
Preparatory Course in Computer
Science

(D-ITET)

Malte Schwerhoff

September 2018

http://lec.inf.ethz.ch/itet/informatik0/2018

1

Context of this Lecture

Computer Science 0 (Preparatory Course): Gain first
programming experience
Computer Science 1: Theoretical and practical foundations of
computer science
Computer Science 2: Algorithms and Data structures
Computer Engineering 1: Logical and physical structures of
digital systems
Computer Engineering 2: Important components of operating
systems
... and further courses (more or less directly) related to computer
science

2

Course goals

Provide first programming experience

Scratch the “computer science surface”

This course cannot, unfortunately, make up for years of
programming experience (school, hobby) ...

... but it should ease the learning curve for Computer Science 1

3

Course Structure: Performance assessment

No exam

Two programming projects need to be passed instead

4

Course Structure: Schedule

Weeks Program
1 Lecture: Thu 20.09., 13:15 – 15:00

C++ tutorial, 1. project
2 Contact hours: Mon 24.09. HG F1, Tue 25.09. HG E7, 17:00 – 19:00

1. project
3 Submission 1. project

Lecture: Wed 03.10., 13:15 – 15:00
Contact hours: Mon 01.10. HG F1, Tue 02.10. HG E7, 17:00 – 19:00
2. project

4-7 Contact hours: Tue 9./16./23./30.10, HG E7, 17:00 – 19:00
2. project

7 Submission 2. project

5

1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C++Program and its Syntactic and Semantic Ingredients

6

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

7

Computer Science vs. Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

h
t
t
p
:
/
/
l
a
r
c
.
u
n
t
.
e
d
u
/
i
a
n
/
r
e
s
e
a
r
c
h
/
c
s
e
d
u
c
a
t
i
o
n
/
f
e
l
l
o
w
s
1
9
9
1
.
p
d
f

8

Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing
of informations.

9

Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?

10

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
Oldest nontrivial algorithm:
Euclidean algorithm, 3. century B.C.
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation) h
t
t
p
:
/
/
d
e
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
A
l
g
o
r
i
t
h
m
u
s

11

Binary Search: Problem & Idea

Problem: find an element in an ordered list

Idee: search in a dictionary — open in the middle, continue left/right
if necessary

12

Binary Search: Example
find 7 in the list [1, 3, 4, 7, 9, 11, 12, 17]

1 3 4 7 9 11 12 17

1 3 4 7 11 12 179

1 3 4 7 9 11 12 17

1 3 7 9 11 12 174

1 3 4 9 11 12 177

1 3 4 9 11 12 177

13

Binary Search: Pseudo Code

Input: sorted list of numbers L, number to find n

Output: “yes” (“no”) if n (not) in L

While output O is yet unknown:
If L empty then: O ← “no”
Otherwise:

Select central number Lm:
If Lm = n then: O ← “yes”
If n < Lm then: L← left half of L
Otherwise: L← right half of L

14

Binary Search: C++ Implementation

std::string binary_search(const int∗ begin, const int∗ end,
const int n) {

while (true) {
if (begin >= end) return "no";
const int∗ mid = begin + (end − begin) / 2;
if (∗mid == n) return "yes";
else if (n < ∗mid) end = mid;
else begin = mid + 1;

}
}

Don’t panic: the C++ code is only shown to illustrate the differences between an algorithm description in pseudo code
and a concrete implementation. The used language constructs are only introduced in Computer Science 1.

15

Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and efficiency
discussions, proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, specific
programming language, various implementations possible)

16

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

17

Mathematics used to be the lingua franca of the natural
sciences on all universities. Today this is computer
science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics)

18

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Programming is the interface between engineering and computer
science – the interdisciplinary area is growing constantly.
Programming is fun (and is useful)!

19

Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890 h
t
t
p
:
/
/
e
n
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
H
a
r
v
a
r
d
_
C
o
m
p
u
t
e
r
s

20

Programming Languages

The language that the
computer can understand
(machine language) is very
primitive.
Simple operations have to
be subdivided into
(extremely) many single
steps
The machine language
varies between computers.

Pseudo
code

Core
idea

Machine
code

Impl.
(C++)

“Dictionary
search”

245 chars/
46 words

282/55

1536/—

21

Computing speed

In the time, on average, that the sound takes to travel from me to you
...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
22

Higher Programming Languages

We write programs (implementations) in a high-level programming
language:

Can be understood by humans
is hardware-independent
Includes reusable function libraries

23

Why C++?

Other popular programming languages: Java, C#, Python,
Javascript, Swift, Kotlin, Go,

C++ is practically relevant, widespread and “runs everywhere”
C++ is standardized i.e. there is an official
C++ is one of the “fastest” programming languages
C++ well-suited for systems programming since it
enables/requires careful resource management (memory, ...)

24

Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

25

Deutsch vs. C++

Deutsch
Alleen sind nicht gefährlich, Rasen ist gefährlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b = a ∗ a; // b = a2

b = b ∗ b; // b = a4

26

C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.

DasAuto fuh r zu sxhnell.

Rot das Auto ist.

Man empfiehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.

Das Fahrrad galoppiert schnell.

Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]

Syntaktisch korrekt, doch semantisch fehlerhaft:
Falscher Artikel. [Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch
fehlerhaft. [Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch
mehrdeutig. [kein Analogon]

27

Syntax and Semantics of C++
Syntax:

When is a text a C++ program?

I.e. is it grammatically correct?

→ Can be checked by a computer

Semantics:

What does a program mean?

Which algorithm does a program implement?

→ Requires human understanding
28

Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)

is the “law” of C++
defines the grammar and meaning of C++programs
since 2011, continuously extended with features for advanced
programming

29

Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.

30

2. C++ Language Constructs by Example

31

A First C++ Program: Prelude

The next slides show a first, interesting program, which is used to
illustrate various important ingredients of the C++ programming
language. The slides are basically a short summary of the C++
tutorial, and it is therefore recommended to first study the tutorial.

The shown program is not the program from the lecture —
reproducing the letter is a subtask of the first project .

33

Language constructs with an example

Comments/layout
Include directive
the main function
Values effects
Types and functionality
literals
variables

identifiers, names
objects
expressions
operators
statements

34

The Basics: Statements and Expressions
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main(){

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Statements: Do something (read in a)!

Expressions: Compute a value (a2)!

35

Behavior of a Program
At compile time:

program accepted by the compiler (syntactically correct)

Compiler error

During runtime:

correct result

incorrect result

program crashes

program does not terminate (endless loop)
36

“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

comments

37

Comments and Layout
Comments

are contained in every good program.

document what and how a program does something and how it
should be used,

are ignored by the compiler

Syntax: “double slash” // until the line ends.

The compiler ignores additionally

Empty lines, spaces,

Indendations that should reflect the program logic
38

Comments and Layout

The compiler does not care...

#include <iostream>

int main(){std::cout << "Compute a^8 for a =? ";

int a; std::cin >> a; int b = a * a; b = b * b;

std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

39

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

include directive
declaration of the main function

40

Include Directives

C++ consists of

the core language
standard library

in-/output (header iostream)
mathematical functions (cmath)
...

#include <iostream>

makes in- and output available

41

The main Function

the main-function

is provided in any C++ program

is called by the operating system
like a mathematical function ...

arguments
return value

... but with an additional effect

Read a number and output the 8th power.

42

Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

expression statements

return statement

43

Statements

building blocks of a C++ program
are executed (sequentially)
end with a semicolon
Any statement has an effect (potentially)

44

Expression Statements

have the following form:

expr;

where expr is an expression
Effect is the effect of expr, the value of expr is ignored.

Example: b = b*b;

45

Return Statements

do only occur in functions and are of the form

return expr;

where expr is an expression
specify the return value of a function

Example: return 0;

46

Statements – Effects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

effect: output of the string Compute ...

Effect: input of a number stored in a

Effect: saving the computed value of a*a into b

Effect: saving the computed value of b*b into b

Effect: output of the value of a and the computed value of b*bEffect: return the value 0

47

Values and Effects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
std::cin >> a; means effect "read in a number"

depend on the program state (memory content, inputs)

48

Statements – Variable Definitions
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration statement

type
names

49

Declaration Statements

introduce new names in the program,
consist of declaration and semicolon

Example: int a;
can initialize variables

Example: int b = a * a;

50

Types and Functionality

int:

C++ integer type

corresponds to (Z,+,×) in math

In C++ each type has a name and

a domain (e.g. integers)

functionality (e.g. addition/multiplication)

51

Fundamental Types

C++ comprises fundamental types for

integers (int)

natural numbers (unsigned int)

real numbers (float, double)

boolean values (bool)

...

52

Literals

represent constant values
have a fixed type and value
are "syntactical values"

Examples:

0 has type int, value 0.

1.2e5 has type double, value 1.2 · 105.

53

Variables

represent (varying) values
have

name
type
value
address

are "visible" in the program
context

Example
int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler

54

Objects

represent values in main memory
have type, address and value (memory content at the address)
can be named (variable) ...
... but also anonymous.

Remarks
A program has a fixed number of variables. In order to be able to deal with a
variable number of value, it requires "anonymous" addresses that can be address
via temporary names (→ Computer Science 1).

55

Identifiers and Names

(Variable-)names are identifiers

allowed: A,...,Z; a,...,z; 0,...,9;_

First symbol needs to be a character.

There are more names:

std::cin (Qualified identifier)

56

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

57

Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

Two times composed expression

Four times composed expression
58

Expressions

represent computations
are primary or composite (by other expressions and operations)

a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression

can be put into parantheses

a * a is equivalent to (a * a)

59

Expressions

have type, value und effect (potentially).

Example

a * a

type: int (type of the operands)

Value: product of a and a

Effect: none.

Example

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

effect: assignment of the product value
to b

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression

60

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

left operand (input stream)

right operand (variable name)
input operator

assignment operator

multiplication operator

61

Operators

Operators

combine expressions (operands) into new composed
expressions

specify for the operands and the result the types and if the have
to be L- or R-values.

have an arity (number of operands)

62

Multiplication Operator *

expects two values of the same type as operands (arity 2)
returns the product as value of the same type
The composite expression represents a value; its value is the
product of the value of the two operands

Examples: a * a and b * b

63

Assignment Operator =

Assigns to the left operand (typically a variable) the value of the right
operand

Examples: b = b * b and a = b

Attention, Trap!
The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).

64

Input Operator >>

left operand is the input stream
assigns to the right operand (typically a variable) the next value
read from the input stream, removing it from the input stream and
returns the input stream

Example std::cin >> a (mostly keyboard input)

65

Output Operator <<

left operand is the output stream
outputs the value of the right operand, appends it to the output
stream and returns the output stream

Example: std::cout << a (mostly console output)

66

Output Operator <<

Why returning the output stream?

allows bundling of output

std::cout << a << "^8 = " << b * b << "\n"

is parenthesized as follows

((((std::cout << a) << "^8 = ") << b * b) << "\n")

std::cout << a is the left hand operand (i.e. output stream) of
the next <<

67

3. Organisation of Programming Projects

68

Codeboard
Codeboard is an online IDE: programming in the browser!

69

Code Expert
Our exercise system consists of two independent systems that
communicate with each other:

The ETH submission
system: Allows us to evaluate
your tasks.

The online IDE: The
programming environment

User

ETH submis-
sion system

http://expert.ethz.ch

Login with ETH Credentials

Codeboard.io
http://codeboard.io

Login with Codeboard.io Credentials

70

Projects = Exercise

Code Expert aims at a “regular” exercise work-flow, hence the
terminology “exercises”, “exercise groups”, etc.

On Code Expert, our programming projects as thus listed as
exercises, and there is only one exercise group

71

Registration

Codeboard.io Registration
Go to http://codeboard.io and create an account, stay logged in.

Enrol on Code Expert
Go to http://expert.ethz.ch/inf0itet18 and enrol in exercise
group Students.

72

Codeboard.io Registration
If you do not yet have an Codeboard.io account ...

We use the online IDE
Codeboard.io
Create an account to store your
progress and be able to review
submissions later on
Credentials can be chose
arbitrarily Do not use the ETH
password.

73

Codeboard.io Login
If you have an account, log in:

74

Exercise group registration I
Visit http://expert.ethz.ch/inf0itet18
Log in with your nethz account.

75

Exercise group registration II
In this dialogue, enrol in exercise group Students.

76

The first exercise.
You are now registered and the first exercise is loaded. Follow the
instructions in the yellow box.

(Screenshot isn’t recent)

77

Attention: Codeboard.io Login

Attention If you see this message, click on Sign in now and register
with you codeboard.io account.

78

Attention: Saving Progress

Attention! Store your progress
regularly. So you can continue
working at any different location.

79

Academic integrity

The ETH Zurich Ordinance on performance assessments applies

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
adopt disciplinary measures

The way to go (see slides on algorithms):

Code idea: consider discussing in groups

Pseudo code: consider discussing in groups

Implementation: Individual work!

80

