7. Floating-point Numbers i

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines; Harmonic
Numbers

Floating-point number Systems

F (3, p, emin, €max) CcONtains the numbers
p—1
+ Z diﬁ_l : ﬁea
=0

e € {emin7 s 7€max}~

d; €40,...,6 -1},

represented in base (:

+ do.dl ce dp—l X 587

257

Floating-point Number Systems
A Floating-point number system is defined by the four natural
numbers:

m [$ > 2, the base,
m p > 1, the precision (number of places),
B e, the smallest possible exponent,
B c.., the largest possible exponent.
Notation:
F(Ba P; €min, emax>

256

Floating-point Number Systems

Example
m =10

Representations of the decimal number 0.1

1.0-107Y, 0.1-10° 0.01-10%,

Normalized representation

Normalized number:

ﬂ:do,dl...dp_l X 56, do 7é 0

The normalized representation is unique and therefore prefered.

The number 0 (and all numbers smaller than g°»i») have no
normalized representation (we will deal with this later)!

Normalized Representation

Example F*(2,3, — 2,2) (only positive numbers)
do.d1d2‘€:—2 e=—1 e=0 e=1 e=2
1.004 0.25 0.5 1 2 4
1.014 0.3125 0.625 1.25 2.5 53
1.104 0.375 0.75 1.5 3 6
1.114 0.4375 0.875 1.75 3.5 7
0 8
it t t t t t t t t
T
1.00-272 =1 111822 =7

261

Set of Normalized Numbers

F*<67 P, €min, emax)

Binary and Decimal Systems

m Internally the computer computes with g = 2
(binary system)

m Literals and inputs have g = 10
(decimal system)

m Inputs have to be converted!

260

262

Conversion Decimal — Binary

Assume, 0 < z < 2.
Binary representation:

0
r = Z bl2z = bo.bflbfgbfg e

1=—00

—1 0
= by + Z bi2! = by + Z by 2071

0
_bo+(]

-~

Binary representation of 1.1

1=—00

$/:b_1.b_2b_3b_4

x by ©—0b 2(x—b)
1.1 b=1 01 0.2
02 b_;=0 0.2 0.4
04 b_,=0 0.4 0.8
08 bs=0 08 1.6
1.6 b_y,=1 0.6 1.2

b_s =1 0.2 0.4

= 1.00011, periodic, not finite

Conversion Decimal — Binary

Assume 0 < x < 2.
m Hence: 2/ = bfl.bfgbfgbfg‘ .= 2- (Q? — b())
m Step 1 (for x): Compute by:

b 1, ifx>1
"7 1 0, otherwise

m Step 2 (for z): Compute b_1,b_o, .. .:
Gotostep 1 (for 2’ =2 (z — by))

266

Binary Number Representations of 1.1 and 0.1

m are not finite, hence there are errors when converting into a (finite)
binary floating-point system.

m 1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly inaccurate
approximation of these numbers.

m Indiff.cpp: 1.1 —1.0# 0.1

268

Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178. ..
1.1f = 1.1000000238418...

Computing with Floating-point Numbers

Example (6 = 2, p = 4):

1.111-272
+ 1.011-271

— 1.001 - 2V

1. adjust exponents by denormalizing one number 2. binary addition of the
significands 3. renormalize 4. round to p significant places, if necessary

269

The Excel-2007-Bug
std::cout << 850 x 77.1; // 65535
(x| MultBug - Microsoft Excel (Trial) - B8 X
‘ £ | =850*77.1 ¥
A B c D E F K
1 1ooouo_| -
2
4 4 » 9| Sheetl | Sheet2 . Sheet3 il m ¥
| Ready [EEEET e J (H) s

m 77.1 does not have a finite binary representation, we obtain
65534.9999999999927 . . .

m For this and exactly 11 other “rare” numbers the output (and only

the output) was wrong.

The IEEE Standard 754

m defines floating-point number systems and their rounding behavior

m is used nearly everywhere
m Single precision (float) numbers:

F*(2,24, 126, 127)

plus 0, oo, ...

m Double precision (double) numbers:

F*(2,53,—1022,1023)

plus 0, oo, ...

m All arithmetic operations round the exact result to the next
representable number

nont.org/Math/Papers/2007/Excel2007/Excel2007Bug.pdf

w.l

whttp://www

The IEEE Standard 754

Why
F*(2,24, — 126,127)?

m 1 sign bit
m 23 bit for the significand (leading bit is 1 and is not stored)

m 8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0, co,...)

= 32 bit in total.

273

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i !'=1.0; i += 0.1)
std::cout << i << "\n";

Floating-point Rules

endless loop because i never becomes exactly 1

The IEEE Standard 754

Why
F*(2,53,—1022,1023)7

m 1 sign bit
m 52 bit for the significand (leading bit is 1 and is not stored)

m 11 bit for the exponent (2046 possible exponents, 2 special
values: 0, co,...)

= 64 bit in total.

Floating-point Rules Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 - 2°
+1.000 - 2°
= 1.00001 - 2°
“=”1.000 - 2° (Rounding on 4 places)

Addition of 1 does not have any effect!

276

Harmonic Numbers Rule 2

H — En 1 ~ | n

m This sum can be computed in forward or backward direction,
which is mathematically clearly equivalent

Harmonic Numbers Rule 2

Results:

|
Compute H_n for n =7 10000000
Forward sum = 15.4037
Backward sum = 16.686

|
Compute H_n for n =7 100000000
Forward sum = 15.4037
Backward sum = 18.8079

Harmonic Numbers Rule 2

// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
// Input
std::cout << "Compute H_ n for n =? ";
unsigned int n;
std::cin >> n;

// Forward sum

float fs = 0;

for (unsigned int i = 1; i <= n; ++i)
fs += 1.0f / i;

// Backward sum

float bs = 0;

for (unsigned int i = n; i >=1; —-i)
bs += 1.0f / i;

// Output
std::cout << "Forward sum = " << fs << "\n"
<< "Backward sum = " << bs << "\n";

return 0;

}
278
]

Harmonic Numbers Rule 2

Observation:

m The forward sum stops growing at some point and is “really”
wrong.

m The backward sum approximates H,, well.
Explanation:

mForl1+1/241/3+---, later terms are too small to actually
contribute

m Problem similar to 2° + 1 “=” 2°

Floating-point Guidelines Rule 3

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

8. Functions |

Defining and Calling Functions, Evaluation of Function Calls, the
Type void, Pre- and Post-Conditions

Literature

David Goldberg: What Every
Computer Scientist Should Know
About Floating-Point Arithmetic
(1991)

| GUSBERG

© 1996 Randy Glasbergen.

Randy Glasbergen, 1996
281 282

Functions

m encapsulate functionality that is frequently used (e.g. computing
powers) and make it easily accessible

m structure a program: partitioning into small sub-tasks, each of
which is implemented as a function

= Procedural programming; procedure: a different word for function.

283 284

Example: Computing Powers

double a;

int n;

std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;

if (m<0){// amn=(1/a)"(—n)
a=1.0/a;
n = —n;

}

for (int 1 = 0; i < n; ++i)
result x= a;

f "Funktion pow"

std::cout << a << """ K< n K" =

Function to Compute Powers

// Prog: callpow.cpp

" << resultpow(a,n) << ".\n";

285

// Define and call a function for computing powers.

#include <iostream>

double pow(double b, int e){...}

int main()

{
std::cout << pow(2.0, —2) << "\n

std::cout << pow(1.5, 2) << "\n";

std::cout << pow(—2.0, 9) << "\n"

return O;

}

"; // outputs 0.25
// outputs 2.25
; // outputs —512

287

Function to Compute Powers

// PRE: e >=0 || b != 0.0
// POST: return value is b~e
double pow(double b, int e)
{
double result = 1.0;
if (e < 0) { // b e = (1/b)"(—e)
b =1.0/b;
e = —e;
}
for (int i = 0; i < e; ++i)
result %= b;
return result;
}

Function Definitions

return type argument types

P ——

T fname (T, pname;, To pname,, ..., Ty pnamey)
block

body

function name formal arguments

286

288

Defining Functions

m may not occur locally, i.e. not in blocks, not in other functions and
not within control statements
m can be written consecutively without separator in a program

double pow (double b, int e)
{

}

int main ()

{
1

289

Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number

// computed with backward sum
float Harmonic(int n)
{

float res = 0;

for (unsigned int i = n; i >= 1; ——1i)
res += 1.0f / i;

return res;

291

Example: Xor

// post: returns 1 XOR r
bool Xor(bool 1, bool r)

{

return 1 && 'r ||
}
Example: min

// POST: returns the minimum of a and b
int min(int a, int b)

{

if (a<b)
return a;
else
return b;

11 && r;

290

292

Function Calls

fname (expression,, expression,, ..., expressiony)

m All call arguments must be convertible to the respective formal
argument types.

m The function call is an expression of the return type of the
function. Value and effect as given in the postcondition of the
function fname.

Example: pow(a,n): Expression of type double |

293

Evaluation of a Function Call

m Evaluation of the call arguments
m Initialization of the formal arguments with the resulting values

m Execution of the function body: formal arguments behave laike
local variables

m Execution ends with
return expression;

Return value yiels the value of the function call. J

Call of pow

Function Calls

For the types we know up to this point it holds that:

m Call arguments are R-values
m The function call is an R-value.

fname: R-value x R-value x --- x R-value — R-value

294

Example: Evaluation Function Call

double pow(double b, int e){
assert (e >= 0 || b !'= 0);

double result = 1.0;

if (e<0) {
// v"e = (1/b)"(—e)
b =1.0/b;
e = —e;

}

for (int i = 0; i < e ; ++i)
result x = b;
return result;

(\
o

pow (2.0, —2)

296

Formal arguments

m Declarative region: function definition
m are invisible outside the function definition
m are allocated for each call of the function (automatic storage

duration)

m modifications of their value do not have an effect to the values of
the call arguments (call arguments are R-values)

The type void

m Fundamental type with empty value range
m Usage as a return type for functions that do only provide an effect

// POST: "(i, j)" has been written to
// standard output
void print_pair (int i, int j)
{
std::cout << "(" << i << ", " << j << ")\n';
}

int main()

{
print_pair(3,4); // outputs (3, 4)
return O;

}

297

299

Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {
b 1.0/b;
e = —e;

}

for (int i = 0; i < e ; ++i)
r *x = b;

return r;

Not the formal arguments b

int main(){
double b = 2.0;
— int e = —2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // —2
return O;

+
and e of pow but the variables

defined here locally in the body of main

void-Functions

m do not require return.

298

m execution ends when the end of the function body is reached or if

B return; is reached
or

B return expression; is reached.

Expression with type void (e.g. a call of
a function with return type void

300

Pre- and Postconditions

m characterize (as complete as possible) what a function does

m document the function for users and programmers (we or other
people)

m make programs more readable: we do not have to understand
how the function works

m are ignored by the compiler

m Pre and postconditions render statements about the correctness
of a program possible — provided they are correct.

301

Postconditions

postcondition:

m What is guaranteed to hold after the function call?
m Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b~e

303

Preconditions

precondition:
m what is required to hold when the function is called?

m defines the domain of the function

0°¢ is undefined for e < 0
// PRE: e > =0 || b !'= 0.0

Pre- and Postconditions

m should be correct:

m /fthe precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b # 0

304

Pre- and Postconditions

m We do not make a statement about what happens if the
precondition does not hold.

m C---standard-slang: ,Undefined behavior”.

Function pow: division by 0 J

305

White Lies...

// PRE: e > =0 || b !'= 0.0
// POST: return value is b~e

is formally incorrect:

m Overflow if e or b are too large

m b° potentially not representable as a double (holes in the value range!)

307

Pre- and Postconditions

m pre-condition should be as weak as possible (largest possible
domain)

m post-condition should be as strong as possible (most detailed
information)

306

White Lies are Allowed

// PRE: e > =0 || b !'= 0.0
// POST: return value is b~e

The exact pre- and postconditions are platform-dependent and often complicated.
We abstract away and provide the mathematical conditions. = compromise
between formal correctness and lax practice.

308

Checking Preconditions. ..

m Preconditions are only comments.
m How can we ensure that they hold when the function is called?

309

Postconditions with Asserts

m The result of “complex” computations is often easy to check.
m Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p*p/4 — q is nonnegative
// POST: returns larger root of the polynomial x”2 + p x + q
double root(double p, double q)
{
assert(p*+p/4 >= q); // precondition
double x1 = — p/2 + sqrt(pxp/4 — q);
assert (equals (x1xx1+p*x1+q,0)); // postcondition
return x1;

311

... With assertions

#include <cassert>

// PRE: e >=0 || b !'= 0.0

// POST: return value is b~e

double pow(double b, int e) {
assert (e >=0 || b != 0);
double result = 1.0;

Exceptions

m Assertions are a rough tool; if an assertions fails, the program is
halted in a unrecoverable way.

m C++provides more elegant means (exceptions) in order to deal
with such failures depending on the situation and potentially

without halting the program

m Failsafe programs should only halt in emergency situations and
therefore should work with exceptions. For this course, however,

this goes too far.

310

312

