Visibility

Declaration in a block is not “visible” outside of the block.
int main ()

{
5. Control Statements i |t
| 3 int i = 2;
. | | H L
Visibility, Local Variables, While Statement, Do Statement, Jump g std::cout << i; // Error: undeclared name
Statements return O;
,Blickrichtung”
Control Statement defines Block Scope of a Declaration
Potential scope: from declaration until end of the part that contains the declaration.
In this respect, statements behave like blocks. in the block in function body
int main() { int main() {
{ int i = 2; int i = 2;
<|for (unsigned int i = 0; i < 10; ++i) % 2 ...
3 s += i; } g return O;
std::cout << i; // Error: undeclared name T
return O;
} in control statement

for (int i = 0: i < 10; ++i) {s +=di: ... }

scope

195 196

Scope of a Declaration

Real scope = potential scope minus potential scopes of declarations of symbols

with the same name

in_main

scope of i

int main()

{

int i = 2;

for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << i;

// outputs 2

std::cout << i;

return O;

1

i in for

Local Variables

int main()

{
int i = 5;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << ——k; // outputs 1, 1, 1, 1, 1
}
}

Local variables (declaration in a block) have automatic storage
duration.

197

Automatic Storage Duration

Local Variables (declaration in block)
m are (re-)created each time their declaration is reached

m memory address is assigned (allocation)
m potential initialization is executed

m are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

while Statement

while (condition)
statement

m statement. arbitrary statement, body of the while statement.
m condition: convertible to bool.

198

200

while Statement

while (condition)
Statement

is equivalent to

for (; condition ;)
Statement

while-statement: why?

m In a for-statement, the expression often provides the progress
(“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += 1i;

m If the progress is not as simple, while can be more readable.

while-Statement: Semantics

while (condition)
statement

m condition is evaluated
m true: iteration starts
statement is executed

m false: while-statement ends.

Example: The Collatz-Sequence

Bnygy=mn

n;_— .
il . ifn;_, even
mn = 2 1 >1

3n,_1+1 , ifn;_; odd

n=5: 5,16, 8,4,2, 1,4, 2,1, ... (repetition at 1)

204

The Collatz Sequence in C++

// Program: collatz.cpp
// Compute the Collatz sequence of a number n.

#include <iostream>

int main()
{
// Input
std::cout << "Compute the Collatz sequence for n =? ";
unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {
if (n $ 2 =
n=n/2
else
n=3xn+1;
std::cout << n << " ";
}
std::cout << "\n";
return O;

1 205

The Collatz-Sequence

Does 1 occur for each n?

m It is conjectured, but nobody can prove it!

m If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some
n.

The Collatz Sequence in C++

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

do Statement

do
statement
while (expression);

m statement. arbitrary statement, body of the do statement.
m expression: convertible to bool.

do Statement

do
statement
while (expression);

is equivalent to

Statement
while (expression)
statement

do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {
std::cout << '"next number =7 ";
std::cin >> a;
s += a;
std::cout << "sum = " << 8 << "\n'";
} while (a !'= 0);

209

do-Statement: Semantics

do
statement
while (expression);

m lteration starts

m statementis executed.
m expression is evaluated

B true: iteration begins
m false: do-statement ends.

Conclusion

m Selection (conditional branches)
m if and if-else-statement
m lteration (conditional jumps)

m for-statement
m while-statement
m do-statement

m Blocks and scope of declarations

210

Jump Statements

H break,;

B continue;

Calculator with break

Sum up integers (if 0 then stop)

int a;
int s = 0;
do {
std::cout << '"next number =7 ";
std::cin >> a;
// irrelevant in last iteration:
s += a;
std::cout << "sum = " << 8 << "\n'";
} while (a != 0);

213

215

break-Statement

break;

m Immediately leave the enclosing iteration statement.
m useful in order to be able to break a loop “in the middle”

6and indispensible for switch-statements.
214

Calculator with break

Suppress irrelevant addition of O:

int a;
int s = 0;
do {
std::cout << '"next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << 8 << "\n";
} while (a != 0)

216

Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << '"next number =7 ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle

s += a;

std::cout << "sum = " << s << "\n";
}
continue-Statement

continue;

m Jump over the rest of the body of the enclosing iteration statement
m lteration statement is not left.

219

Calculator with break

Version without break evaluates a twice and requires an additional
block.

int a = 1;
int s = 0;
for (5a '= 0;) {
std::cout << "next number =7 ";
std::cin >> a;
if (a '=0) {
s += a;
std::cout << "sum = " << s << "\n'";

218

Calculator with continue

Ignore negative input:

for (;;)

{
std::cout << "next number =7 ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << 8 << "\n";

220

Equivalence of lteration Statements

We have seen:

m while and do can be simulated with for

|t even hOldS: Not so simple if a continue is used!

m The three iteration statements provide the same “expressiveness”

(lecture notes)

Control Flow if else

condition

statement1 false

statement2

if (condition)
statement1

else
statement2

221

223

Control Flow

Order of the (repeated) execution of statements

m generally from top to bottom. ..
m ...except in selection and iteration statements

condition

true

statement false if (condition)
Statement

222

Control Flow for

for (init statement condition ; expression)
Statement
init-statement

condition

statement
false

expression

224

Control Flow break in for

init-statement

condition

statement
break

expression

Control Flow while

condition
statement false

Control Flow continue in for
init-statement
condition
statement
ontinue
expression
Control Flow do while

statement true
condition

false

226

228

227

229

Control Flow: the Good old Times?

Beobachtung

Actually, we only need if and jumps to

arbitrary places in the program (goto). if
Models: goto

|

m Assembler (“higher” machine language)

m BASIC, the first prorgamming language

for the general public (1964)

230

Spaghetti-Code with goto

Output of all prime numbers with BASIC

true

o ama

232

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

The “right” lteration Statement

Goals: readability, conciseness, in particular

m few statements

m few lines of code

m simple control flow
m simple expressions

Often not all goals can be achieved simultaneously.

233

Odd Numbers in {0, ..., 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{
if (1 % 2 ==0)
continue;
std::cout << i << "\n";

Odd Numbers in {0, ..., 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement!

Odd Numbers in {0, ..., 100}

Less statements, /ess lines:

for (unsigned int i = 0; i < 100; ++i)
{
if (1% 2 !=0)
std::cout << i << "\n'";

Jump Statements

m implement unconditional jumps.

m are useful, such as while and do but not indispensible
m should be used with care: only where the control flow is simplified

instead of making it more complicated

237

The switch-Statement

int Note;

switch (Note) {

switch (condition) case 6:
Statement std::cout << "super!";
break;
m condition: Expression, convertible to case b:
integral type std::cout << "cool!";
.) break;
m statement: arbitrary statemet, in case 4:
which case and default—lab_les are std::cout << "ok.";
permitted, break has a special break;
meaning. default:

std::cout << "hmm...";

238

Control Flow switch

switch
case
break
case
statement
break
default

240

Semantics of the switch-statement

switch (condition)
statement

B condition is evaluated.

m If statement contains a case-label with (constant) value of
condition, then jump there

m otherwise jump to the default-lable, if available. If not, jump over
statement.

B The break statement ends the switch-statement.

Control Flow switch in general

If break is missing, continue with the next case.

7- 277 switch (Note) {
e case 6:
. case 5:
6' 0k case 4:
. std::cout << "ok.";
5: ok. bronk;
case 1:
4. Ok std::cout << "o";
. I case 2:
3- OOpS std::cout << "o";
case 3:
2- OOOpS' std::cout << "oops!";
break;
1: OOOOpS! default:
std::cout << "777";
0: 272 }

239

241

6. Floating-point Numbers |

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

242

Fixed-point numbers
m fixed number of integer places (e.g. 7)

m fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082« third place truncated

Disadvantages

m Value range is getting even smaller than for integers.
m Representability depends on the position of the decimal point.

244

“Proper Calculation”

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{
// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

243

Floating-point numbers

m fixed number of significant places (e.g. 10)
m plus position of the decimal point

82.4 =824 -1071

0.0824 = 824 - 104
Mantissa x 10Exponent

m Number is

245

Types float and double

m are the fundamental C++ types for floating point numbers
m approximate the field of real numbers (R, +, x) from mathematics

m have a big value range, sufficient for many applications (double
provides more places than float)

m are fast on many computers

246

Literals

are different from integers by providing

m decimal point 1.23e-7f
1.0 : type double, value 1 /\J K K/\ J
1.27f : type £loat, value 1.27 niegerpart ﬁ Sxponemt

m and / or exponent. fractional part
1e3 : type double, value 1000)
1.23e-7 : type double, value 1.23 - 10~ J

1.23e-7f : type float, value 1.23 - 10~7 |
248

Arithmetic Operators

Like with int, but . ..

m Division operator / models a “proper” division (real-valued, not
integer)
m No modulo operators such as % or %=

Computing with f1oat: Example

Approximating the Euler-Number

o

Zl ~ 2.71828 ...

1=0

using the first 10 terms.

247

249

Computing with f1oat: Euler Number

// Program: euler.cpp
// Approximate the Euler number e.

#include <iostream>

int main ()

{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f; // i-th approximation of e

std::cout << "Approximating the Euler number...\n"

// steps 1,..., n
for (unsigned int i = 1; i < 10; ++i) {
t /=1i; // 1/(i-1)! -> 1/i}
e += t;
std::cout << "Value after term " << i << "

}

return O;

" << e << "\n";

Mixed Expressions, Conversion

m Floating point numbers are more general than integers.
m In mixed expressions integers are converted to floating point

numbers.

9 * celsius / 5 + 32

Computing with f1oat: Euler Number

Value after term 1: 2

Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

Value range

Integer Types:

m Over- and Underflow relatively frequent, but ...

m the value range is contiguous (no “holes”): Z is “discrete”.
Floating point types:

m Overflow and Underflow seldom, but ...

m there are holes: R is “continuous”.

Holes in the value range

float nil;
std::cout << "First number =7 "; input 1.1
std::cin >> nil;

float n2;
std::cout << "Second number =7 "; input 1.0

std::cin >> n2;

float d;
std::cout << "Their difference =7 "; input 0.1
std::cin >> d;

std::cout << "Computed difference — input difference

<< nl — n2 — d << "\n";
output 2.23517e-8

What is going on here?

254

