
14. Characters and Texts II
Caesar Code with Streams, Text as Strings, String Operations

415

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin to
std::cout

Better: from arbitrary character
source (console, �le, ...) to
arbitrary character sink (console,
...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY

416

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Interlude: Abstract vs. Concrete Types

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

417

Abstract and Concrete Character Streams

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

std::ostream

std::ofstream std::cout

..
.

418

Abstract and Concrete Character Streams

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

std::ostream

std::ofstream std::cout

..
.

418

Abstract and Concrete Character Streams

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

std::ostream

std::ofstream std::cout

..
.

418

Abstract and Concrete Character Streams

DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

std::ostream

std::ofstream std::cout

..
.

418

Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream is an
abstract input/output stream of
chars

Function is called with concrete
streams, e.g.:

Console: std::cin/cout
Files: std::ifstream/ ofstream

419

Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {

out << shift(next, s);
}

}

std::istream/std::ostream is an
abstract input/output stream of
chars

Function is called with concrete
streams, e.g.:

Console: std::cin/cout
Files: std::ifstream/ ofstream

419

Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to std::cout

420

Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string to_file_name = ...; // Name of file to write to
std::ofstream to(to_file_name); // Output file stream

caesar(std::cin, to, s);

Calling the generalised caesar function: from std::cin to �le

421

Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from �le to �le

422

Streams: Final Words

Note: You only need to be able to use streams

User knowledge, on the level of the previous slides, su�ces for
exercises and exam
I.e. you do not need to know how streams work internally
At the end of this course, you’ll hear how you can de�ne abstract, and
corresponding concrete, types yourself

424

Texts

Text “to be or not to be” could be represented as vector<char>

Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

425

Texts

Text “to be or not to be” could be represented as vector<char>
Texts are ubiquitous, however, and thus have their own typ in the
standard library: std::string
Requires #include <string>

425

Using std::string

Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

426

Using std::string

Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

426

Using std::string

Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"

Initialise with variable length:

std::string text(n, ’a’)

Comparing texts:

if (text1 == text2) ...

426

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

427

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

427

Using std::string

Querying size:

for (unsigned int i = 0; i < text.size(); ++i) ...

Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)

Writing single characters:

text[0] = ’b’; // or text.at(0)

427

Using std::string

Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string

428

https://en.cppreference.com/w/cpp/string

15. Vectors II
Multidimensional Vector/Vectors of Vectors, Shortest Paths, Vectors as
Function Arguments

429

Multidimensional Vectors

For storing multidimensional structures such as tables, matrices, . . .
. . .vectors of vectors can be used:

std::vector<std::vector<int>> m; // An empty matrix

430

Multidimensional Vectors

In memory: �at

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix
columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

431

Multidimensional Vectors

In memory: �at

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix
columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]

431

Multidimensional Vectors: Initialisation

Using initialisation lists:

// A 3-by-5 matrix
std::vector<std::vector<std::string>> m = {

{"ZH", "BE", "LU", "BS", "GE"},
{"FR", "VD", "VS", "NE", "JU"},
{"AR", "AI", "OW", "IW", "ZG"}

};

assert(m[1][2] == "VS");

432

Multidimensional Vectors: Initialisation

Fill to speci�c size:

unsigned int a = ...;
unsigned int b = ...;

// An a-by-b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

433

Multidimensional Vectors: Initialisation

Fill to speci�c size:

unsigned int a = ...;
unsigned int b = ...;

// An a-by-b matrix with all ones
std::vector<std::vector<int>>

m(a, std::vector<int>(b, 1));

(Many further ways of initialising a vector exist)

433

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong

The declaration of a type alias helps here:

using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

434

Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong
The declaration of a type alias helps here:

using Name = Typ;

Name that can now be used to ac-
cess the type

existing type

434

Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was output to stream ’out’
void print(const imatrix& m, std::ostream& out);

int main() {
imatrix m = ...;
print(m, std::cout);

}

Recall: const reference for en�ciency (no copy) and safety (immutable)
435

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: �nd the shortest path
of the robot from S to T via
free cells.

436

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: �nd the shortest path
of the robot from S to T via
free cells.

436

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: �nd the shortest path
of the robot from S to T via
free cells.

436

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; follow
a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18

438

This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
439

Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special cases.

441

Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start

442

Mark all Cells with their Path Lengths

Step 0: all cells with path length 0

0

T

unmarked neighbours of
cells with length 2

446

Mark all Cells with their Path Lengths

Step 1: all cells with path length 1

1 0
1

Tunmarked neighbours of
cells with length 0

unmarked neighbours of
cells with length 2

446

Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

446

Mark all Cells with their Path Lengths

Step 3: all cells with path length 3

3
2 1 0
3 2 1

3 2
3

Tunmarked neighbours of
cells with length 2

446

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

447

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

indicates if in sweep through all cells
there was progress

447

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

sweep over all cells

447

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

cell already marked or obstacle

447

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

a neighbour has path length i − 1. The
sentinels guarantee that there are always
4 neighbours

447

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

no progress, all reachable cells
marked; done.

447

The Shortest Paths Program

Algorithm: Breadth-First Search (Breadth-�rst vs. depth-�rst search is
typically discussed in lectures on algorithms)

The program can become pretty slow because for each i all cells are
traversed
Improvement: for marking with i, traverse only the neighbours of the
cells marked with i− 1.
Improvement: stop once the goal has been reached

451

The Shortest Paths Program

Algorithm: Breadth-First Search (Breadth-�rst vs. depth-�rst search is
typically discussed in lectures on algorithms)
The program can become pretty slow because for each i all cells are
traversed

Improvement: for marking with i, traverse only the neighbours of the
cells marked with i− 1.
Improvement: stop once the goal has been reached

451

The Shortest Paths Program

Algorithm: Breadth-First Search (Breadth-�rst vs. depth-�rst search is
typically discussed in lectures on algorithms)
The program can become pretty slow because for each i all cells are
traversed
Improvement: for marking with i, traverse only the neighbours of the
cells marked with i− 1.
Improvement: stop once the goal has been reached

451

16. Recursion 1
Mathematical Recursion, Termination, Call Stack, Examples, Recursion vs.
Iteration, n-Queen Problem

452

Mathematical Recursion

Many mathematical functions can be naturally de�ned recursively

This means, the function appears in its own de�nition

n! =

1, if n ≤ 1
n · (n− 1)!, otherwise

453

Mathematical Recursion

Many mathematical functions can be naturally de�ned recursively
This means, the function appears in its own de�nition

n! =

1, if n ≤ 1
n · (n− 1)!, otherwise

453

Recursion in C++: In the same Way!

n! =

1, if n ≤ 1
n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac(unsigned int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

454

In�nite Recursion

is as bad as an in�nite loop . . .

. . . but even worse: it burns time and memory

void f() {
f() // f() → f() → ... → stack overflow

}

Ein Euro ist ein Euro.
Wim Duisenberg, erster Präsident der EZB

455

In�nite Recursion

is as bad as an in�nite loop . . .
. . . but even worse: it burns time and memory

void f() {
f() // f() → f() → ... → stack overflow

}

Ein Euro ist ein Euro.
Wim Duisenberg, erster Präsident der EZB

455

In�nite Recursion

is as bad as an in�nite loop . . .
. . . but even worse: it burns time and memory

void f() {
f() // f() → f() → ... → stack overflow

}

Ein Euro ist ein Euro.
Wim Duisenberg, erster Präsident der EZB

455

In�nite Recursion

is as bad as an in�nite loop . . .
. . . but even worse: it burns time and memory

void f() {
f() // f() → f() → ... → stack overflow

}

Ein Euro ist ein Euro.
Wim Duisenberg, erster Präsident der EZB

455

Recursive Functions: Termination

As with loops we need guaranteed progress towards an exit condition (≈
base case)

Example fac(n):
Recursion ends if n ≤ 1
Recursive call with new argument < n

Exit condition will thus be reached
eventually

unsigned int fac(
unsigned int n) {

if (n <= 1)
return 1;

else
return n * fac(n-1);

}

456

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its own
n

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4)

 int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its own
n

Calling fac(4)

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its own
n

Calling fac(4) Initialisation of formal argument n

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its own
n

Evaluation of return expression

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1)

 int n = 3
...

Every call of fac operates on its own
n

Recursive call with argument n - 1 = 4− 1 = 3

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3

...

Every call of fac operates on its own
n

Initialisation of formal argument n

457

Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)

return 1;
else

return n * fac(n-1);
}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its own
n

457

The Call Stack

For each function call:

push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

458

The Call Stack

For each function call:

push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack

always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value

at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1)

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1

n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1) 1

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

1

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2) 2

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

2

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3) 6

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

6

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4) 24

458

The Call Stack

For each function call:
push value of the call argument onto the
stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

24

458

Fibonacci Numbers

Fn :=

0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

461

Fibonacci Numbers

Fn :=

0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

461

Fibonacci Numbers in Zurich

462

Fibonacci Numbers in C++

Fn :=

0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

}

463

Fibonacci Numbers in C++

Fn :=

0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

}

463

Fibonacci Numbers in C++

Laufzeit
fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times . . .F1 ca. 109 times (!)

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

}

463

Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn

Memorize the most recent two Fibonacci numbers (variables a and b)
Compute the next number as a sum of a and b

Can be implemented recursively and iteratively, the latter is easier/more direct

464

Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn

Memorize the most recent two Fibonacci numbers (variables a and b)

Compute the next number as a sum of a and b

Can be implemented recursively and iteratively, the latter is easier/more direct

464

Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn

Memorize the most recent two Fibonacci numbers (variables a and b)
Compute the next number as a sum of a and b

Can be implemented recursively and iteratively, the latter is easier/more direct

464

Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn

Memorize the most recent two Fibonacci numbers (variables a and b)
Compute the next number as a sum of a and b

Can be implemented recursively and iteratively, the latter is easier/more direct

464

Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // Fi−2
a = b; // a becomes Fi−1
b += a_old; // b becomes Fi−1 + Fi−2, i.e. Fi

}

return b;
}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
465

Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // Fi−2
a = b; // a becomes Fi−1
b += a_old; // b becomes Fi−1 + Fi−2, i.e. Fi

}

return b;
}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
465

Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // Fi−2
a = b; // a becomes Fi−1
b += a_old; // b becomes Fi−1 + Fi−2, i.e. Fi

}

return b;
}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b
465

Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // Fi−2
a = b; // a becomes Fi−1
b += a_old; // b becomes Fi−1 + Fi−2, i.e. Fi

}

return b;
}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

465

The Power of Recursion

Some problems appear to be hard to solve without recursion. With
recursion they become signi�cantly simpler.
Examples: The n-Queens-Problem, The towers of Hanoi, Sudoku-Solver,
Expression Parsers, Reversing In- or Output, Searching in Trees,
Divide-And-Conquer (e.g. sorting) , . . .
. . . and the 2. bonus exercise: Nonograms

466

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6
Question: is it possiblt to position
n queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

467

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6
Question: is it possiblt to position
n queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

467

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6
Question: is it possiblt to position
n queens such that no two queens
threaten each other?

If yes, how many solutions are
there?

467

The n-Queens Problem

Provided is a n timesn chessboard
For example n = 6
Question: is it possiblt to position
n queens such that no two queens
threaten each other?
If yes, how many solutions are
there?

467

Solution?

Try all possible placements?

(
n2

n

)
possibilities. Too many!

Only ne queen per row: nn possibilities. Better – but still too many.
Idea: don’t proceed with futile attempts, retract incorrect moves instead
⇒ Backtracking

468

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

Only ne queen per row: nn possibilities. Better – but still too many.
Idea: don’t proceed with futile attempts, retract incorrect moves instead
⇒ Backtracking

468

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

Only ne queen per row: nn possibilities. Better – but still too many.

Idea: don’t proceed with futile attempts, retract incorrect moves instead
⇒ Backtracking

468

Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

Only ne queen per row: nn possibilities. Better – but still too many.
Idea: don’t proceed with futile attempts, retract incorrect moves instead
⇒ Backtracking

468

Solution with Backtracking

First Queen

queens

0

0

0

0

469

Solution with Backtracking

x Forbidden Squares: no
other queens may be
here.

queens

0

0

0

0

469

Solution with Backtracking

x x Forbidden Squares: no
other queens may be
here.

queens

0

1

0

0

469

Solution with Backtracking

x x Second Queen in
next row (no colli-
sion)

queens

0

2

0

0

469

Solution with Backtracking

x x

x x x x

All squares in next row
forbiden. Track back
!

queens

0

2

4

0

469

Solution with Backtracking

x x x Move queen one
step further and try
again

queens

0

3

0

0

469

Solution with Backtracking

x x x

x
next row

queens

0

3

1

0

469

Solution with Backtracking

x x x

x

Ok (only previous
queens have to be
tested)

queens

0

3

1

0

469

Solution with Backtracking

x x x

x

x x x x

All squares of the next
row forbidden. Track
back.

queens

0

3

1

4

469

Solution with Backtracking

x x x

x x
Continue in previous
row.

queens

0

3

1

0

469

Solution with Backtracking

x x x

x x x x

Remaining squares
also forbidden. Track
back!

queens

0

3

4

0

469

Solution with Backtracking

x x x x All squares of this row
did not yield a solu-
tion. Track back!

queens

0

4

0

0

469

Solution with Backtracking

x

again advance queen
by one square

queens

1

0

0

0

469

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

469

Solution with Backtracking

x

x x x
next row

queens

1

3

0

0

469

Solution with Backtracking

x

x x x

x x

next row

queens

1

3

0

1

469

Solution with Backtracking

x

x x x

x x

Found a solution

queens

1

3

0

2

469

Search Strategy Visualized as a Tree

470

Search Strategy Visualized as a Tree

x x

470

Search Strategy Visualized as a Tree

x x

x x x x

470

Search Strategy Visualized as a Tree

x x x

470

Search Strategy Visualized as a Tree

x x x

x

470

Search Strategy Visualized as a Tree

x x x

x

x x x x

470

Search Strategy Visualized as a Tree

x x x

x x

470

Search Strategy Visualized as a Tree

x x x

x x x x

470

Search Strategy Visualized as a Tree

x x x x

470

Search Strategy Visualized as a Tree

x

470

Search Strategy Visualized as a Tree

x

x x x

470

Search Strategy Visualized as a Tree

x

x x x

470

Search Strategy Visualized as a Tree

x

x x x

x x

470

Search Strategy Visualized as a Tree

x

x x x

x x

470

Check Queen

using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.
// does not share a common row, column or diagonal
// with any of the queens on rows 0 to row-1
bool valid(const Queens& queens, unsigned int row) {

unsigned int col = queens[row];
for (unsigned int r = 0; r != row; ++r) {

unsigned int c = queens[r];
if (col == c || col - row == c - r || col + row == c + r)

return false; // same column or diagonal
}
return true; // no shared column or diagonal

}
471

Recursion: Find a Solution

// pre: all queens from row 0 to row-1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row) {

if (row == queens.size())
return true;

for (unsigned int col = 0; col != queens.size(); ++col) {
queens[row] = col;
if (valid(queens, row) && solve(queens,row+1))

return true; // (else check next position)
}
return false; // no valid configuration found

} 472

Recursion: Count all Solutions

// pre: all queens from row 0 to row-1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the
// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row) {

if (row == queens.size())
return 1;

int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col) {

queens[row] = col;
if (valid(queens, row))

count += nSolutions(queens,row+1);
}
return count;

} 473

Main Program

// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main() {
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)) {

print(queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;

} else
std::cout << "no solution" << std::endl;

return 0;
} 474

	Characters and Texts II
	Texts

	Vectors II
	Multidimensional Vectors
	Shortest Paths

	Recursion 1
	Mathematical Recursion
	Termination
	The Call Stack
	Naive Recursion vs. Performance
	The Power of Recursion

