
3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

117

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

118

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

118

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

118

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”

119

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”

119

The Type bool in C++

represents logical values

Literals false and true
Domain {false, true}

bool b = true; // Variable with value true

120

The Type bool in C++

represents logical values
Literals false and true

Domain {false, true}

bool b = true; // Variable with value true

120

The Type bool in C++

represents logical values
Literals false and true
Domain {false, true}

bool b = true; // Variable with value true

120

Relational Operators

a < b (smaller than)

arithmetic type × arithmetic type→ bool

R-value × R-value→ R-value

121

Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b =

121

Relational Operators

a < b (smaller than)

bool b = (1 < 3); // b = true

121

Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b =

121

Relational Operators

a >= b (greater than)

int a = 0;
bool b = (a >= 3); // b = false

121

Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b =

121

Relational Operators

a == b (equals)

int a = 4;
bool b = (a % 3 == 1); // b = true

121

Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2*a-1); // b =

121

Relational Operators

a != b (not equal)

int a = 1;
bool b = (a != 2*a-1); // b = false

121

Boolean Functions in Mathematics
Boolean function

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

123

AND(x, y) x ∧ y

“logical And”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

124

Logical Operator &&

a && b (logical and)

int n = -1;
int p = 3;
bool b = (n < 0) && (0 < p); //

125

Logical Operator &&

a && b (logical and)

int n = -1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true

125

OR(x, y) x ∨ y

“logical Or”
f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y OR(x, y)

0 0 0

0 1 1

1 0 1

1 1 1

126

Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); //

127

Logical Operator ||

a || b (logical or)

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); // b = false

127

NOT(x) ¬x

“logical Not”

f : {0, 1} → {0, 1}

0 corresponds to “false”.
1corresponds to “true”.

x NOT(x)

0 1

1 0

128

Logical Operator !

!b (logical not)

bool→ bool

R-value→ R-value

129

Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); //

129

Logical Operator !

!b (logical not)

int n = 1;
bool b = !(n < 0); // b = true

129

Precedences

!b && a

m
(!b) && a

130

Precedences

!b && a
m

(!b) && a

130

Precedences

a && b || c && d

m
(a && b) || (c && d)

130

Precedences

a && b || c && d
m

(a && b) || (c && d)

130

Precedences

a || b && c || d

m
a || (b && c) || d

130

Precedences

a || b && c || d
m

a || (b && c) || d

130

Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || ! b

Some parentheses on the previous slides were actually redundant.

132

Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || (!b)

Some parentheses on the previous slides were actually redundant.

132

Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.

(7 + x) < y && y != (3 * z) || (!b)

Some parentheses on the previous slides were actually redundant.

132

Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.

((7 + x) < y) && (y != (3 * z)) || (!b)

Some parentheses on the previous slides were actually redundant.

132

Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.

((7 + x) < y) && (y != (3 * z)) || (!b)
Some parentheses on the previous slides were actually redundant.

132

Completeness

AND, OR and NOT are the boolean
functions available in C++.

Any other binary boolean function can be
generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

133

Completeness: XOR(x, y) x⊕ y

AND, OR and NOT are the boolean
functions available in C++.
Any other binary boolean function can be
generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

133

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y), NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

134

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y), NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

134

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y), NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

134

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

135

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

135

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

135

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

135

Completeness Proof

Step 1: generate the fundamental functions f0001, f0010, f0100, f1000

f0001 = AND(x, y)
f0010 = AND(x, NOT(y))
f0100 = AND(y, NOT(x))
f1000 = NOT(OR(x, y))

136

Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000, OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.

137

Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000, OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.

137

bool vs int: Conversion

bool can be used whenever int is expected

Many existing programs use int instead of bool

This is bad style originating from the language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

138

bool vs int: Conversion

bool can be used whenever int is expected

Many existing programs use int instead of bool

This is bad style originating from the language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

138

bool vs int: Conversion

bool can be used whenever int is expected – and
vice versa.

Many existing programs use int instead of bool

This is bad style originating from the language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

138

bool vs int: Conversion

bool can be used whenever int is expected – and
vice versa.

Many existing programs use int instead of bool

This is bad style originating from the language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

138

bool vs int: Conversion

bool can be used whenever int is expected – and
vice versa.
Many existing programs use int instead of bool

This is bad style originating from the language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

138

DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

139

DeMorgan Rules

!(a && b) == (!a || !b)

!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

139

DeMorgan Rules

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

139

Application: either ... or (XOR)

(x || y) && !(x && y)

x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y)

x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y)

not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y)

not: both or none

140

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

140

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x != 0 && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ x != 0 && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ true && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 6⇒ true && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ x != 0 && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ false && z / x > y

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ false

⇒ No division by 0

141

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x has value 0⇒ x != 0 && z / x > y

⇒ No division by 0

141

4. Defensive Programming

Constants and Assertions

142

Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors

Errors that the compiler cannot find:
runtime errors (always semantical)

143

Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors
Errors that the compiler cannot find:
runtime errors (always semantical)

143

The Compiler as Your Friend: Constants

Constants
are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

144

The Compiler as Your Friend: Constants

Constants
are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

144

The Compiler as Your Friend: Constants

Constants
are variables with immutable value

const int speed_of_light = 299792458;

Usage: const before the definition

144

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value does not
change”

145

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value does not
change”

145

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value does not
change”

145

Constants: Variables behind Glass

146

The const-guideline

const-guideline

For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the keyword
const in order to make the variable a constant.

A program that adheres to this guideline is called const-correct.

147

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the code

148

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

� It’s not a bug, it’s a feature! �

2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the code

148

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track

3. Question the (seemingly) obvious, there could be a typo in the code

148

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the code

148

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false

requires #include <cassert>
can be switched o� (potential performance gain)

149

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>

can be switched o� (potential performance gain)

149

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>
can be switched o� (potential performance gain)

149

Assertions for the gcd(x, y)

Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Input arguments for calcula-
tion

Precondition for the ongoing computation

150

Assertions for the gcd(x, y)

Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Precondition for the ongoing computation

150

Assertions for the gcd(x, y)

... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Precondition for the ongoing computation

Properties of the
gcd

151

Assertions for the gcd(x, y)

... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Properties of the
gcd

151

Switch o� Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

...
assert(x > 0 && y > 0); // Ignored

... // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
...

152

Fail-Fast with Assertions

Real software: many C++ files,
complex control flow

Errors surface late(r)→
impedes error localisation
Assertions: Detect errors early

153

Fail-Fast with Assertions

Real software: many C++ files,
complex control flow

Errors surface late(r)→
impedes error localisation
Assertions: Detect errors early

153

Fail-Fast with Assertions

Real software: many C++ files,
complex control flow
Errors surface late(r)→
impedes error localisation

Assertions: Detect errors early

🕱🕱

153

Fail-Fast with Assertions

Real software: many C++ files,
complex control flow
Errors surface late(r)→
impedes error localisation
Assertions: Detect errors early

🕱🕱

153

5. Control Structures I
Selection Statements, Iteration Statements, Termination, Blocks

154

Control Flow

Up to now: linear (from top to bottom)
Interesting programs require “branches” and “jumps”

// Project Hangman
...
while (game_not_over) {

...
if (word.contains(guess)) {

...
} else {

...
}

}
...

155

Selection Statements

implement branches
if statement
if-else statement

156

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then statement
is executed

statement: arbitrary statement
(body of the if-Statement)
condition: convertible to bool

157

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then statement
is executed

statement: arbitrary statement
(body of the if-Statement)
condition: convertible to bool

157

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then statement
is executed

statement: arbitrary statement
(body of the if-Statement)
condition: convertible to bool

157

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then statement
is executed

statement: arbitrary statement
(body of the if-Statement)
condition: convertible to bool

157

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

158

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

158

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

158

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

158

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

159

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Indentation

Indentation

159

Iteration Statements

implement loops

for-statement
while-statement
do-statement

160

Compute 1 + 2 + ... + n

// input
std::cout << "Compute the sum 1+...+n for n=?";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i)

s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";

161

Compute 1 + 2 + ... + n

// input
std::cout << "Compute the sum 1+...+n for n=?";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i)

s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";

161

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 i <= 2?

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 i <= 2?

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 i <= 2?

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

162

for-Statement Example

for (unsigned int i=1; i <= n ; ++i)
s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

s == 3

162

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

165

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement

condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

165

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool

expression: any expression
body statement: any statement (body of the for-statement)

165

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression

body statement: any statement (body of the for-statement)

165

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

165

for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:
expression changes its value that appears in condition .

167

for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:
After a finite number of iterations condition becomes false: Termination

167

Infinite Loops

Infinite loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no e�ect.
Die null statement has no e�ect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;

168

Infinite Loops

Infinite loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no e�ect.
Die null statement has no e�ect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;

168

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each C++-Program P
and each input I if the program P terminates with the input I .

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for
Alan Turing to construct a computing machine.

169

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each C++-Program P
and each input I if the program P terminates with the input I .

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for
Alan Turing to construct a computing machine.

169

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no d ∈ {2, . . . , n− 1}
divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

170

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no d ∈ {2, . . . , n− 1}
divides n .
A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

170

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no d ∈ {2, . . . , n− 1}
divides n .
A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

(body is the null statement)

170

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)

Exit: n%d != 0 evaluates to false as soon as a divisor is found — at
the latest, once d == n
Progress guarantees that the exit condition will be reached

171

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is found — at
the latest, once d == n

Progress guarantees that the exit condition will be reached

171

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is found — at
the latest, once d == n
Progress guarantees that the exit condition will be reached

171

Example: Correctness

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop terminates
with d == n then and only then is n prime.

172

Blocks

Blocks group a number of statements to a new statement

{statement1 statement2 ... statementN}

173

Blocks

Blocks group a number of statements to a new statement

Example: body of the main function

int main() {
...

}

173

Blocks

Blocks group a number of statements to a new statement

Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cout << "partial sum is " << s << "\n";

}

173

Blocks

Blocks group a number of statements to a new statement

Beispiel: if / else

if (d < n) // d is a divisor of n in {2,...,n-1}
std::cout << n << " = " << d << " * " << n / d << ".\n";

else {
assert (d == n);
std::cout << n << " is prime.\n";

}

173

	Logical Values
	Boolean Values and Relational Operators
	Boolean Functions and Logical Operators
	Precedences
	Completeness
	Short circuit Evaluation

	Defensive Programming
	Constants

	Control Structures I
	Selection Statements
	Iteration Statements
	Termination
	Blocks

