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int* p;
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cout << i; // 7

int j = *p + 1;

P p = &j;
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int 1 =
int* p;
p = &i;
*p = 7;
cout <«
int j =
p = &J;
cout <«

P (*p)++;
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int 1 =
int* p;
p = &i;
*p = 7;
cout <<
int j =
P = &J;
cout <<
(*p)++;
P pt++;

5;

i; // 7
* + 1;
*p; // 8
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int i = 5;
int* p = &i; int& r = i; Declaration and initialisation
*p =09; // 1i=0 r=0; // 1i=0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable
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int* p =

cout <«

int* p;
p = &ij;

int i = 5;

&i;
; // 1 =20
*p; // ©

cout << r; // ©

Declaration and initialisation
Writing to underlying variable

Reading underlying variable

References must be initialised
immediately



Pointers vs. References

int i = 5;
int* p = &i; int& r = i; Declaration and initialisation

*p =90; // 1=20 r=0; // i= 0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable
int* p; R References must be initialised

p = &i; =W immediately

int* p = &i; int& r = i; References themselves cannot be

p = &j; < changed (“redirected”)



Pointers vs. References

int i = 5;
int* p = &i; int& r = i; Declaration and initialisation

*p =90; // 1=20 r=0; // i= 0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable
int* p; R References must be initialised

p = &i; =W immediately

int* p = &i; int& r = i; References themselves cannot be
p = &J; >< changed (are always const)
int* p = &i; int& r = 1i; References don’t have addresses

cout << &p; '_5;'9'.11.?-*--(-'{-‘.'8![‘,; (they are just aliases of sth. else)
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Historical language development:
* (C:1969; has pointers

e C++:1983
* Inherited pointers from C
(backwards compatibility)
 Added references to support operator overloading
(i.e. << from streams; later in the course)



Why Pointers and References?

Historical language development:
* (C:1969; has pointers

e C++:1983
* Inherited pointers from C
(backwards compatibility)
 Added references to support operator overloading
(i.e. << from streams; later in the course)

Rule of thumb: prefer references over pointers
 References are more restricted - harder to make mistakes

» Reference syntax is nicer (r vs *p) -2 easier to read
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When do we need pointers?

* Fast(er) iteration over data: e.g. arrays (last week) and
containers (today)



Why Pointers and References?

When do we need pointers?

* Fast(er) iteration over data: e.g. arrays (last week) and
containers (today)

 Complex data structures that change over time (later in the
course): e.g. graphs
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