- and
twodimensional arrays and vectors

Pointers, Algorithms, Iterators, Containers

We have discussed how to pass arrays to functions: via two pointers, one pointing to the
first element, and one behind the last element. A pointer of type T* stores the address
of an object of type T. A static array is automatically converted to a pointer to its first
element in every expression, and using pointer arithmetic, we can get pointers to other
elements. For example, to set all 5 elements of an array a to 1, we can use

// a points to first element, a+5 behind the last
std::fill (a, a+5, 1);

Here, std: :£i11 is an algorithm from the standard library. In realizing such a function for
an array of length n, we have discussed iteration by random access, and natural iteration:

// diteration by random access: read book
// constantly opening and closing it between pages
for (int i=0; i<n; ++1i)

ali] = 1;

// natural iteration: read book
// opening it once and turning pages
for (int* p = a; p < a+n; ++p)
*p = 1;
For vectors, we cannot use pointers, but have to work with vector iterators that can be
thought of as "pointers” to vector elements. To set all elements of a vector, we use

// v.begin() points to first element, v.end() behind the last
std::fill (v.begin(), v.end(), 1);

An iterator is a type whose expressions behaves like pointers, meaning that an expres-
sion it of iterator type can at least be dereferenced to yield the element it points to (¥it),
and advanced to point to the next element (++it). Some iterators (for example, pointers
and vector iterators) also support random access (it [k]).

A container is an object that can store other objects (its elements), and that offers
some ways of accessing these elements. Every standard container allows access through
iterators. If c is a standard container of type C, the following loop will output all its
elements.

for (C::const_iterator it = c.begin(); it != c.end(); ++it)
std::cout << *it;
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Concretely, we have seen this loop for C equal to std: :set<char>, a standard container
to represent sets of characters. Set iterators do not allow random access, since from a
mathematical point of view, a set is not ordered: there is no natural way to define the i-th
element.

Learning Goals: Students should be able to:

e Understand and write simple code and simple functions that deal with pointers,
iterators and ranges.

Recursion

We have discussed recursive functions, functions that call themselves within their body.
Here is an example for computing the Fibonacci numbers and the direct counterpart in
C++

// POST: return wvalue %S

// the n-th Fibonaccti number F_n
unsigned int fib (const unsigned int n)

Fo = 0, {
Fro= 1, if (n == 0) returm O0;
._ if (n == 1) returm 1;
Fno= FaatFog m>1l. return fib(n-1) + fib(n-2); // n > 1
}

For a recursive function, we separately have to prove correctness and termination.

The evaluation of a recursive function call may take very long (Example: £ib(50)). In
many cases there are efficient iterative (non-recursive) ways of writing the same function.

We have discussed the call stack as a way to deal with several formal arguments that
are in use simultaneously during the evaluation of nested function calls.

We have introduced a major example for the rest of the semester: the command line
calculator. We investigated the structure of expressions and their evaluation. We used
the Extended Backus Naur Form (EBNF) to reveal the inherently recursive nature of
expression parsing.

factor = unsigned_number | "(" expression ")" | "" factor.
term = factor { "*" factor | "/" factor }.
expression = term { "+" term | "-" term }.

Having developed this form, we could very naturally, and much simpler than in the iterative
case, develop parsing for a command line calculator, by almost literally translating the
EBNF to functions.
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double term (std::istream& is)

{
double value = factor (is); // factor
while (true) {
if (consume (is, ’%’))
value *= factor (is); // "*" factor
else if (consume (is, ’/7))
value /= factor (is); // "/" factor
else
return value;
+
}

EBNF only defines the syntax and does not talk about the meaning (value) of an expression.
For example, the left-to-right evaluation order within a product of factors or a sum of terms
is not encoded in the expression’s syntax. In fact, starting with the natural BNF variant
of the very same grammar, the literal translation into parser code leads to a right-to-left
evaluation order.

Learning Goals: Students should be able to:
e Understand and write simple code and simple functions that deal with recursion.

e Work with formal grammars such as Linednmayer systems and EBNF.

Structs and Classes

We have seen structs as a way to define new types whose value range is the Cartesian
product of existing types. Our running example was that of rational numbers:

struct rational {

int n;

int d; // INV: d != 0
};

We have seen how to provide functionality for a new type (such as rational), in order to
make it behave like existing types. We learned that C++4 supports the concept of function
overloading that, once knowning that operators can be defined like functions, can be used
to support operator overloading.

For example, to enable us to write r + s if r and s are of type rational, we overload
the binary addition operator:
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// POST: return wvalue t¢s the sum of a and b
rational operator+ (const rational a, comnst rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

We can do the same with all other arithmetic operators, relational operators, input and
output operators. Here the previously introduced concept of reference types proved to be
essential for the correct implementation of overloaded operators such as +=.

Learning Goals: Students should be able to:

e Understand and write simple code, simple functions and overloaded operators that
in addition deal with simple structs. A simple struct is a struct without member
functions.

Classes

We have addressed the main drawback of structs so far, namely that the internal represen-
tation (.n and .d for rational numbers) is revealed to the user (”customer”) of the struct,
meaning that it is hard to change it later. With classes, we hide the internal representation
as it is private. Access is provided via member-functions in the public part.

class rational A
public:
// POST: return value <s the numerator of *this
int numerator () const {
return n;
}
// POST: return wvalue is the denominator of *this
int denominator () comnst {
return d;
}
private:
int n;
int d; // INV: d!= 0
};

With classes, we hide the internal representation and allow access to it only through
public member functions. This means, we promise a certain functionality, but not a concrete



15

realization of it. We exemplified this with the running example of rational numbers.
Having learned about encapsulation with classes and having introduced constructors,
we discussed the implementation of a class for a stack. We have seen that for arrays, it is
difficult to insert or remove elements ”in the middle”, and we have proposed linked lists as
a solution that may store their elements anywhere in memory (and not consecutively as
arrays do it). In addition to the key (or value), each list element also stores a pointer to

its successor:
Element (Typ struct list_node)

e

key (Typ int) next (Typ list nodex)

struct list_node {
int key;
list_nodex* next;
// comnstructor
list_node (int k, list_node* n)
key (k), next (n) {}
};

The main new concept we needed in order to insert new elements was dynamic memory
allocation from the heap using new (and a later delete to free the memory again). We
learned the memory allocation rule:

Allocation (new) and de-allocation (delete) are conceptually always provided as
pairs.

Allocation was, for example, used when pushing elements on the stack

void stack::push (int value) {
top_node = new list_node (value, top_node);

¥

Deallocation was used when removing elements from the stack

void stack::pop() {
list_node*x p = top_node;
top_node = top_node->next;
delete p;

We learned another important technique to decouple the high level interface of a par-
ticular data type such as a stack from the relatively low-level implemenation as linked list:
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provision of a container class (stack) that hides the implementation details of the data
structure (1ist_node) and that provides the high-level interface to initialization, allocation
and deallocation of the respective data type.

In order to override default initialization and assignment of a stack that would just copy
the pointer to the first element (making the new stack an alias of the old one), we needed
to provide user-defined copy constructor and assignment operator. To properly clean up
the stack (delete!) when it runs out of scope, we also need to provide a user-defined
destructor, calling a clear method.

stack:: " stack ()

{
if (top_node != 0)
top_node->clear ();

Having constructors, destructor, copy constructor and assignment operator (recall the
C-++rule of three), our type is a dynamic data type.

Learning Goals: Students should be able to:

e Understand and write simple classes. A simple class is a class with member functions,
but without dynamic memory management:

e Understand and write simple general classes, including dynamic memory manage-
ment.

e Deal with linked lists. Know how to identify empty lists, insert and delete elements
from a list.

Inheritance and Polymorphism

We introduced inheritance with the example of figures that should be capable of drawing
themselves to some bitmap.

class Circle{
public:
Circle(Point C, double R): center(C), radius(R), col(Black) {}
void Draw(Image& img) const;
void SetColor (const Color& c);
Color GetColor () const;
private:

}s
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class Rectangle{
public:
Rectangle (Point A, Point B): a(A), b(B), col(Black) {}
void Draw(Image& img) const;
void SetColor (const Color& c);
Color GetColor () const;
private:

+s

We identified problems with this first approach: redundancy and non-univeritality. Code
had to be rewritten for all classes implementing he same kind of interface. Moreover,
instances of the the different classes could not be held in one list.

The first problem was solved by the introduction of inheritance where the two classes
Circle and Rectangle inherited from a common base class figure:

class Figure{
public:
Figure(): col(Black) {}

void Draw(Image& img);
void SetColor(const Color& c);
Color GetColor () const;
private:
¥+
class Rectangle: public Figure{
public:
Rectangle (Point A, Point B): a(A), b(B), Figure() {}
void Draw(Image& img) const;
private:

+s

class Circle: public Figure{

public:
Circle(Point C, double R): center(C), radius(R), Figure() {%}
void Draw(Image& img) const;

private:

+s

We understood that with this approach including inheritance we could avoid code dupli-
cation and could thus reuse the code defined in the base class in the inheriting classes.
However, it was still not yet possible to combine the two classes in one list. In order to be
able to do this we introduced the concept of polymorphy:

lass Figure{
public:
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Figure(): col(Black) {%

virtual void Draw(Image& img);

void SetColor(const Color& c);

Color GetColor () const;
private:

+s

by marking functions virtual we could make sure that they would be used even when
referring to an instance of a class via some pointer of base type.

As another motivating example for this part, we looked at expression trees as a natural
generalization of linked lists with two successor nodes:

treenode |op |val|left rigi@

e

struct tree_node {
char op;
// internal mnode ( op: ’+, =7, ’%°, ’/7)
tree_nodex left;
tree_nodex* right;
// leaf mode (op: ’=7)
double val,;
// constructor
tree_node (char o, tree_nodex 1, tree_nodex*x r, double v)
op (o), left (1), right (r), val (v)
{}
};

We implemented various operations on expression trees (such as eval, size, copy and
clear) by recursive tree traversal along the left and right edges of each tree node.

In complete accordance with the stack example, we implemented a container class
texpression for expression trees. Moreover, we defined operators on expression trees that
allowed it to use trees in the same way as we used numbers before. This went so far that
we could even replace the number type double of an expression parser by an expression
tree node.

texpression operator (const texpression& 1,
const texpression& r)
{

texpression result = 1;

return result = r,;
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expression a = 3;
texpression b = 4;
texpression c = b5;
texpression d = a b c ;

We motivated the two remaining principles for object oriented programming with the
wish to extend the expression tree without major modification of existing code/]

We learned that classes can inherit properties from other classes and that code written
for the base class can be reused by the inheriting class.

struct xtree_node{
virtual int size () const;
virtual double eval () const;

};

struct number_node : public xtree_node {
double val;
int size () const;
double eval () const;

};

By overwriting member functions, inheriting classes can also modify behavior. We
learned that, if a member function is labeled virtual, the dynamic type determines the
member function to be executed during runtime. This allows polymorhpy, i.e. the fact that
the same symbol can adopt different behavior depending on its runtime type.

Hnheritance and Polymorphism will not be relevant for the exam.



