3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

143

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

Oor 1

m O corresponds to “wrong”
m 7 corresponds to “true”

145

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even";
else
std::cout << "odd";

Behavior depends on the value of a Boolean expression

The Type bool in C++

m represents logical values
m Literals false and true
m Domain {false, true}

bool b = true; // Variable with value true

144

146

Relational Operators

a < b (smaller than)
a >= b (greater than)
a ==Db (equals)

a !=b (unequal)

number type x number type — bool

R-value x R-value — R-value

Boolean Functions in Mathematics

m Boolean function

f:{0,1}* = {0,1}

m (corresponds to “false”.
m 1 corresponds to “true”.

Table of Relational Operators

H Symbol ‘ Arity ‘ Precedence | Associativity

smaller < 2 11 left
greater > 2 11 left
smaller equal <= 2 11 left
greater equal >= 2 11 left
equal == 2 10 left
unequal 1= 2 10 left
number type x number type — bool
R-value x R-value — R-value
AND(z, y) T
m “logical and” T AND(z
0 0
f:{0,1} = {0,1}
01 0
[| 110 0
= 101 1

150

Logical Operator && OR(z,y)

m “logical or” T OR(z,v)
a && b (logical and) 00102 s £0.1 0]0 0
f:{0.13 = {0.1) T
bool X bool — bool u 110 1
R-value x R-value — R-value " 111 1
int n = —1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true
Logical Operator | | NOT(x)
m “logical not”
NOT
all b (logical or) f:{0,1} = {0,1} z 1(@
| 1 0

bool X bool — bool

R-value x R-value — R-value

int n = 1;
int p = 0;
bool b = (n<0) || (0<p); // b= false

153

Logical Operator ! Precedences

|
b (logical not) 'b E& a
(!'b) && a
bool — bool a &k b || c & d
R-value — R-value 11

(a & b) || (c && d)

int n = 1; allb & c Il d

_ . _ T
bool b = I(n < 0); // b = true all (b & c) || d

Table of Logical Operators Precedences

The unary logical operator !
provides a stronger binding than
binary arithmetic operators. These

H Symbol

Arity | Precedence | Associativity
bind stronger than
Logical and (AND) && 2 6 left
Logical or (OR) |) . o relational operators,
Logical not (NOT) \] 16 right and these bind stronger than

binary logical operators.

7+x<y&&y!=3*xz || !Db
7+x<y&&y!'!'=3xz]|| (Ib)

Completeness

m AND, OR and NOT are the boolean
functions available in C+ .

m Any other binary boolean function can
be generated from them.

Completenss Proof

m |dentify binary boolean functions with their characteristic vector.

z |y | XOR(z,y)
00 0
01 1
10 1
1)1 0

—
—_

- O |0 |8
o
o

characteristic vector: 0110

XOR = fOllO

Completeness: XOR(z, y)

XOR(z,y) = AND(OR(z,y), NOT(AND(z,y))).

rdy=(rVy)A

Il y) & '(x & y)

Completenss Proof

—(z Ay).

rdy

m Step 1: generate the fundamental functions fooo1, foo10, fo100, f1000

fooro = AND(z, NOT(y))
NOT(x))

fooor = AND
foroo = AND
fi000 = NOT

(2,
(
(y
(O

v)

R(z,

v)

160

Completenss Proof

m Step 2: generate all functions by applying logical or

Ji101 = OR(f1000, OR(fo100, fooo1))

m Step 3: generate fyooo

foooo = 0.

DeMorgan Rules

m !(a && b)
m!(all b)

(ta || !b)
(la && 'b)

! (rich and beautiful) == (poor or ugly) |

bool vs int: Conversion

bool

int

®m bool can be used whenever int is expected | frue

— and vice versa.

m Many existing programs use int instead of

bool

This is bad style originating from the

language C'.

false

1
0

int

bool

£0
0

N
—
—
—
RN

%

true

false

bool b = 3; // b=true

Application: either ... or (XOR)

x Il y & ' (x && y)

Il y & (Ix || ty)

1 (1x && 'y) && '(x && y)

1(1x && 'y || x && y)

X ory, and not both

x ory, and one of them not

not none and not both

not: both or none

164

166

Shortcut Evaluation

m Logical operators && and | | evaluate the left operand first.
m If the result is then known, the right operand will not be evaluated.

x!1=0&& z/ x>y J

= No division by 0

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

> It's not a bug, it's a feature '« |
2. Check at many places in the code if the program is still on track!

3. Question the (seemingly) obvious, there could be a typo in the
code.

Sources of Errors

m Errors that the compiler can find:
syntactical and some semantical errors

m Errors that the compiler cannot find:
runtime errors (always semantical)

Against Runtime Errors: Assertions

assert (expr)

m halts the program if the boolean expression expr is false
m requires #include <cassert>
m can be switched off

70

DeMorgan’s Rules

Question the obvious Question the seemingly obvious!

// Prog: assertion.cpp
// use assertions to check De Morgan’s laws

#include<cassert>

int main()

{
bool x; // whatever x and y actually are,
bool y; // De Morgan’s laws will hold:
assert (!(x & y) == (!'x || 'y));
assert (!(x || y) == (!'x && 'y));
return 0;

Div-Mod Identity a/b

Check if the program is on track. ..
std::cout << "Dividend a =7 ";
int a;
std::cin >> a;

std::cout << "Divisor b =7 ";
int b;

std::cin >> b;

// check input

TV AN G E BN BPR Precondition for the ongoing computation

171

* b + a¥%b == a

Input arguments for calcula-
tion

173

Switch off Assertions

// Prog: assertion2.cpp

// use assertions to check De Morgan’s laws. To tell the
// compiler to ignore them, #define NDEBUG ("no debugging")
// at the beginning of the program, before the #includes

#define NDEBUG
#include<cassert>

int main()

{
bool x; // whatever x and y actually are,
bool y; // De Morgan’s laws will hold:

assert (!(x && y) == (!x || 'y)); // ignored by NDEBUG
assert (!(x || y) == (!'x && !'y)); // ignored by NDEBUG
return 0;

Div-Mod identity a/b x b + alb == a

...and question the obvious!
// check input

=RV AN G E BN BRR Precondition for the ongoing computation

// compute result
int div = a / b;
int mod = a % b;

// check result
assert (div * b + mod == a) ; ——EVAVIeIRls[Nii1\]

172

174

Control Flow

m up to now linear (from top to bottom)
m For interesting programs we need “branches” and “jumps”

4. Control Structures | Computation of 1 +2 + ... + 1. /\

Eingabe n . 2 [si=s+i
i=1;s:=0 =i+ 1
Selection Statements, lteration Statements, Termination, Blocks ! ° L=
nein
Ausgabe s
Selection Statements i f-Statement

if (condition)

statement
implement branches
m if statement .
int a;

if (a % 2 == 0)

std: :cout << "even";

If condition is true then state-
ment is executed

m statement. arbitrary
statement (body of the
if-Statement)

m condition: convertible to
bool

if-else-statement

if (condition) If condition is true then state-
statement1 ment1 is executed, otherwise

else statement?2 is executed.
statement2

m condition: convertible to
int a; bool.

§td= =C°in >i_ai m statement1: body of the
if (a % 2 == 0) if-branch

td::cout << " "
std::cou even m statement2: body of the

else
std::cout << "odd"; else-branch

lteration Statements

implement “loops”

m for-statement
B while-statement
B do-statement

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even'"; ¢

else

std: :cout << "odd";

Indentation

N

Compute 1 +2+ ...+ n

Indentation

// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

#include <iostream>

int main()

{

// input

std::cout << "Compute the sum 1l+...+n for n =? "

unsigned int n;
std::cin >> n;

// computation of sum_{i=1}“n
unsigned int s = 0;

for (unsigned int i =1; i <=

// output

std::cout << "1+4...4" << n << "

return O;

i

n; ++i) s += i;

=" << s <<

" \n";

180

182

f or-Statement Example

for (unsigned int i=1; i <= n; ++i)
s += i,

Assumptions: n == 2,8 ==
1 s
i==1 wahr s == 1
i==2 wahr s == 3
i== falsch

s == 3

f or-Statement: semantics

for (init statement condition ; expression)
Statement

m init-statement is executed
m condition is evaluated

m true: lteration starts
statement is executed
expression is executed

m false: for-statement is ended.

f or-Statement: Syntax

for (init statement condition ; expression)
Statement

m /nit-statement. expression statement, declaration statement, null
statement

m condition: convertible to bool
B expression: any expression
m statement : any statement (body of the for-statement)

GauB as a Child (1777 - 1855)

m Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100 ! |

m Gauf finished after one minute.

The Solution of GauB

m The requested number is

I1+2+3+---4+98+ 99+ 100.

m being half of

I+ 2+ -+ 99 + 100
+ 100 + 99 + .-~ + 2 + 1
= 101 + 101 + --- + 101 + 101
m Answer: 100 - 101/2 = 5050
Endless Loops
m Endless loops are easy to generate:
for C ; ;) ; J

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.
m ... but can in general not be automatically detected.

for (e; v; e) r; J

189

f or-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += 1i;
Hier und meistens:

m expression changes its value that appears in condition .

m After a finite number of iterations condition becomes false:
Termination

188

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C+-+-Program P and each input [if the program P terminates with
the input 1.

This means that the correctness of programs can in general not be
automatically checked.®

5Alan Turing, 1936. Theoretical quesitons of this kind were the main motivation for Alan Turing to construct a computing

machine.
190

Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n—1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

m Observation 1:
After the for-statement it holds that d < n.
m Observation 2:
n is a prime number if and only if finally d = n.

191

Blocks

m Blocks group a number of statements to a new statement
{statementl statement2 ... statementN}

m Example: body of the main function

int main() {

}

m Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i,
std::cout << "partial sum is " << s << "\n";

}

192

