
6. Control Statements II
Visibility, Local Variables, While Statement, Do Statement, Jump Statements

174

Visibility

Declaration in a block is not visible outside of the block.
int main()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung“

175

Control Statement defines Block

In this respect, statements behave like blocks.
int main()
{

for (unsigned int i = 0; i < 10; ++i)
s += i;

std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

176

Scope of a Declaration
Potential scope: from declaration until end of the part that contains the
declaration.

in the block

{
...
int i = 2;
...

}

in function body

int main() {
...
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope
177

Scope of a Declaration
Real scope = potential scope minus potential scopes of declarations of symbols
with the same name

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

i 2
in

fo
rin

m
ai

n
sc

op
e

of
i

178

Automatic Storage Duration

Local Variables (declaration in block)
are (re-)created each time their declaration is reached

memory address is assigned (allocation)
potential initialization is executed

are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

179

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage duration.

180

while Statement

while (condition)
statement

statement: arbitrary statement, body of the while statement.
condition: convertible to bool.

181

while Statement

while (condition)
statement

is equivalent to

for (; condition;)
statement

182

while-Statement: Semantics

while (expression)
statement

condition is evaluated

true: iteration starts
statement is executed

false: while-statement ends.

183

while-statement: why?

In a for-statement, the expression often provides the progress
(“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += i;

If the progress is not as simple, while can be more readable.

184

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =


ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

185

The Collatz Sequence in C++
// Program collatz.cpp. Computes the Collatz sequence of a number n.

#include <iostream>

int main() {
// Input
std::cout << "Compute the Collatz sequence for n =? ";
unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {

if (n % 2 == 0) n = n / 2;
else n = 3 * n + 1;
std::cout << n << " ";

}
std::cout << "\n";

return 0;
}

186

The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233, 700,
350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668,
334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638,
319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288,
3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616,
2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122,
61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8,
4, 2, 1

187

The Collatz-Sequence

Does 1 occur for each n?
It is conjectured, but nobody can prove it!
If not, then the while-statement for computing the Collatz-sequence
can theoretically be an endless loop for some n.

188

do Statement

do
statement

while (condition);

statement: arbitrary statement, body of the do statement.
condition: convertible to bool.

189

do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)

statement

190

do-Statement: Semantics

do
statement

while (condition);

Iteration starts
statement is executed.

condition is evaluated
true: iteration begins
false: do-statement ends.

191

do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =? ";
std::cin >> a;
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);

192

Conclusion

Selection (conditional branches)

if and if-else-statement

Iteration (conditional jumps)

for-statement
while-statement
do-statement

Blocks and scope of declarations

193

Jump Statements

break;
continue;

194

break-Statement

break;

Immediately leave the enclosing iteration statement
useful in order to be able to break a loop “in the middle” 5

5and indispensible for switch-statements
195

Calculator with break

Sum up integers (if 0 then stop)

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
s += a; /* irrelevant in last iteration */
std::cout << "sum = " << s << "\n";

} while (a != 0);

196

Calculator with break

Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)

197

Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}

198

Calculator without break

Version without break evaluates a != 0 twice (and requires an additional
block).

int a = 1;
int s = 0;
for (; a != 0;) {

std::cout << "next number =? ";
std::cin >> a;
if (a != 0) {

s += a;
std::cout << "sum = " << s << "\n";

}
}

199

continue-Statement

continue;

Jump over the rest of the body of the enclosing iteration statement
Iteration statement is not left.

200

break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex disjunctions)
But they result in additional jumps and thus potentially complicate the
control flow
Their use is thus controversial, and should be carefully considered

201

Calculator with continue

Ignore negative input:

for (;;) {
std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}

202

Equivalence of Iteration Statements

We have seen:
while and do can be simulated with for

It even holds:
The three iteration statements provide the same “expressiveness”
(lecture notes)
Not so simple if a continue is used

203

Control Flow

Order of the (repeated) execution of statements
generally from top to bottom. . .
. . . except in selection and iteration statements

condition

statement

true

false if (condition)
statement

204

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

205

Control Flow for

for (init statement condition ; expression)
statement

init-statement

condition

statement

expression

true

false

206

Control Flow break in for

init-statement

condition

statement

expression
break

208

Control Flow continue in for

init-statement

condition

statement

expression

continue

209

Control Flow while

condition

statement

true

false

210

Control Flow do while

condition

statement

false

true

211

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to arbitrary
places in the program (goto).
Languages based on them:

Machine Language
Assembler (“higher” machine language)
BASIC, the first programming language for the
general public (1964)

if

goto

212

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/C
om

mo
do

re
_6

4

213

http://de.wikipedia.org/wiki/Commodore_64

Spaghetti-Code with goto

Output of of ???????????all prime numbers
using the programming language BASIC:

true

true

214

The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

215

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 == 0)

continue;
std::cout << i << "\n";

}

216

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 != 0)

std::cout << i << "\n";
}

217

Odd Numbers in {0, . . . , 100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement

218

Jump Statements

implement unconditional jumps.
are useful, such as while and do but not indispensible
should be used with care: only where the control flow is simplified
instead of making it more complicated

219

Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code

220

Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow – and thus program behaviour – not quite
obvious

221

Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";

break;
case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";

break;
default: std::cout << "Error!";

}

Jump to matching case

Fall-through

Exit switch

Fall-through

Exit switch
In all other cases

Advantage: Control flow clearly recognisable

222

The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and default-lables are
permitted, break has a special meaning.
Use of fall-through property is controversial and should be carefully
considered (corresponding compiler warning can be enabled)

223

Semantics of the switch-statement

switch (expression)
statement

expression is evaluated.
If statement contains a case-label with (constant) value of condition,
then jump there
otherwise jump to the default-lable, if available. If not, jump over
statement.
The break statement ends the switch-statement.

224

Control Flow switch

switch

statement

case

case

default

break

break

225

7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion; Holes in the
Value Range

226

“Proper” Calculation

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}
227

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages
Value range is getting even smaller than for integers.
Representability depends on the position of the decimal point.

third place truncated

228

Floating-point numbers

Observation: same number, di�erent representations with varying
“e�ciency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of significant digits remains constant

Floating-point number representation thus:

Fixed number of significant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent

229

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R, +,×) from mathematics
have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)

230

Arithmetic Operators

Analogous to int, but . . .
Division operator / models a “proper” division (real-valued, not integer)
No modulo operator, i.e. no %

231

Literals
are di�erent from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

232

Computing with float: Example

Approximating the Euler-Number

e =
∞∑

i=0

1
i! ≈ 2.71828 . . .

using the first 10 terms.

233

Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

// values for i-th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i-1)! -> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}

234

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

235

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point numbers.

9 * celsius / 5 + 32

236

Holes in the value range

float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8 W
ha

ti
s

go
in

g
on

he
re

?

237

Value range

Integer Types:
Over- and Underflow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Overflow and Underflow seldom, but ...
there are holes: R is “continuous”.

238

	Control Statements II
	Visibility
	Lifetime
	While and Do-While
	Jump Statements
	Control Flow

	Floating-point Numbers I
	Fixed-point Numbers
	Arithmetic Operators and Literals
	Mixed Expressions
	Value Range

