
11. Reference Types

Reference Types: Definition and Initialization, Pass By Value, Pass by
Reference, Temporary Objects, Const-References

355

Swap!

// POST: values of x and y have been exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;

}

int main() {
int a = 2;
int b = 1;
swap(a, b);
assert(a == 1 && b == 2); // ok!

}

356

Reference Types

We can make functions change the values of the call arguments
not a function-specific concept, but a new class of types: reference types

357

Reference Types: Definition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T . . .
. . . but initialization and assignment work di�erently

358

Anakin Skywalker alias Darth Vader

359

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalkeranakin_skywalker darth_vaderdarth_vader

assignment to the L-value behind the alias

360

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // effect: anakin_skywalker = 22

A variable of reference type (a reference) must be initialized with an
L-Value
The variable becomes an alias of the L-value (a di�erent name for the
referenced object)
Assignment to the reference updates the object behind the alias

361

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an object of
type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: literal 5 has no address

362

Pass by Reference
Reference types make it possible that functions modify the value of their call arguments

void increment (int& i) {
++i;

}
...
int j = 5;
increment (j);
std::cout << j; // 6

6

j i

initialization of the formal arguments: i be-
comes an alias of call argument j

363

Pass by Reference

Formal argument is of reference type:
⇒ Pass by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

364

Pass by Value

Formal argument is not of reference type:
⇒ Pass by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.

365

References in the Context of intervals_intersect

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect(int& l, int& h,

int a1, int b1, int a2, int b2) {
sort(a1, b1);
sort(a2, b2);

a1 b1

a2 b2l = std::max(a1, a2); // Assignments
h = std::min(b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect(lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2] 366

References in the Context of intervals_intersect

// POST: a <= b
void sort(int& a, int& b) {

if (a > b)
std::swap(a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect(int& l, int& h,
int a1, int b1, int a2, int b2) {

sort(a1, b1); // Initialization
sort(a2, b2); // Initialization
l = std::max(a1, a2);
h = std::min(b1, b2);
return l <= h;

}
367

Return by Reference

Even the return type of a function can be a reference type: Return by
Reference

int& inc(int& i) {
return ++i;

}

call inc(x), for some int variable x, has exactly the semantics of the
pre-increment ++x
Function call itself now is an L-value
Thus possible: inc(inc(x)) or ++(inc(x))

368

Temporary Objects

What is wrong here?

int& foo(int i) {
return i;

}

Return value of type int& becomes
an alias of the formal argument (lo-
cal variable i), whose memory life-
time ends after the call

// main()

3 // foo(k)imemory re-
leased

j

value of the actual parameter is
pushed onto the call stacki is returned as reference. . . and disappears from the stackj becomes alias to released memoryAccessing j is undefined behaviour!

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior

369

The Reference Guidline

Reference Guideline
When a reference is created, the object referred to must “stay alive” at
least as long as the reference.

370

Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a temporary object
with su�cient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (e�cient)

const T& r = rvalue;

r is initialized with the address of a temporary object with the value of the
rvalue (pragmatic)

371

What exactly does Constant Mean?

Consider L-value of type const T. Case: 1 T is no reference type.
⇒ Then the L-value is a constant

const int n = 5;
int& a = n; // Compiler error: const-qualification discarded
a = 6;

The compiler detects our cheating attempt

372

What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.
⇒ Then the L-value is a read-only alias which cannot be used to change
the underlying L-value.

int n = 5;

const int& r = n; // r is read-only alias of n
r = 6; // Compiler error: read-only reference

int& rw = n; // rw is read-write alias
rw = 6; // OK

373

When to use const T&?

void f_1(T& arg); void f_2(const T& arg);

Argument types are references; call arguments are thus not copied,
which is e�cient
But only f_2 “promises” to not modify the argument

Rule

If possible, declare function argument types as const T& (pass by read-
only reference) : e�cient and safe.

Typically doesn’t pay o� for fundamental types (int, double, . . .). Types with a larger
memory footprint will be introduced later in this course.

374

12. Vectors I
Vector Types, Sieve of Erathostenes, Memory Layout, Iteration

375

Vectors: Motivation

Now we can iterate over numbers
for (int i=0; i<n ; ++i) {...}

Often we have to iterate over data. (Example: find a cinema in Zurich
that shows “C++ Runner 2049” today)
Vectors allow to store homogeneous data (example: schedules of all
cinemas in Zurich)

376

Vectors: a first Application

The Sieve of Erathostenes
computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 226 9 12 15 18 212 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.
Question: how do we cross out numbers?
Answer: with a vector.

377

Sieve of Erathostenes with Vectors
#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {

// input
std::cout << "Compute prime numbers in {2,...,n-1} for n =? ";
unsigned int n; std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n-1], initialized to false
std::vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)

if (!crossed_out[i]) { // i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2*i; m < n; m += i) crossed_out[m] = true;

}
std::cout << "\n";
return 0;

}
380

Memory Layout of a Vector

A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

Memory segments for a value of type T each
(T occupies e.g. 4 bytes)

381

Random Access

Given
vector vec with T elements
int expression exp with value i ≥ 0

Then the expression

vec [exp]
is an L-value of type T
that refers to the ith element vec (counting from 0!)

vec[0] vec[1] vec[2] vec[3]

382

Random Access

vec [exp]

The value i of exp is called index
[] is the index operator (also subscript operator)

383

Random Access

Random access is very e�cient:

s: memory consumption of
T
(in cells)

p: address of vec p + s · i: address of vec[i]

vec[i]

384

Vector Initialization

std::vector<int> vec(5);
The five elements of vec are intialized with zeros)
std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2
std::vector<int> vec{4, 3, 5, 2, 1};
the vector is initialized with an initialization list
std::vector<int> vec;
An initially empty vector is initialized

385

Attention

Accessing elements outside the valid bounds of a vector leads to
undefined behavior

std::vector vec(10);
for (unsigned int i = 0; i <= 10; ++i)

vec[i] = 30; // Runtime error: accessing vec[10]

386

Attention

Bound Checks
When using a subscript operator on a vector, it is the sole responsibility
of the programmer to check the validity of element accesses.

387

Vectors O�er Great Functionality

Here a few example functions, additional follow later in the course.
std::vector<int> v(10);
std::cout << v.at(10);

// Access with index check → runtime error
// Ideal for homework

v.push_back(-1); // -1 is appended (added at end)
std::cout << v.size(); // outputs 11
std::cout << v.at(10); // outputs -1

390

13. Characters and Texts I
Characters and Texts, ASCII, UTF-8, Caesar Code

391

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes!

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements

392

The type char (“character”)

Represents printable characters (e.g. ’a’) and control characters (e.g. ’\n’)

char c = ’a’;

Declares and initialises
variable c of type char
with value ’a’

literal of type char

393

The type char (“character”)

Is formally an integer type
values convertible to int / unsigned int
all arithmetic operators are available (with dubious use: what is ’a’/’b’
?)
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

394

The ASCII-Code

Defines concrete conversion rules char −→ (unsigned) int

Zeichen −→ {0, . . . , 127}

’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

Is supported on all common computer systems
Enables arithmetic over characters

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; // abcdefghijklmnopqrstuvwxyz

395

Extension of ASCII: Unicode, UTF-8

Internationalization of Software⇒ large character sets required. Thus
common today:

Character set Unicode: 150 scripts, ca. 137,000 characters
encoding standard UTF-8: mapping characters↔ numbers

UTF-8 is a variable-width encoding: Commonly used characters (e.g.
Latin alphabet) require only one byte, other characters up to four
Length of a character’s byte sequence is encoded via bit patterns

Useable Bits Bit patterns
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

396

Some Unicode characters in UTF-8

Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

ht
tp

://
t-a

-w
.b

lo
gs

po
t.c

h/
20

08
/1

2/
fu

nn
y-

ch
ar

ac
te

rs
-in

-u
ni

co
de

.h
tm

l

P.S.: Search for apple "unicode of death" P.S.: Unicode & UTF-8 are not relevant for the exam

397

Caesar-Code

Replace every printable character in a text by its pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)

398

Caesar-Code: shift-Function

// PRE: divisor > 0
// POST: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c is printable
c = 32 + mod(c - 32 + s,95);

}

return c;
}

"- 32" transforms interval [32, 126] to [0, 94]
"mod(x, 95)" computes x mod 95 in [0, 94]
"32 +" transforms [0, 94] back to [32, 126]

399

Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {

std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Spaces and newline characters
shall not be ignored
Conversion to bool: returns false if and
only if the input is empty

Shift printable characters by s

400

Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)

401

Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {

std::cout << shift(next, s);
}

}

Currently only from std::cin to
std::cout

Better: from arbitrary character
source (console, file, ...) to
arbitrary character sink (console,
...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY

402

	Reference Types
	Reference Types
	Pass by Reference, Pass by Value
	Temporary Objects

	Vectors I
	Sieve of Erathostenes
	Vectors
	Memory Layout and Properties

	Characters and Texts I
	ASCII and UTF8
	Caesar-Code

