20. Conclusion

1. Introduction

@6

Euclidean algorithm

algorithm, Turing machine, programming languages, compilation, syntax
and semantics

values and effects, fundamental types, literals, variables

include directive #inciude <iostream>

main function int mainO{...}

comments, layout // Kommentar

types, variables, L-value a , R-value a+

expression statement v-b+b; , declaration statement int a3, return
statement return o;

723

Purpose and Format

Name the most important key words to each chapter. Checklist:
“does every notion make some sense for me?”
@ motivating example for each chapter
© concepts that do not depend from the implementation (language)
O language (C++): all that depends on the chosen language
® examples from the lectures

2. Integers

@)
©

Celsius to Fahrenheit

associativity and precedence, arity
expression trees, evaluation order

arithmetic operators

binary representation, hexadecimal numbers
signed numbers, twos complement

arithmetic operators 9 * ceisius / 5 + 32
increment / decrement expr++
arithmetic assignment expr1 += expr2
conversion int <+ unsigned int

®
]

Celsius to Fahrenheit, equivalent resistance

724

3. Booleans

Boolean functions, completeness
DeMorgan rules

the type bool

logical operators a &z 'b

relational operators x < y

precedences 7 + x <yt y 1= 3 * z

short circuit evaluation x 1=o &z z / x> y

the assert-statement, #include <cassert>

Div-Mod identity.

725

6./7. Floating Point Numbers

®
©

correct computation: Celsius / Fahrenheit

fixpoint vs. floating point

holes in the value range

compute using floating point numbers

floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

types float, double
floating point literals 1.23e-7¢

Celsius/Fahrenheit, Euler, Harmonic Numbers

4./5. Control Statements

)
©

linear control flow vs. interesting programs

selection statements, iteration statements
(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

if statements it @ % 2 == 0) {..}

for statements for (unsigned int i = 1; i <= n; ++i) ...
while and do-statements while > 1) {...}
blocks and branches if (a < 0) continue;

sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator

8./9. Functions

@)
©

Computation of Powers

Encapsulation of Functionality

functions, formal arguments, arguments

scope, forward declarations

procedural programming, modularization, separate compilation
Stepwise Refinement

declaration and definition of functions doubie pow(double b, int e){ ... }
function call pow (2.0, -2)
the type void

powers, perfect numbers, minimum, calendar

728

10. Reference Types

© 6

Swap

value- / reference- semantics, call by value, call by reference
lifetime of objects / temporary objects
constants

reference type inte a
call by reference, return by reference intg increment (intg i)
const guideline, const references, reference guideline

swap, increment

729

13./14. Pointers, Iterators and Containers

®
©

arrays as function arguments

pointers, chances and dangers of indirection
random access vs. iteration, pointer arithmetics
containers and iterators

pointer int+ x;, conversion array — pointer, null-pointer
address and derference operator int *ip = &i; int j = *ip;
pointer and const const int *a;

algorithms and iterators std::£i11 (a, a+5, 1);

type definitions typedef std::set<char>::const_iterator Sit;

filling an array, character salad

731

11./12. Arrays

@)
©

Iterate over data: array of erathosthenes

arrays, memory layout, random access
(missing) bound checks

vectors

characters: ASCII, UTFS8, texts, strings

array types int als] = {4,3,5,2,1};
characters and texts, the type char cnar ¢ = >a>;, Konversion nach int
multi-dimensional arrays, vectors of vectors

sieve of Erathosthenes, Caesar-code, shortest paths, Lindenmayer
systems

15./16. Recursion

)
©

recursive mathe. functions

recursion

call stack, memory of recursion
correctness, termination,

recursion vs. iteration

EBNF, formal grammars, streams, parsing
evaluation, associativity

factorial, GCD, Fibonacci, mountains

732

17. Structs and Classes |

© 6

build your own rational number

heterogeneous data types
function and operator overloading
encapsulation of data

struct definition struct rational {int n; int d;};

member acCess result.n = a.n * b.d + a.d * b.n;

initialization and assignment,

function overloading pow(2) vs. pow(3,3) ;, operator overloading

rational numbers, complex numbers

19. Tree Structures, Inheritance and Polymorphism

@)

expression trees,
extension of expression trees
inheritance

trees
inheritance
polymorphism

inheritance ciass tree_node: public number_node
virtual functions virtual void size() const;

expression tree, expression parsing, extension by abs-node

18. Classes, Dynamic Data Types

@)
©
@

rational numbers with encapsulation, stack

linked list, allocation, deallocation, dynamic data type

classes ciass rational { ... };

access control public: / private:

member functions int rational::denominator () const
copy constructor, destructor, rule of three
constructors rational (int den, int nm): d(den), n(no) {}
new and delete

copy constructor, assignment operator, destructor

linked list, stack

The End

End of the Course

736

