
17. Recursion 2
Building a Calculator, Formal Grammars, Extended Backus Naur Form
(EBNF), Parsing Expressions

488

Motivation: Calculator

Input: 3 + 5
Output: 8

binary Operators +, -, *, / and numbers

�oating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

489

Motivation: Calculator

Input: 3 / 5
Output: 0.6

binary Operators +, -, *, / and numbers
�oating point arithmetic

precedences and associativities like in C++
parentheses
unary operator -

489

Motivation: Calculator

Input: 3 + 5 * 20
Output: 103

binary Operators +, -, *, / and numbers
�oating point arithmetic
precedences and associativities like in C++

parentheses
unary operator -

489

Motivation: Calculator

Input: (3 + 5) * 20
Output: 160

binary Operators +, -, *, / and numbers
�oating point arithmetic
precedences and associativities like in C++
parentheses

unary operator -

489

Motivation: Calculator

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
�oating point arithmetic
precedences and associativities like in C++
parentheses
unary operator -

489

Naive Attempt (without Parentheses)

double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’*’)
lval *= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n"; 490

Seems to work. . .

double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’*’)
lval *= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 1 * 2 * 3 * 4 =
Result 24

490

Oops, Multiplication �rst. . .

double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’*’)
lval *= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15

490

Analyzing the Problem

Input:

13 + ...

This

lecture is pretty much recursive.

491

Analyzing the Problem

Input:

13 + 4 ∗ ...

This

lecture is pretty much recursive.

491

Analyzing the Problem

Input:

13 + 4 ∗ (15− ...

This

lecture is pretty much recursive.

491

Analyzing the Problem

Input:

13 + 4 ∗ (15− 7 ∗ ...

This

lecture is pretty much recursive.

491

Analyzing the Problem

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such that
evaluation can be performed

This

lecture is pretty much recursive.

491

Analyzing the Problem

Result:

13 + 4∗(15− 21)

This

lecture is pretty much recursive.

491

Analyzing the Problem

Result:

13+4 ∗ (−6)

This

lecture is pretty much recursive.

491

Analyzing the Problem

Result:

13 + (−24)

This

lecture is pretty much recursive.

491

Analyzing the Problem

Result:

−11

This

lecture is pretty much recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This

lecture is pretty much recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This lecture

is pretty much recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This lecture is

pretty much recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This lecture is pretty

much recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This lecture is pretty much

recursive.

491

Analyzing the Problem

Expression:

13 + 4 ∗ (15− 7 ∗ 3)

This lecture is pretty much recursive.

491

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming symbols!
We will store symbols elegantly using recursion.
We need a new formal tool (that is independent of C++).

492

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming symbols!

We will store symbols elegantly using recursion.
We need a new formal tool (that is independent of C++).

492

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming symbols!
We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).

492

Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to upcoming symbols!
We will store symbols elegantly using recursion.
We need a new formal tool (that is independent of C++).

492

Formal Grammars

Alphabet: �nite set of symbols
Strings: �nite sequences of symbols

A formal grammar de�nes which strings are valid.

To describe the formal grammar, we use:
Extended Backus Naur Form (EBNF)

493

Formal Grammars

Alphabet: �nite set of symbols
Strings: �nite sequences of symbols

A formal grammar de�nes which strings are valid.

To describe the formal grammar, we use:
Extended Backus Naur Form (EBNF)

493

Formal Grammars

Alphabet: �nite set of symbols
Strings: �nite sequences of symbols

A formal grammar de�nes which strings are valid.

To describe the formal grammar, we use:
Extended Backus Naur Form (EBNF)

493

Number

An integer is a sequence of digits. A sequence of digits ist

a digit
a digit followed by a sequence of digits

495

Number

An integer is a sequence of digits. A sequence of digits ist
a digit

a digit followed by a sequence of digits

2

495

Number

An integer is a sequence of digits. A sequence of digits ist
a digit or
a digit followed by a sequence of digits

2
2 0 1 9

495

Number

An integer is a sequence of digits. A sequence of digits ist
a digit or
a digit followed by a sequence of digits

2
2 0 1 9

unsigned_integer = digits .
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit | digit digits.

alternative
terminal symbol

non-terminal symbol

495

Number

An integer is a sequence of digits. A sequence of digits ist
a digit or
a digit followed by a sequence of digits

2
2 0 1 9

unsigned_integer = digits .
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit | digit digits. alternative

terminal symbol
non-terminal symbol 495

Number (non-recursive)

An integer is a sequence of digits. A sequence of digits ist
a digit, or
a digit followed by an arbitrary number of digits

2
2 0 1 9

unsigned_integer = digits .
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit { digit }.

optional repetition

496

Number (non-recursive)

An integer is a sequence of digits. A sequence of digits ist
a digit, or
a digit followed by an arbitrary number of digits

2
2 0 1 9

unsigned_integer = digits .
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit { digit }.

optional repetition
496

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number

, (?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)

? * ?, ? / ?, ...
? - ?, ? + ?, ...

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...

? - ?, ? + ?, ...

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

498

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
? * ?, ? / ?, ...
? - ?, ? + ?, ...

Factor

498

Expressions Multiplication/Division

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

498

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor,
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

498

Expressions Addition/Subtraction

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
? - ?, ? + ?, ...

Factor

Term

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term,
Term - Term, ...

Factor

Term

Expression

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (?)
-Number, -(?)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

498

Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?

Number , (Expression)
-Number, -(Expression)
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression

498

The EBNF for Expressions

A factor is
a number,

an expression in parentheses or

a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol

499

The EBNF for Expressions

A factor is
a number,
an expression in parentheses

or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol

499

The EBNF for Expressions

A factor is
a number,
an expression in parentheses

or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol

499

The EBNF for Expressions

A factor is
a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol

499

The EBNF for Expressions

A factor is
a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol

499

The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "-" factor.

Implication: a factor starts with
a digit, or
with “(” , or
with "-"”.

501

The EBNF for Expressions

A term is
factor,

factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is
factor,
factor * factor, factor / factor,

factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is
factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is
factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

A term is
factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition

502

The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.

503

Parsing

Parsing: Check if a string is valid according to the EBNF.

Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

504

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.

Useful: From the EBNF we can (nearly) automatically generate a parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

504

Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can (nearly) automatically generate a parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function calls
Optional repetitions become while–statements

504

Rules

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.

505

Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if in_stream = factor ...
// and in this case extracts factor from in_stream
bool factor (std::istream& in_stream);

// POST: returns true if and only if in_stream = term ...,
// and in this case extracts all factors from in_stream
bool term (std::istream& in_stream);

// POST: returns true if and only if in_stream = expression ...,
// and in this case extracts all terms from in_stream
bool expression (std::istream& in_stream);

506

Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from in_stream
// and returns its value
double factor (std::istream& in_stream);

// POST: extracts a term from in_stream
// and returns its value
double term (std::istream& in_stream);

// POST: extracts an expression from in_stream
// and returns its value
double expression (std::istream& in_stream);

507

One Character Lookahead. . .
. . . to �nd the right alternative.
// POST: the next character at the stream is returned
// without being consumed. returns 0 if stream ends.
char peek (std::istream& input){

if (input.eof()) return 0; // end of stream
return input.peek(); // next character in input

}

// POST: leading whitespace characters are extracted from input
// and the first non-whitespace character on input returned
char lookahead (std::istream& input) {

input >> std::ws; // skip whitespaces
return peek(input);

}
508

Parse numbers

bool isDigit(char ch){
return ch >= ’0’ && ch <= ’9’;

}
// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int unsigned_number (std::istream& input){

char ch = lookahead(input);
assert(isDigit(ch));
unsigned int num = 0;
while(isDigit(ch) && input >> ch){ // read remaining digits

num = num * 10 + ch - ’0’;
ch = peek(input);

}
return num;

}

unsigned_number =digit { digit }.
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.

509

Cherry-Picking

. . . to extract the desired character.
// POST: if expected matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& in_stream, char expected)
{

if (lookahead(in_stream) == expected){
in_stream >> expected; // consume one character
return true;

}
return false;

}

510

Evaluating Factors

double factor (std::istream& in_stream)
{

double value;
if (consume(in_stream, ’(’)) {

value = expression (in_stream);
consume(in_stream, ’)’);

} else if (consume(in_stream, ’-’)) {
value = -factor (in_stream);

} else {
value = unsigned_number(in_stream);

}
return value;

}
factor = "(" expression ")"

| "-" factor
| unsigned_number.

511

Evaluating Terms

double term (std::istream& in_stream)
{

double value = factor (in_stream);
while(true){

if (consume(in_stream, ’*’))
value *= factor(in_stream);

else if (consume(in_stream, ’/’))
value /= factor(in_stream)

else
return value;

}
}

term = factor { "*" factor | "/" factor }.
512

Evaluating Expressions

double expression (std::istream& in_stream)
{

double value = term(in_stream);
while(true){

if (consume(in_stream, ’+’))
value += term (in_stream);

else if (consume(in_stream, ’-’))
value -= term(in_stream)

else
return value;

}
}

expression = term { "+" term |"-" term }.
513

Recursion!

Factor

Term

Expression

514

Recursion!

Factor

Term

Expression

514

Recursion!

Factor

Term

Expression

514

Recursion!

Factor

Term

Expression

514

EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.

std::stringstream input ("1-2-3");
std::cout << expression (input) << "\n"; // -4

515

18. Structs
Rational Numbers, Struct De�nition

517

Calculating with Rational Numbers

Rational numbers (Q) are of the form n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

518

Calculating with Rational Numbers

Rational numbers (Q) are of the form n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

518

Vision

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

519

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct de�nes a new type
formal range of values: cartesian product of the value ranges of existing
types
real range of values: rational (int× int.

520

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

struct de�nes a new type
formal range of values: cartesian product of the value ranges of existing
types
real range of values: rational (int× int.

520

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct de�nes a new type

formal range of values: cartesian product of the value ranges of existing
types
real range of values: rational (int× int.

520

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct de�nes a new type
formal range of values: cartesian product of the value ranges of existing
types

real range of values: rational (int× int.

520

A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable

member variable

struct de�nes a new type
formal range of values: cartesian product of the value ranges of existing
types
real range of values: rational (int× int.

520

Accessing Member Variables

struct rational {
int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

rn

rd

:= an

ad

+ bn

bd

= an · bd + ad · bn

ad · bd

521

Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...

523

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

524

Struct De�ntions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user de�ned

526

Struct De�nitions: Examples

struct extended_int {
// represents value if is_positive==true
// and -value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be di�erent

527

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

534

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise initialization:
t.n = 1, t.d = 5

534

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

534

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member-wise copy

534

Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t); member-wise copy

534

Comparing Structs?

For each fundamental type (int, double,...) there are comparison
operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example, 2
3 6=

4
6

535

Comparing Structs?

For each fundamental type (int, double,...) there are comparison
operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example, 2
3 6=

4
6

535

Comparing Structs?

For each fundamental type (int, double,...) there are comparison
operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example, 2
3 6=

4
6

535

User De�ned Operators

Instead of
rational t = add(r, s);

we would rather like to write
rational t = r + s;

This can be done with Operator Overloading (→ next week).

538

User De�ned Operators

Instead of
rational t = add(r, s);

we would rather like to write
rational t = r + s;

This can be done with Operator Overloading (→ next week).

538

	Recursion 2
	Motivation: Calculator
	Formal Grammars
	Numbers
	Expressions
	EBNF for Expressions
	EBNF for Expressions
	Lookahead
	Evaluation

	Structs
	Structs

