10. Functions Il

Pre- and Postconditions Stepwise Refinement, Scope, Libraries and
Standard Functions

304

Pre- and Postconditions

m characterize (as complete as possible) what a function does
m document the function for users and programmers (we or other people)

m make programs more readable: we do not have to understand how the
function works

m are ignored by the compiler

m Pre and postconditions render statements about the correctness of a
program possible — provided they are correct.

305

Preconditions

precondition:
m what is required to hold when the function is called?

m defines the domain of the function

0¢ is undefined fore < 0

// PRE: e >=0 || b != 0.0

306

Postconditions

postcondition:
m What is guaranteed to hold after the function call?

m Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b~e

307

Pre- and Postconditions

m should be correct:

m /f the precondition holds when the function is called then also the
postcondition holds after the call.

Funktion pow: works for all numbers b # 0

308

Pre- and Postconditions

m We do not make a statement about what happens if the precondition
does not hold.

m C+-+-standard-slang: “Undefined behavior”.

Function pow: division by 0

309

Pre- and Postconditions

m pre-condition should be as weak as possible (largest possible domain)

m post-condition should be as strong as possible (most detailed
information)

310

White Lies...

// PRE: e >=0 || b !'= 0.0
// POST: return value is b~e

Is formally incorrect:
m Overflow if e or b are too large
m ¢ potentially not representable as a double (holes in the value range!)

3n

White Lies are Allowed

// PRE: e >=0 || b !'= 0.0
// POST: return value is b~e

The exact pre- and postconditions are platform-dependent and often
complicated. We abstract away and provide the mathematical conditions. =
compromise between formal correctness and lax practice.

312

Checking Preconditions...

m Preconditions are only comments.
m How can we ensure that they hold when the function is called?

313

...With assertions

#include <cassert>

// PRE: e >= 0 || b !'= 0.0

// POST: return value is b"e

double pow(double b, int e) {
assert (e >=0 || b !'= 0);
double result = 1.0;

314

Postconditions with Asserts

m The result of “complex” computations is often easy to check.
m Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p*p/4 - q is nonnegative
// POST: returns larger root of the polynomial x”2 + p x + q
double root(double p, double q)
{
assert(pxp/4 >= q); // precondition
double x1 = - p/2 + sqrt(p*p/4 - q);
assert(equals(x1*x1+p*x1+q,0)); // postcondition
return x1;

316

Exceptions

m Assertions are a rough tool; if an assertions fails, the program is halted
in a unrecoverable way.

m C+-+provides more elegant means (exceptions) in order to deal with
such failures depending on the situation and potentially without halting
the program

m Failsafe programs should only halt in emergency situations and
therefore should work with exceptions. For this course, however, this

goes too far.

317

Stepwise Refinement

A simple technique to solve com-

plex problems

Niklaus Wirth. Program development by
stepwise refinement. Commun. ACM 14,

4,197

P. Wegner
Education Editor

Program
Development by
Stepwise
Bﬂeﬁnement

h
e Technische Hochschule
[unch Switzerland

The ereative activity of programming—to be distingaished

by examples serving to

example, from which & number of conclusions are drawn
regarding the art and the instruction of programming.
Key Words and Phrases: cducation in progeamming,
rogrumming ety episepogram o
CR Categorics: 150, 4

1. Introduction

Programning s usally taugh by xamples. Exper

fortunately, they are too often sclected with the prime
intent to demonkraic what Computercan do. Inead,
a main critrion for sletion should be thir suiabiliy

to exhibit certain widely applicable re urther.
s are commonly presenied a6
finished “products” followed by cxplanations of thei

purpose and thei linguse deail. ot ativep
ing sonsiss o the design of ew programs, the han
contemplation of old programs. As & consequence of
{hese teaching methous, he student obiains Ch impres
sion that programmi

language (with all the peculiarities and intricacies so

onsists mainly of mastering &

early, programming courses should teach methods of
nd construction, and the selected examples

Shoud be such that gradual development can be mecly
demonstrated.
This paper deals with a single example chosen with

these two purposes in mind. Some well known tec

i A vated (s
F presclcction, stepwise construction of trial solutions,
mlmmumw of auxiliary data, recursion), and the pro-
adually developed in a sequence of refinement

steps.

In cach step, one or several instructions of the given
program are decomposed into more detailed instruc
tions. This successive decomposition or refinement of
specifications terminates when all instructions are ex
pressed in terms of an underlying computer or program
ining language, and must therelore be guided by the

have to be refined, decomposed, or structured, and
natural Lo refine program and data specifications in
»

y refinement step implics some design decisions.
It is mportant tha these decision be made explii, and
that the programmer be aware of the underlying eriteria

atn h nod
and decision, Subtrees may be considered as families of
teristcs and struc.

solutions with certain common ch
tures. The notion of such & tree may be particularly
helpful in the situation of changing purpose and environ.
ment to which a program may sometime have to be
adapte

A guideline in the process of stepwise refinem
should be the principle to decompose decisions as much
as possible, to untangle aspects which are only seemingly
interdependent, and to defer those decisions which con
cern details of representation as long as possible. This

Communications gor o
fhe ACM Nomer &

318

Stepwise Refinement

m Solve the problem step by step. Start with a coarse solution on a high level of
abstraction (only comments and abstract function calls)

m At each step, comments are replaced by program text, and functions are
implemented (using the same principle again)

m The refinement also refers to the development of data representation (more
about this later).

m If the refinement is realized as far as possible by functions, then partial
solutions emerge that might be used for other problems.

m Stepwise refinement supports (but does not replace) the structural
understanding of a problem.

319

Example Problem

Find out if two rectangles intersect!

320

Coarse Solution

(include directives omitted)
int main()
{

// input rectangles

// intersection?

// output solution

return O;

323

Refinement 1: Input Rectangles

hl

(wlvyl)

(1517 Y1, W1, h1>

w1

(.’L’Q-/ Yo, Wo, h2)

($2yy2)

wWa

}Lg

324

Refinement 1: Input Rectangles

Width w and height h may be negative.

h>0

(z,y,w,h)

w <0

(z,y)

325

Refinement 1: Input Rectangles

int main()

{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, wi, hi;

std::cin >> x1 >> y1 >> w1l >> hil;

int x2, y2, w2, h2;

std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?
// output solution

return O;

326

Refinement 2: Intersection? and Output

int main()

{

input rectangles

bool clash = rectangles_intersect(xl,yl,wl,hl,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";

else
std::cout << '"no intersection!\n";

return O;

327

Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hi,
int x2, int y2, int w2, int h2)
{

return false; // todo

int main() {

input rectangles
intersection?

output solution

return O;

328

Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hi,
int x2, int y2, int w2, int h2)

{

return false; // todo

Function main

329

Refinement 3: ...with PRE and POST

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles,

// where wil, hl, w2, h2 may be negative.
// POST: returns true if (x1, y1, wil, hl) and
// (x2, y2, w2, h2) intersect

bool rectangles_intersect(int x1, int y1, int wl, int hi,
int x2, int y2, int w2, int h2)
{
return false; // todo

}

330

Refinement 4: Interval Intersection

Two rectangles intersect if and only if their z and y-intervals intersect.

hq [Y1,y1 + hi]

(l'b’yl) w1 ;
2| [y2, y2 + ha]

(-7727192) w2

[x1, 21 + w1]

[X2, T2 + wo]

331

Refinement 4: Interval Intersections

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles, where
// wl, hl, w2, h2 may be negative.
// POST: returns true if (x1, y1, wil, hil),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int wil, int hi,
int x2, int y2, int w2, int h2)

{

return intervals_intersect(xl, x1 + wl, x2, x2 + w2)

&& intervals_intersect(yl, y1 + hl, y2, y2 + h2); /

332

Refinement 4: Interval Intersections

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b

// POST: returns true if [al, bil],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)

{

return false; // todo

Function rectangles_intersect

Function main

333

Refinement 5: Min and Max

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bil],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return max(al, bl) >= min(a2, b2)
&% min(al, bl) <= max(a2, b2);

334

Refinement 5: Min and Max

// POST: the maximum of x and y is returned
int max(int x, int y)
if (x>y) return x; else nys;
3 S :
already exists in the standard library

// POST: the minimum Zf/f/ggdzy’igzzgturned
int min(int x, int y)

if (x<y) return x; else return y;

}

Function intervals_intersect
Function rectangles_intersect

Function main

335

Back to Intervals

// PRE: [al, bl], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bil],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return std::max(al, bl) >= std::min(a2, b2)
&% std::min(al, bl) <= std::max(a2, b2);

336

Look what we have achieved step by step!

#include <iostream> int main ()
#include <algorithm> {
std::cout << "Enter two rectangles [x y w h each]\n";
// PRE: [al, bl], [a2, h2] are (generalized) intervals, int x1, y1, wi, hi;
// with [a,b] := [b,a] if a>b std::cin >> x1 >> y1 >> w1l >> hi;
// POST: returns true if [al, bi],[a2, b2] intersect int x2, y2, w2, h2;
bool intervals_intersect(int al, int b1, int a2, int b2) std::cin >> x2 >> y2 >> w2 >> h2;
{ bool clash = rectangles_intersect(x1,yl,wl,h1,x2,y2,w2,h2);
return std::max(al, bl) >= std::min(a2, b2) if (clash)

&& std::min(al, bl) <= std::max(a2, b2); std::cout << "intersection!\n";

¥ else
std::cout << "no intersection!\n";

// PRE: (x1, yi, wi, h1), (x2, y2, w2, h2) are rectangles, where return 0;
// wl, hl, w2, h2 may be negative. 3

// POST: returns true if (x1, y1, wi, hl),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int wil, int hi,
int x2, int y2, int w2, int h2)
{
return intervals_intersect(xl, x1 + wil, x2, x2 + w2)
&& intervals_intersect(yl, yl + hi, y2, y2 + h2);

337

Result

m Clean solution of the problem

m Useful functions have been implemented
intervals_intersect
rectangles_intersect

Ergebnis

Saubere Lsung des Problems
Funktionen sind entstanden

intervals_intersect

rectangles_intersect

338

Gliltigkeit f

Where can a Function be Used?

#include <iostream>

int main()

{

std::cout << f(1); // Error: f undeclared
return O;

}

int f(int i) // Scope of f starts here
{

return 1i;

}

339

Scope of a Function

m is the part of the program where a function can be called

m is defined as the union of all scopes of its declarations (there can be
more than one)

declaration of a function: like the definition but without {...}.

double pow(double b, int e);

340

Giiltigkeit f

This does not work...

#include <iostream>

int main()
{

std::cout << £(1); // Error: f undeclared
return O;

int f(int i) // Scope of f starts here
{

return i;

341

...but this works!

#include <iostream>
int £(int i); // Gueltigkeitsbereich von f ab hier

int main()

{
std::cout << f(1);
return O;

int f(int i)
{

return i;

342

Forward Declarations, why?

Functions that mutually call each other:

int g(...); // forward declaration

int £(...) // f valid from here
{

o)
= g(...) // ok
= bl Bg
=
- E? int g(...)
G}
£(...) // ok

343

Reusability

m Functions such as rectangles_intersect and pow are useful in many
programs.
m “Solution”: copy-and-paste the source code

m Main disadvantage: when the function definition needs to be adapted,
we have to change all programs that make use of the function

344

Level 1: Qutsource the Function

// PRE: e >=0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e)
{
double result = 1.0;
if (e < 0) { // b7e = (1/b) " (-e)
b =1.0/b;
e = -e;
}
for (int i = 0; i < e; ++i)
result *= b;
return result;

345

Level 1: Include the Function

// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp" <—— file in working directory

int main()

{
std::cout
std::cout
std: :cout
std::cout
return O;

<< pow(2.0,
<< pow(1.5,
<< pow(5.0,
<< pow(-2.0,

_2) << n\nn;
2) << ll\n";
1) << "\Il";
9) << "\n";

346

Disadvantage of Including

B #include copies the file (mymath.cpp) into the main program
(callpow2.cpp).
m The compiler has to (re)compile the function definition for each program

m This can take long for many and large functions.

347

Level 2: Separate Compilation

of mymath. cpp independent of the main program:
double pow(double b,

int e)
{
g++ —-c mymath.cpp

“Funktion pow
J111100001101010001
) 711111110

mymath.cpp mymath.o

348

Level 2: Separate Compilation

Declaration of all used symbols in so-called header file.

// PRE: e > =0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e);

mymath.h

349

Level 2: Separate Compilation

of the main program, independent of mymath. cpp, if a declaration from
mymath is included.

#include <iostream>

#include "mymath.h"

int main()

{
std::cout << pow(2,-2) << "\n";
return O;

}

callpow3.cpp

350

The linker unites...

mymath.o

Funktion main
111100001101010001

010101101011010001
111111101000111010

callpow3.o

351

... what belongs together

‘Funktion main
+ J111100001101010001
010101101011010001

111111101000111010|

mymath.o callpow3.o

Executable callpow3

352

Availability of Source Code?

Observation
mymath . cpp (Source code) is not required any more when the mymath.o
(object code) is available.

Many vendors of libraries do not provide source code.
Header files then provide the only readable informations.

353

Open-Source Software

m Source code is generally available.

m Only this allows the continued development of code by users and dedicated
“hackers”.

m Even in commercial domains, open-source software gains ground.

m Certain licenses force naming sources and open development. Example GPL
(GNU Genereal Public License)

m Known open-source software: Linux (operating system), Firefox (browser),
Thunderbird (email program)...

354

Libraries

m Logical grouping of similar functions
pow

exp
cmath

log

sin

355

Name Spaces...

// cmath
namespace std {

double pow(double b, int e);

double exp(double x);

356

...Avoid Name Conflicts

#include <cmath>
#include "mymath.h"

int main()

{
double x = std::pow(2.0, -2); // <cmath>
double y = pow(2.0, -2); // mymath.h

357

Name Spaces / Compilation Units

In C++ the concept of separate compilation is independent of the concept

of name spaces
In some other languages,e.g. Modula / Oberon (partially also for Java) the

compilation unit can define a name space.

358

Functions from the Standard Library

m help to avoid re-inventing the wheel (such as with std: : pow);

m lead to interesting and efficient programs in a simple way;

m guarantee a quality standard that cannot easily be achieved with code
written from scratch.

359

Example: Prime Number Test with sqrt

n > 21is a prime number if and only if thereisnodin {2,...,n —1}
dividing n.

unsigned int d;
for (d=2; n % d !'= 0; ++d);

360

Prime Number test with sqrt

n > 2is a prime number if and only if thereisno din {2,...,[v/n]}
dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

m This works because std: :sqrt rounds to the next representable
double number (IEEE Standard 754).

361

Prime Number test with sqrt

// Test if a given natural number is prime.
#include <iostream>

#include <cassert>

#include <cmath>

int main ()
{
// Input
unsigned int n;
std::cout << "Test if n>1 is prime for n =7 ";
std::cin >> n;
assert (n > 1);

// Computation: test possible divisors d up to sqrt(n)
unsigned int bound = std::sqrt(n);

362

Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
X =7y;
y =1
}
int main(){
int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // fail! (:)

364

Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int@ X, int@ y) {

int t = x;

X =y;

y =1t

}

int main(){
int a = 2;
int b = 1;
swap(a, b);

assert(a==1 && b==2); // ok! (:)

Sneak Preview: Reference Types

m We can enable functions to change the value of call arguments.
m Not a new concept specific to functions, but rather a new class of types

N

F

366

	Functions II
	Pre- and Postconditions
	Stepwise Refinement
	Scope
	Declaration vs. Definition
	Libraries
	Separate Compilation
	Open Source
	Name Spaces
	The C++ Standard Library

