14. Pointers, Algorithms, Iterators and
Containers Il

lterations with Pointers, Arrays: Indices vs. Pointers, Arrays and
Functions, Pointers and const, Algorithms, Container and lteration,
Vector-lteration, Typdef, Sets, the Concept of Iterators

474

Arrays: Indices vs. Pointer

int al[n];
// Task: set all elements to O

// Solution with indices is more readable
for (int i = 0; i < n; ++i)
ali] = 0;

// Solution with pointers is faster and more generic
int* begin = a; // Pointer to the first element
int* end = a+n; // Pointer past the end
for (int* p = begin; p != end; ++p)

*p = 0;

476

Recall: Pointers running over the Array

Beispiel

int a[5] = {3, 4, 6, 1, 2};
for (intx p = a; p < a+b; ++p)
std::cout << *p << ’ ’; // 34612

m An array can be converted into a pointer to its first element.
m Pointers “know” arithmetics and comparisons.
m Pointers can be dereferenced.

= Pointers can be used to operate on arrays.

475

Arrays and Indices

// Set all elements to value
for (int i = 0; i < n; ++i)
al[i] = value;

Computational costs

Adresse von a[0] =a+0-s addressof a[n-11 =a+ (n — 1) - s

IEEEEESESSEEEEEEEEEEEEEEEEEEEEEEE

S

= One addition and one multiplication per element

477

The Truth about Random Access Arrays and Pointers

// set all elements to value
for (int* p = begin; p != end; ++p)

The expression
*p = value;

alil Computational cost
is equivalent to p
*(a + 1) IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
T T T
: begin end
at+1-s

= one addition per element

478

Reading a book ... with indices ... With pointers Array Arguments: Call by (const) reference
Random Access Sequential Access void print_vector (COIlSt int (&V) [3]) {
m open book on page 1 m open book on page 1 for (int i = 0; 1<3 ; ++i) {
std::cout << v[i] << " ";
m close book m turn the page }
m open book on pages 2-3 m turn the page }
m close book m turn the page void make_null_vector (int (&v)[3]) {
m open book on pages 4-5 m turn the page for (int i = 0; i<3 ; ++i) {
m close book m turn the page v[li] = 0;
.. | ¥

}

480

Array Arguments: Call by value (not really ...)

void make_null_vector (int v[3]) {
for (int i = 0; i<3 ; ++i) {
v[i] = 0;
}
}

int a[10];
make_null_vector (a); // only sets al[0], a[1], a[2]

int*x b;
make_null_vector (b); // no array at b, crash!

482

Arrays in Functions

Covention of the standard library: pass an array (or a part of it) using
two pointers
B begin: pointer to the first element
m end: pointer behind the last element
m [begin, end) designates the elements of the part of the array
m valid range means: there are array elements “available” here.
m [begin, end) is empty if begin == end

484

Array Arguments: Call by value does not exist

m Formal argument types T [n] or T[] (array over T) are
equivalent to Tx (pointer to T)

m For passing an array the pointer to its first element is passed

m length information is lost

m Function cannot work on a part of an array (example: search for
an element in the second half of an array)

483

Arrays in Functions: fill

// PRE: [begin, end) is a valid range
// POST: every element within [begin, end) will be set to value
void £ill (int* begin, int* end, int value) {
for (int* p = begin; p != end; ++p)
*p = value;

expects pointers to the first element of a

range

int a[5];

£ill (a5 at+5, 1);

for (int i=0; i<5; ++I pass the address (of the first element)
std::cout << a[i] << " "; ofa

485

Pointers are not Integers!

m Addresses can be interpreted as house numbers of the memory, that is,
integers

m But integer and pointer arithmetics behave differently.

ptr + 1is notthe next house number but the s-next, where s is the memory
requirement of an object of the type behind the pointer ptr. \

m Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to int*
int a = ptr; // error: invalid conversion from int* to int

486

Pointer Subtraction

m If p7 and p2 point to elements of the same array a with length n

m and 0 < £y, ko < n are the indices corresponding to p7 and p2,
then

p1-p2has value k; - ko

T

Only valid if p7 and p2 point into the same array.

m The pointer difference describes “how far away the elements are
from each other”

488

Null-Pointer

m special pointer value that signals that no object is pointed to
m represented b the integer number 0 (convertible to Tx*)

int* iptr = O; |

m cannot be dereferenced (checked during runtime)
m to avoid undefined behavior

[4

int* iptr; // iptr points into ‘‘nirvana’’

int j = *iptr; // illegal address in *

487

Pointer Operators

Description || Op | Arity | Precedence | Associativity | Assignment

Subscript |2 17 left R-value — L-
value

Dereference || * 1 16 right R-Wert —
L-Wert

Address & |1 16 rechts L-value —
R-value

Precedences and associativities of +, -, ++ (etc.) like in chapter 2

Mutating Functions

m Pointers can (like references) be used for functions with effect

Beispiel
int a[5];
fill(a,\a+591)\;// modifies a

pass address of the element past a

pass address of the first element of a

m Such functions are called mutating

490

Const and Pointers

Where does the const-modifier belong to?
const T is equivalent to T const and can be written like this

const int a; <= int const a;
const int* a; < int const *a;

Read the declaration from right to left

a is a constant inteher

a is a pointer to a constant integer

a is a constant pointer to an integer

a is a constant pointer to a constant integer

int const a;
int const* a;
int* const a;
int const* const a;

492

Const Correctness

m There are also non-mutating functions that access elements of an array only in
a read-only fashion

// PRE: [begin , end) is a valid and nonempty range
// POST: the smallest value in [begin, end) is returned
int min (const int* begin ,const int* end)

{
assert (begin != end);
int m = xbegin; // current minimum candidate
for (const intx p = ++begin; p != end; ++p)
if (¢p < m) m = *p;
return m;
}

m mark with const: value of objects cannot be modified through such
const-pointers.

491

const is not absolute

m The value at an address can change even if a const-pointer
stores this address.

beispiel

int al[5];

const int* beginl = a;

int* begin2 = a;

*beginl = 1; // error *beginl is constt

*begin2 = 1; // ok, although *begin will be modified

m const is a promise from the point of view of the const-pointer, not
an absolute guarantee

493

Wow - Palindromes!

// PRE: [begin end) is a valid range of characters

// POST: returns true if the range forms a palindrome

bool is_palindrome (const charx begin, const charx end) {
while (begin < end)

if (*(begin++) != *(--end)) return false;
return true;
}
begin end
R O T (0] R
Algorithms

Advantages of using the standard library

m simple programs

m less sources of errors

m good, efficient code

m code independent from the data type

m there are also algorithms for more complicated problems such as
the efficient sorting of an array

496

Algorithms

For many problems there are prebuilt solutions in the standard
library

Example: filling an array

#include <algorithm> // needed for std::fill
int al[5];
std::fill (a, a+5, 1);

for (int i=0; i<5; ++i)
std::cout << af[i] << " "; // 111 1 1

495

Algorithms

The same prebuilt algorithms work for many different data types.

Example: filling an array

#include <algorithm> // needed for std::fill
char c[3];
std::fill (c, c+3, ’!7);

for (int i=0; i<3; ++i)
std::cout << c[i]; // !!!

497

Excursion: Templates

m Templates permit the provision of a type as argument

m The compiler finds the matching type from the call arguments

Example £i11 with templates

template <typename T>
void filll(Tx begin | T+ end, T value) {
for (TX p = begin) p != end; ++p)
*p =\yalue;

}
int al[5];

£ill (a, a+5, 1); // 1 1111

The triangular brackets we already

know from vectors. Vectors are also im-
plemented as templates. st

char c[3];
£ill (c, c+3, *17); // 11

std::fill is also implemented as template!
498

Iteration Tools

m Arrays: indices (random access) or pointers (natural)
m Array algorithms (std: :) use pointers

int al[5];

std::fill (a, a+5, 1); // 11111

m How do you traverse vectors and other containers?

std: :vector<int> v (5, 0); // 0 0 0 0 O
std::fill (7, 7, 1); // 11111

500

Containers and Traversal

m Container: Container (Array, Vector, ...) for elements
m Traversal: Going over all elements of a container

Initialization of all elements (£111)
Find the smallest element (min)

]
|
m Check properties (is_palindrome)

m There are a lot of different containers (sets, lists, .. .)

499

Vectors: too sexy for pointers

m Our £ill with templates does not work for vectors. ..
m ...and std::fill also does not work in the following way:

std: :vector<int> v (5, 0);
std::fill (v, v+5, 1); // Compiler error message !
Vectors are snobby. ..

m they refuse to be converted to pointers,. ..
m ...and cannot be traversed using pointers either.
m They consider this far too primitive.©)

501

Also in memory: Vector £ Array

bool a[8] = {true, true, true, true, true, true, true, true};

true true true true true true true true

- Y

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

std::vector<bool> v (8, true);

boolx-pointer does not fit here because

ov11111111 | 1 Byte it runs byte-wise and not bit-wise

502

Vector lterators

For each vector there are two iterator types defined
B std::vector<int>::const_iterator

m for non-mutating access
m in analogy with const int* for arrays

B std::vector<int>::iterator

m for mutating access
m in analogy with intx* for arrays
m A vector-iterator it is no pointer, but it behaves like a pointer:

m it points to a vector element and can be dereferenced (*it)
m it knows arithmetics and comparisons (++it, it+2, it < end,...)

504

Vector-lterators

Iterator: a “pointer” that fits to the container.

Example: fill a vector using std: :£i11 — this works

#include <vector>
#include <algorithm> // needed for std::fill

std: :vector<int> v(5, 0);
std::fill (v.begin(), v.end(), 1);
for (int i=0; i<5; ++i)

std::cout << v[i] << " "; // 111 1 1

503

Vector-lterators: begin () and end ()

m v.begin() points to the first element of v
m v.end() points past the last element of v

m We can traverse a vector using the iterator. ..

for (std::vector<int>::const_iterator it = v.begin();
it != v.end(); ++it)
std::cout << xit << " ";

m ...orfill a vector.

std::fill (v.begin(), v.end(), 1); J

505

Type names in C++- can become looooooong

m std::vector<int>::const_iterator

m The declaration of a type alias helps with

typedef Typ Name;

Name that can now be used
to access the type

existing type

typedef std::vector<int> int_vec;
typedef int_vec::const_iterator Cvit;

506

Vector Iterators work like Pointers

typedef std::vector<int>::iterator Vit;

// manually set all elements to 1
for (Vit it = v.begin(); it != v.end(); ++it)
*it = 1; \
increment the iterator
// output all elements again, using random access

for (int i=0; i<5; ++i)
std::cout << v[i] << " ";

short term for
*(v.begin()+i)

508

Vector Iterators work like Pointers

typedef std::vector<int>::const_iterator Cvit;
std: :vector<int> v(5, 0); // 0 0 0 0 O

// output all elements of a, using iteration
for (Cvit it = v.begin(); it != v.end(); ++it)
std::cout << *it << " ",

A\ Vector element

pointed to by it

507

Other Containers: Sets

m A setis an unordered collection of elements, where each element
is contained only once.

{1,2,1} ={1,2} = {2,1}]

m C++: std::set<T> for a set with elements of type T

509

Sets: Example Application

m Determine if a given text contains a question mark and output all
pairwise different characters!

510

Letter Salad (2)

Determine if the text contains a question mark and output all characters

Search algorithm, can be called with arbitrary
iterator range

// check sthether text contains a question mark
if (std::find (s.begin(), s.end(), ’7’) != s.end())
std::cout << "Good question!\n";

// output all distinct characters
for (Csit it = s.begin(); it != s.end(); ++it)

std::cout << x*it; Ausgabe:

Good question!

?Wacdeghinrst
512

Letter Salad (1)

Consider a text as a set of characters.

#include<set>
typedef std::set<char>::const_iterator Csit;

std::string text =
"What are the distinct characters in this string?";

std::set<char> s (text.begin(),text.end());

W_J

Set is initialized with String iterator range
[text.begin(), text.end())

511

Sets and Indices?

m Can you traverse a set using random access? No.

std::cout << s[i];

A

error message: no SUbSCI’ipt operator
m Sets are unordered.

for (int i=0; i<s.size(); ++i) J

m There is no “ith element”.
m lterator comparison it !'= s.end() works, butnotit < s.end()!

513

The Concept of Iterators

C-++knows different iterator types

m Each container provides an associated iterator type.
m All iterators can dereference (*it) and traverse (++it)

m Some can do more, e.g. random access (it [k], or, equivalently
*(it + k)), traverse backwards (--it),...

Why Pointers and Iterators?

Would you not prefer the code

for (int i=0; i<n; ++i)
al[i] = 0;

over the following code?

for (int* ptr=a; ptr<a+n; ++ptr)
*ptr = 0;

Maybe, but in order to use the generic std::fill(a, a+n, 0);,
we have to work with pointers.

The Concept of lterators

Every container algorithm is generic, that means:

m The container is passed as an iterator-range

m The algorithm works for all containers that fulfil the requirements
of the algorihm

® std::find only requires * and ++ , for instance
m The implementation details of a container are irrelevant.

Why Pointers and Iterators?

In order to use the standard library, we have to know that:

m a static array a is a the same time a pointer to the first element of a
m a+i is a pointer to the element with index ¢

Using the standard library with different containers: Pointers =
lterators

Why Pointers and lterators?

Example: To search the smallest element of a container in the range
[begin, end) use the function call

std::min_element(begin, end))

m returns an iterator to the smallest element
m To read the smallest element, we need to dereference:

*std::min_element (begin, end) |

15. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. lteration

520

That is Why: Pointers and Iterators

m Even for non-programmers and “dumb” users of the standard
library: expressions of the form
*std: :min_element (begin, end)
cannot be understood without knowing pointers and iterators.

m Behind the scenes of the standard library: working with dynamic
memory based on pointers is indispensible. More about this later
in this course.

Mathematical Recursion

m Many mathematical functions can be naturally defined recursively.

m This means, the function appears in its own definition

1, if n <1

n! =
n-(n—1)!, otherwise

Recursion in C++-: In the same Way!

1, ifn<1
n! =
n-(n—1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{
if (n <= 1)
return 1;
else
return n * fac (n-1);

Recursive Functions: Termination

As with loops we need

m progress towards termination

fac(n):
terminates immediately for n < 1, otherwise the function is called
recusively with < n .

.N is getting smaller for each call”

524

Infinite Recursion

m is as bad as an infinite loop. ..
m ...but even worse: it burns time and memory

void £(Q)

{
£QO; // £ -> £() -> ... stack overflow

3

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;

return n * fac(n-1); // n > 1

3

Initialization of the formal argument: n =4
recursive call with argumentn — 1 ==

The Call Stack

For each function call:

m push value of the call argument onto
the stack

m always work with the top value

m at the end of the call the top value is
removed from the stack

Euclidean Algorithm in C++

a,

ged(a, b) = {

n=1 11 =1]
fac(1l) 1
n=2 2.1 =2]
fac(2) 2
n=3 3-21=6|
fac(3) 6
n=4 4-31=24]
fac(4) 24

std:cout << fac(4)

if b=0

ged(b, a mod b), otherwise

unsigned int gcd

(unsigned int a, unsigned int b)

Termination: a mod b < b, thus b
gets smaller in each recursive call.

{
if (b == 0)
return a;
else

return gcd (b, a % b);

Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b

m is based on the following mathematical recursion (proof in the
lecture notes):

a, ifb=0
ged (b, a mod b), otherwise

ged(a, b) = {

Fibonacci Numbers

0, ifn=20
Fo=1{1 =1
\}Qk4_+-P%_Q, ifn>1

0,1,1,2,3,5,8,13,21,34,55 89. ..

Fibonacci Numbers in C+-+

fib(50) takes “forever” because it computes
Fys two times, Fy; 3 times, Fis 5 times, F5 8 times, Fy, 13 times,
Fy3 21 times ... F} ca. 107 times (!)

unsigned int fib (unsigned int n)

{ Correctness
if (n == 0) return O; and
if (n == 1) return 1; termination

return fib (n-1) + fib (n-2); // n > 1 are clear.
}

531

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return O0;
if (n <= 2) return 1;

unsigned int a = 1; // F_1
unsigned int b = 1; // F_2 very fast, also for £ib(50)
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2

a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i
} (Fi_g, Fy1) — (Fii1, Fy)

return b;
} %

a b

533

Fast Fibonacci Numbers

Idea:

m Compute each Fibonacci number only once, in the order
Fo, Fi, Fy, ..., F,)

m Memorize the most recent two numbers (variables a and b)!

m Compute the next number as a sum of a and b!

Recursion and lteration

Recursion can always be simulated by

m lteration (loops)
m explicit “call stack” (e.g. array)

Often recursive formulations are simpler, but sometimes also less

efficient.

534

