
20. Conclusion

721

Purpose and Format

Name the most important key words to each chapter. Checklist:
“does every notion make some sense for me?”

M motivating example for each chapter
C concepts that do not depend from the implementation (language)
L language (C++): all that depends on the chosen language
E examples from the lectures

722

1. Introduction

M Euclidean algorithm
C algorithm, Turing machine, programming languages, compilation, syntax

and semantics
values and effects, fundamental types, literals, variables

L include directive #include <iostream>

main function int main(){...}

comments, layout // Kommentar

types, variables, L-value a , R-value a+b

expression statement b=b*b; , declaration statement int a;, return
statement return 0;

723

2. Integers

M Celsius to Fahrenheit
C associativity and precedence, arity

expression trees, evaluation order
arithmetic operators
binary representation, hexadecimal numbers
signed numbers, twos complement

L arithmetic operators 9 * celsius / 5 + 32

increment / decrement expr++

arithmetic assignment expr1 += expr2

conversion int ↔ unsigned int

E Celsius to Fahrenheit, equivalent resistance

724

3. Booleans

C Boolean functions, completeness
DeMorgan rules

L the type bool
logical operators a && !b

relational operators x < y

precedences 7 + x < y && y != 3 * z

short circuit evaluation x != 0 && z / x > y

the assert-statement, #include <cassert>

E Div-Mod identity.

725

4./5. Control Statements

M linear control flow vs. interesting programs
C selection statements, iteration statements

(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

L if statements if (a % 2 == 0) {..}

for statements for (unsigned int i = 1; i <= n; ++i) ...

while and do-statements while (n > 1) {...}

blocks and branches if (a < 0) continue;

E sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator

726

6./7. Floating Point Numbers

M correct computation: Celsius / Fahrenheit

C fixpoint vs. floating point
holes in the value range
compute using floating point numbers
floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

L types float, double
floating point literals 1.23e-7f

E Celsius/Fahrenheit, Euler, Harmonic Numbers

727

8./9. Functions

M Computation of Powers
C Encapsulation of Functionality

functions, formal arguments, arguments
scope, forward declarations
procedural programming, modularization, separate compilation
Stepwise Refinement

L declaration and definition of functions double pow(double b, int e){ ... }

function call pow (2.0, -2)

the type void
E powers, perfect numbers, minimum, calendar

728

10. Reference Types

M Swap

C value- / reference- semantics, call by value, call by reference
lifetime of objects / temporary objects
constants

L reference type int& a

call by reference, return by reference int& increment (int& i)

const guideline, const references, reference guideline

E swap, increment

729

11./12. Arrays

M Iterate over data: array of erathosthenes

C arrays, memory layout, random access
(missing) bound checks
vectors
characters: ASCII, UTF8, texts, strings

L array types int a[5] = {4,3,5,2,1};

characters and texts, the type char char c = ’a’;, Konversion nach int
multi-dimensional arrays, vectors of vectors

E sieve of Erathosthenes, Caesar-code, shortest paths, Lindenmayer
systems

730

13./14. Pointers, Iterators and Containers

M arrays as function arguments

C pointers, chances and dangers of indirection
random access vs. iteration, pointer arithmetics
containers and iterators

L pointer int* x;, conversion array → pointer, null-pointer
address and derference operator int *ip = &i; int j = *ip;

pointer and const const int *a;

algorithms and iterators std::fill (a, a+5, 1);

type definitions typedef std::set<char>::const_iterator Sit;

E filling an array, character salad

731

15./16. Recursion

M recursive mathe. functions
C recursion

call stack, memory of recursion
correctness, termination,
recursion vs. iteration
EBNF, formal grammars, streams, parsing
evaluation, associativity

E factorial, GCD, Fibonacci, mountains

732

17. Structs and Classes I

M build your own rational number

C heterogeneous data types
function and operator overloading
encapsulation of data

L struct definition struct rational {int n; int d;};

member access result.n = a.n * b.d + a.d * b.n;

initialization and assignment,
function overloading pow(2) vs. pow(3,3);, operator overloading

E rational numbers, complex numbers

733

18. Classes, Dynamic Data Types

M rational numbers with encapsulation, stack

C linked list, allocation, deallocation, dynamic data type
L classes class rational { ... };

access control public: / private:

member functions int rational::denominator () const

copy constructor, destructor, rule of three
constructors rational (int den, int nm): d(den), n(no) {}

new and delete
copy constructor, assignment operator, destructor

E linked list, stack

734

19. Tree Structures, Inheritance and Polymorphism

M expression trees,
extension of expression trees
inheritance

C trees
inheritance
polymorphism

L inheritance class tree_node: public number_node

virtual functions virtual void size() const;

E expression tree, expression parsing, extension by abs-node

735

The End

End of the Course

736

