
24. Subtyping, Inheritance and
Polymorphism

Expression Trees, Separation of Concerns and Modularisation, Type
Hierarchies, Virtual Functions, Dynamic Binding, Code Reuse, Concepts of
Object-Oriented Programming

750

Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 * 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise di�erent nodes:

literals (e.g. 2), binary
operators (e.g. +), unary operators (e.g. √), function applications (e.g.
cos), etc.

751

Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 * 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise di�erent nodes:

literals (e.g. 2), binary
operators (e.g. +), unary operators (e.g. √), function applications (e.g.
cos), etc.

751

Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 * 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise di�erent nodes:

literals (e.g. 2), binary
operators (e.g. +), unary operators (e.g. √), function applications (e.g.
cos), etc.

751

Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 * 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise di�erent nodes: literals (e.g. 2), binary
operators (e.g. +), unary operators (e.g. √), function applications (e.g.
cos), etc.

751

Disadvantages

Implemented via a single node type:

struct tnode {
char op; // Operator (’=’ for literals)
double val; // Literal’s value
tnode* left; // Left child (or nullptr)
tnode* right; // ...
...

};

+ ?

= 2 ? ? ∗ ?

operator
Value left operand

right operand

?: unused

Observation: tnode is the “sum” of all required nodes (constants, addition,
. . .) ⇒ memory wastage, inelegant

752

Disadvantages

Observation: tnode is the “sum” of all required nodes –

and every
function must “dissect” this “sum”, e.g.:
double eval(const tnode* n) {

if (n->op == ’=’) return n->val; // n is a constant
double l = 0;
if (n->left) l = eval(n->left); // n is not a unary operator
double r = eval(n->right);
switch(n->op) {

case ’+’: return l+r; // n is an addition node
case ’*’: return l*r; // ...
...

⇒ Complex, and therefore error-prone

753

Disadvantages

Observation: tnode is the “sum” of all required nodes – and every
function must “dissect” this “sum”, e.g.:
double eval(const tnode* n) {

if (n->op == ’=’) return n->val; // n is a constant
double l = 0;
if (n->left) l = eval(n->left); // n is not a unary operator
double r = eval(n->right);
switch(n->op) {

case ’+’: return l+r; // n is an addition node
case ’*’: return l*r; // ...
...

⇒ Complex, and therefore error-prone

753

Disadvantages

Observation: tnode is the “sum” of all required nodes – and every
function must “dissect” this “sum”, e.g.:
double eval(const tnode* n) {

if (n->op == ’=’) return n->val; // n is a constant
double l = 0;
if (n->left) l = eval(n->left); // n is not a unary operator
double r = eval(n->right);
switch(n->op) {

case ’+’: return l+r; // n is an addition node
case ’*’: return l*r; // ...
...

⇒ Complex, and therefore error-prone

753

Disadvantages

struct tnode {
char op;
double val;
tnode* left;
tnode* right;
...

};

double eval(const tnode* n) {
if (n->op == ’=’) return n->val;
double l = 0;
if (n->left) l = eval(n->left);
double r = eval(n->right);
switch(n->op) {

case ’+’: return l+r;
case ’*’: return l*r;
...

This code isn’t modular – we’ll change that today!

754

New Concepts Today

1. Subtyping

Type hierarchy: Exp represents general
expressions, Literal etc. are concrete
expression

Every Literal etc. also is an Exp
(subtype relation)

Exp

Literal Addition Times

That’s why a Literal etc. can be used everywhere, where an Exp is
expected:
Exp* e = new Literal(132);

755

New Concepts Today

1. Subtyping

Type hierarchy: Exp represents general
expressions, Literal etc. are concrete
expression
Every Literal etc. also is an Exp
(subtype relation)

Exp

Literal Addition Times

That’s why a Literal etc. can be used everywhere, where an Exp is
expected:
Exp* e = new Literal(132);

755

New Concepts Today

1. Subtyping

Type hierarchy: Exp represents general
expressions, Literal etc. are concrete
expression
Every Literal etc. also is an Exp
(subtype relation)

Exp

Literal Addition Times

That’s why a Literal etc. can be used everywhere, where an Exp is
expected:
Exp* e = new Literal(132);

755

New Concepts Today

2. Polymorphism and Dynamic Dispatch
A variable of static type Exp can “host” expressions of di�erent dynamic
types:
Exp* e = new Literal(2); // e is the literal 2
e = new Addition(e, e); // e is the addition 2 + 2

Executed are the member functions of the dynamic type:
Exp* e = new Literal(2);
std::cout << e->eval(); // 2

e = new Addition(e, e);
std::cout << e->eval(); // 4

756

New Concepts Today

2. Polymorphism and Dynamic Dispatch
A variable of static type Exp can “host” expressions of di�erent dynamic
types:
Exp* e = new Literal(2); // e is the literal 2
e = new Addition(e, e); // e is the addition 2 + 2

Executed are the member functions of the dynamic type:
Exp* e = new Literal(2);
std::cout << e->eval(); // 2

e = new Addition(e, e);
std::cout << e->eval(); // 4

756

New Concepts Today

3. Inheritance

Certain functionality is shared among
type hierarchy members

E.g. computing the size (nesting depth)
of binary expressions (Addition, Times):

1 + size(left operand) + size(right operand)
⇒ Implement functionality once, and let

subtypes inherit it

Exp

Literal Addition Times

757

New Concepts Today

3. Inheritance

Certain functionality is shared among
type hierarchy members
E.g. computing the size (nesting depth)
of binary expressions (Addition, Times):

1 + size(left operand) + size(right operand)

⇒ Implement functionality once, and let
subtypes inherit it

Exp

Literal Addition Times

757

New Concepts Today

3. Inheritance

Certain functionality is shared among
type hierarchy members
E.g. computing the size (nesting depth)
of binary expressions (Addition, Times):

1 + size(left operand) + size(right operand)
⇒ Implement functionality once, and let

subtypes inherit it

Exp

Literal BinExp

Addition Times

757

Advantages

Subtyping, inheritance and dynamic
binding enable modularisation through
spezialisation

Inheritance enables sharing common
code across modules
⇒ avoid code duplication

Exp

Literal BinExp

Addition Times

Exp* e = new Literal(2);
std::cout << e->eval();

e = new Addition(e, e);
std::cout << e->eval();

758

Advantages

Subtyping, inheritance and dynamic
binding enable modularisation through
spezialisation
Inheritance enables sharing common
code across modules
⇒ avoid code duplication

Exp

Literal BinExp

Addition Times

Exp* e = new Literal(2);
std::cout << e->eval();

e = new Addition(e, e);
std::cout << e->eval();

758

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

Note: Today, we focus on the new
concepts (subtyping, . . .) and ig-
nore the orthogonal aspect of en-
capsulation (class, private vs.
public member variables)

759

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

Note: Today, we focus on the new
concepts (subtyping, . . .) and ig-
nore the orthogonal aspect of en-
capsulation (class, private vs.
public member variables)

759

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp

Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp

BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp

BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp

Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp

Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

760

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};
Activates dynamic dispatch

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

}; Enforces implementation by de-
rived classes . . .

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

}; Enforces implementation by de-
rived classes . . .

. . . that makes Exp an abstract class

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

Literal inherits from Exp . . .

761

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

Literal inherits from Exp . . .

. . . but is otherwise just a regular class

761

Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this->val;

}

762

Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this->val;

}

762

Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this->val;

}

762

Subtyping: A Literal is an Expression

A pointer to a subtype can be used everywhere, where a pointer to a
supertype is required:
Literal* lit = new Literal(5);

Exp* e = lit; // OK: Literal is a subtype of Exp

But not vice versa:
Exp* e = ...
Literal* lit = e; // ERROR: Exp is not a subtype of Literal

763

Subtyping: A Literal is an Expression

A pointer to a subtype can be used everywhere, where a pointer to a
supertype is required:
Literal* lit = new Literal(5);
Exp* e = lit; // OK: Literal is a subtype of Exp

But not vice versa:
Exp* e = ...
Literal* lit = e; // ERROR: Exp is not a subtype of Literal

763

Subtyping: A Literal is an Expression

A pointer to a subtype can be used everywhere, where a pointer to a
supertype is required:
Literal* lit = new Literal(5);
Exp* e = lit; // OK: Literal is a subtype of Exp

But not vice versa:
Exp* e = ...
Literal* lit = e; // ERROR: Exp is not a subtype of Literal

763

Polymorphie: a Literal Behaves Like a Literal

struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this->val;

}

Exp* e = new Literal(3);
std::cout << e->eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member function to
be executed
⇒ dynamic binding
Without Virtual the static type (hier:
Exp) determines which function is
executed
We won’t go into further details

764

Polymorphie: a Literal Behaves Like a Literal

struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this->val;

}

Exp* e = new Literal(3);
std::cout << e->eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member function to
be executed
⇒ dynamic binding

Without Virtual the static type (hier:
Exp) determines which function is
executed
We won’t go into further details

764

Polymorphie: a Literal Behaves Like a Literal

struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this->val;

}

Exp* e = new Literal(3);
std::cout << e->eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member function to
be executed
⇒ dynamic binding
Without Virtual the static type (hier:
Exp) determines which function is
executed

We won’t go into further details

764

Polymorphie: a Literal Behaves Like a Literal

struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this->val;

}

Exp* e = new Literal(3);
std::cout << e->eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member function to
be executed
⇒ dynamic binding
Without Virtual the static type (hier:
Exp) determines which function is
executed
We won’t go into further details

764

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication

765

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication

765

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication

765

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication

765

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication

765

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns

Code duplication
765

Extracting Commonalities . . . : BinExp

struct BinExp : public Exp {
Exp* left;
Exp* right;

BinExp(Exp* l, Exp* r);
int size() const;

};

BinExp::BinExp(Exp* l, Exp* r): left(l), right(r) {}

int BinExp::size() const {
return 1 + this->left->size() + this->right->size();

}

Note: BinExp does not implement eval and is therefore also an abstract class, just like Exp

766

Extracting Commonalities . . . : BinExp

struct BinExp : public Exp {
Exp* left;
Exp* right;

BinExp(Exp* l, Exp* r);
int size() const;

};

BinExp::BinExp(Exp* l, Exp* r): left(l), right(r) {}

int BinExp::size() const {
return 1 + this->left->size() + this->right->size();

}

Note: BinExp does not implement eval and is therefore also an abstract class, just like Exp
766

. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp* l, Exp* r);
double eval() const;

};

Addition::Addition(Exp* l, Exp* r): BinExp(l, r) {}

767

. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp* l, Exp* r);
double eval() const;

};

Addition inherits member vari-
ables (left, right) and functions
(size) from BinExp

Addition::Addition(Exp* l, Exp* r): BinExp(l, r) {}

767

. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp* l, Exp* r);
double eval() const;

};

Addition::Addition(Exp* l, Exp* r): BinExp(l, r) {}

Calling the super constructor (con-
structor of BinExp) initialises the
member variables left and right

767

. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp* l, Exp* r);
double eval() const;

};

Addition::Addition(Exp* l, Exp* r): BinExp(l, r) {}

double Addition::eval() const {
return

this->left->eval() +
this->right->eval();

}

767

. . . Inheriting Commonalities: Times

struct Times : public BinExp {
Times(Exp* l, Exp* r);
double eval() const;

};

Times::Times(Exp* l, Exp* r): BinExp(l, r) {}

double Times::eval() const {
return

this->left->eval() *
this->right->eval();

}

Observation: Additon::eval() and Times::eval() are very similar and could also be uni�ed. However, this
would require the concept of functional programming, which is outside the scope of this course.

768

Further Expressions and Operations

Further expressions, as classes derived from Exp, are possible, e.g. −, /,
√ , cos, log

A former bonus exercise (included in today’s lecture examples on Code
Expert) illustrates possibilities: variables, trigonometric functions,
parsing, pretty-printing, numeric simpli�cations, symbolic derivations,
. . .

769

Further Expressions and Operations

Further expressions, as classes derived from Exp, are possible, e.g. −, /,
√ , cos, log
A former bonus exercise (included in today’s lecture examples on Code
Expert) illustrates possibilities: variables, trigonometric functions,
parsing, pretty-printing, numeric simpli�cations, symbolic derivations,
. . .

769

Mission: Monolithic→ Modular X

struct tnode {
char op;
double val;
tnode* left;
tnode* right;
...

}

double eval(const tnode* n) {
if (n->op == ’=’) return n->val;
double l = 0;
if (n->left != 0) l = eval(n->left);
double r = eval(n->right);
switch(n->op) {

case ’+’: return l + r;
case ’*’: return l - r;
case ’-’: return l - r;
case ’/’: return l / r;
default:

// unknown operator
assert (false);

}
}

int size (const tnode* n) const { ... }

...

struct Literal : public Exp {
double val;
...
double eval() const {

return val;
}

};

struct Addition : public Exp {
...
double eval() const {

return left->eval() + right->eval();
}

};

struct Times : public Exp {
...
double eval() const {

return left->eval() * right->eval();
}

}

struct Cos : public Exp {
...
double eval() const {

return std::cos(argument->eval());
}

}

+
770

And there is so much more . . .

Not shown/discussed:
Private inheritance (class B : public A)
Subtyping and polymorphism without pointers
Non-virtuell member functions and static dispatch
(virtual double eval())
Overriding inherited member functions and invoking overridden
implementations
Multiple inheritance
. . .

771

Object-Oriented Programming

In the last 3rd of the course, several concepts of object-oriented
programming were introduced, that are brie�y summarised on the
upcoming slides.

Encapsulation (weeks 10-13):
Hide the implementation details of types (private section) from users
De�nition of an interface (public area) for accessing values and functionality in
a controlled way
Enables ensuring invariants, and the modi�cation of implementations without
a�ecting user code

772

Object-Oriented Programming

Subtyping (week 14):
Type hierarchies, with super- and subtypes, can be created to model
relationships between more abstract and more specialised entities
A subtype supports at least the functionality that its supertype supports –
typically more, though, i.e. a subtype extends the interface (public section) of
its supertype
That’s why supertypes can be used anywhere, where subtypes are required . . .
. . . and functions that can operate on more abstract type (supertypes) can also
operate on more specialised types (subtypes)
The streams introduced in week 7 form such a type hierarchy: ostream is the
abstract supertyp, ofstream etc. are specialised subtypes

773

Object-Oriented Programming

Polymorphism and dynamic binding (week 14):
A pointer of static typ T1 can, at runtime, point to objects of (dynamic) type T2,
if T2 is a subtype of T1

When a virtual member function is invoked from such a pointer, the dynamic
type determines which function is invoked
I.e.: despite having the same static type, a di�erent behaviour can be observed
when accessing the common interface (member functions) of such pointers
In combination with subtyping, this enables adding further concrete types
(streams, expressions, . . .) to an existing system, without having to modify the
latter

774

Object-Oriented Programming

Inheritance (week 14):
Derived classes inherit the functionality, i.e. the implementation of member
functions, of their parent classes
This enables sharing common code and thereby avoids code duplication
An inherited implementation can be overridden, which allows derived classes
to behave di�erently than their parent classes (not shown in this course)

775

25. Conclusion

776

Purpose and Format

Name the most important key words to each chapter. Checklist: “does
every notion make some sense for me?”
M motivating example for each chapter
C concepts that do not depend from the implementation (language)
L language (C++): all that depends on the chosen language
E examples from the lectures

777

Kapitelüberblick

1. Introduction
2. Integers
3. Booleans
4. Defensive Programming
5./6. Control Statements
7./8. Floating Point Numbers
9./10. Functions
11. Reference Types
12./13. Vectors and Strings
14./15. Recursion
16. Structs and Overloading
17. Classes
18./19. Dynamic Datastructures
20. Containers, Iterators and Algorithms
21. Dynamic Datatypes and Memory Management
22. Subtyping, Polymorphism and Inheritance 778

1. Introduction

M Euclidean algorithm
C algorithm, Turing machine, programming languages, compilation, syntax

and semantics
values and e�ects, fundamental types, literals, variables

L include directive #include <iostream>
main function int main(){...}
comments, layout // Kommentar
types, variables, L-value a , R-value a+b
expression statement b=b*b; , declaration statement int a;, return
statement return 0;

779

2. Integers

M Celsius to Fahrenheit
C associativity and precedence, arity

expression trees, evaluation order
arithmetic operators
binary representation, hexadecimal numbers
signed numbers, twos complement

L arithmetic operators 9 * celsius / 5 + 32
increment / decrement expr++
arithmetic assignment expr1 += expr2
conversion int↔ unsigned int

E Celsius to Fahrenheit, equivalent resistance

780

3. Booleans

C Boolean functions, completeness
DeMorgan rules

L the type bool
logical operators a && !b
relational operators x < y
precedences 7 + x < y && y != 3 * z
short circuit evaluation x != 0 && z / x > y
the assert-statement, #include <cassert>

E Div-Mod identity.

781

4. De�nsive Programming

C Assertions and Constants
L The assert-statement, #include <cassert>

const int speed_of_light=2999792458

E Assertions for the GCD

782

5./6. Control Statements

M linear control �ow vs. interesting programs
C selection statements, iteration statements

(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

L if statements if (a % 2 == 0) {..}
for statements for (unsigned int i = 1; i <= n; ++i) ...
while and do-statements while (n > 1) {...}
blocks and branches if (a < 0) continue;
Switch statement switch(grade) {case 6: }

E sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades

783

7./8. Floating Point Numbers

M correct computation: Celsius / Fahrenheit

C �xpoint vs. �oating point
holes in the value range
compute using �oating point numbers
�oating point number systems, normalisation, IEEE standard 754
guidelines for computing with �oating point numbers

L types float, double
�oating point literals 1.23e-7f

E Celsius/Fahrenheit, Euler, Harmonic Numbers

784

9./10. Functions

M Computation of Powers
C Encapsulation of Functionality

functions, formal arguments, arguments
scope, forward declarations
procedural programming, modularization, separate compilation
Stepwise Re�nement

L declaration and de�nition of functions
double pow(double b, int e){ ... }
function call pow (2.0, -2)
the type void

E powers, perfect numbers, minimum, calendar

785

11. Reference Types

M Swap

C value- / reference- semantics, pass by value, pass by reference, return by
reference
lifetime of objects / temporary objects
constants

L reference type int& a
call by reference, return by reference int& increment (int& i)
const guideline, const references, reference guideline

E swap, increment

786

12./13. Vectors and Strings

M Iterate over data: sieve of erathosthenes
C vectors, memory layout, random access

(missing) bound checks
vectors
characters: ASCII, UTF8, texts, strings

L vector types std::vector<int> a {4,3,5,2,1};
characters and texts, the type char char c = ’a’;, Konversion nach int
vectors of vectors
Streams std::istream, std::ostream

E sieve of Erathosthenes, Caesar-code, shortest paths

787

14./15. Recursion

M recursive math. functions, the n-Queen problem, Lindenmayer systems, a
command line calculator

C recursion
call stack, memory of recursion
correctness, termination,
recursion vs. iteration
Backtracking, EBNF, formal grammars, parsing

E factorial, GCD, sudoku-solver, command line calcoulator

788

16. Structs and Overloading

M build your own rational number

C heterogeneous data types
function and operator overloading
encapsulation of data

L struct de�nition struct rational {int n; int d;};
member access result.n = a.n * b.d + a.d * b.n;
initialization and assignment,
function overloading pow(2) vs. pow(3,3);, operator overloading

E rational numbers, complex numbers

789

17. Classes

M rational numbers with encapsulation

C Encapsulation, Construction, Member Functions

L classes class rational { ... };
access control public: / private:
member functions int rational::denominator () const
The implicit argument of the member functions

E �nite rings, complex numbers

790

18./19. Dynamic Datastructures

M Our own vector
C linked list, allocation, deallocation, dynamic data type

L The new statement
pointer int* x;, Null-pointer nullptr.
address and derference operator int *ip = &i; int j = *ip;
pointer and const const int *a;

E linked list, stack

791

20. Containers, Iterators and Algorithms

M vectors are containers
C iteration with pointers

containers and iterators
algorithms

L Iterators std::vector<int>::iterator
Algorithms of the standard library std::fill (a, a+5, 1);
implement an iterator
iterators and const

E output a vector, a set

792

21. Dynamic Datatypes and Memory Management

M Stack
Expression Tree

C Guideline ”dynamic memory“
Pointer sharing
Dynamic Datatype
Tree-Structure

L new and delete
Destructor stack::~stack()
Copy-Constructor stack::stack(const stack& s)
Assignment operator stack& stack::operator=(const stack& s)
Rule of Three

E Binary Search Tree

793

22. Subtyping, Polymorphism and Inheritance

M extend and generalize expression trees

C Subtyping
polymorphism and dynamic binding
Inheritance

L base class struct Exp{}
derived class struct BinExp: public Exp{}
abstract class struct Exp{virtual int size() const = 0...}
polymorphie virtual double eval()

E expression node and extensions

794

The End

End of the Course

795

	Subtyping, Inheritance and Polymorphism
	Retrospection
	Disadvantages
	New Concepts Today
	Advantages
	Syntax and Terminology
	Abstract and Concrete Classes
	Subtyping and Polymorphism
	Inheritance
	Conclusion
	Object-Oriented Programming

	Conclusion

