Recap:
Pointers

R
int* int& *p &i &*&* *®’

Step-by-Step Example

Step-by-Step Example

Step-by-Step Example

int 1

P int* p;

>;

Step-by-Step Example

Step-by-Step Example

int 1 = 5;
int* p; Ao AL A

g

A
/; ‘

Step-by-Step Example

int 1 = 5;
int* p; Ao AL A
p = &1; A@

A
*p = 7; ‘

P cout << i; // 7

Step-by-Step Example

int 1 = 5;

int* p; Ao AL A
p = &1; A@
A
*p = 7; ‘
cout << i; // 7 :
1 D

P int j = *p + 1;

Step-by-Step Example

int 1 = 5;

int* p;
p = &i;
*p = 7;

cout << i; // 7

int j = *p + 1;

P p = &j;

Step-by-Step Example

int 1 = 5;

int* p; Ao AL A
p = &i; Ay
A
*p = 7; ‘
cout << i; // 7 :
1 D

int j = *p + 1;
p = &J;
P cout << *p; // 8

Step-by-Step Example

int 1 =
int* p;
p = &i;
*p = 7;
cout <«
int j =
p = &J;
cout <«

P (*p)++;

5;

i; // 7
* + 1;
*p; // 8

Ao Ay A, Ay A, As
Al |®o
| ‘
D J

Step-by-Step Example

int 1 =
int* p;
p = &i;
*p = 7;
cout <<
int j =
P = &J;
cout <<
(*p)++;
P pt++;

5;

i; // 7
* + 1;
*p; // 8

Step-by-Step Example

Step-by-Step Example

int 1 5;

int* p = &1i; Ao A A

P cout << p; // A,

Step-by-Step Example

int 1 = 5;

int* p = &1i; Ao A A

cout << p; // A,
A
P cout << *p;// 5 ‘

Step-by-Step Example

int 1 = 5;

int* p = &1i; Ao A A

cout << p; // A,

A
cout << *p;// 5 ‘
P cout << &p;// A,

Recap:
Pointers vs. References

Pointers vs. References

Declaration and initialisation

Pointers vs. References

Declaration and initialisation

Writing to underlying variable

Pointers vs. References

int i = 5;
int* p = &i; int& r = i; Declaration and initialisation
*p =09; // 1i=0 r=0; // 1i=0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable

Pointers vs. References

int* p =

cout <«

int* p;
p = &ij;

int i = 5;

&i;
; // 1 =20
*p; // ©

cout << r; // ©

Declaration and initialisation
Writing to underlying variable

Reading underlying variable

References must be initialised
immediately

Pointers vs. References

int i = 5;
int* p = &i; int& r = i; Declaration and initialisation

*p =90; // 1=20 r=0; // i= 0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable
int* p; R References must be initialised

p = &i; =W immediately

int* p = &i; int& r = i; References themselves cannot be

p = &j; < changed (“redirected”)

Pointers vs. References

int i = 5;
int* p = &i; int& r = i; Declaration and initialisation

*p =90; // 1=20 r=0; // i= 0 Writing to underlying variable

cout << *p; // © cout << r; // © Reading underlying variable
int* p; R References must be initialised

p = &i; =W immediately

int* p = &i; int& r = i; References themselves cannot be
p = &J; >< changed (are always const)
int* p = &i; int& r = 1i; References don’t have addresses

cout << &p; '_5;'9'.11.?-*--(-'{-‘.'8![‘,; (they are just aliases of sth. else)

Why
Pointers
and
References?

Why Pointers and References?

Historical language development:
* (C:1969; has pointers

e C++:1983
* Inherited pointers from C
(backwards compatibility)
 Added references to support operator overloading
(i.e. << from streams; later in the course)

Why Pointers and References?

Historical language development:
* (C:1969; has pointers

e C++:1983
* Inherited pointers from C
(backwards compatibility)
 Added references to support operator overloading
(i.e. << from streams; later in the course)

Rule of thumb: prefer references over pointers
 References are more restricted - harder to make mistakes

» Reference syntax is nicer (r vs *p) -2 easier to read

Why Pointers and References?

When do we need pointers?

* Fast(er) iteration over data: e.g. arrays (last week) and
containers (today)

Why Pointers and References?

When do we need pointers?

* Fast(er) iteration over data: e.g. arrays (last week) and
containers (today)

 Complex data structures that change over time (later in the
course): e.g. graphs

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

