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Registration for Exercise Sessions

m Registration via web page
m Registration already open



Procedure

Mon — Tue — Wed — Thu —— Fri —— Sat — Sun — Mon — Tue — Wed — -+ — Tue — Wed ——>
U U T ] U U U
ssua/& / Submission \ /
Preliminary Discussion StudyCenter Discussion

m Exercises availabe at lectures

m Preliminary discussion in the following exercise session (on the
same/next day)

m StudyCenter (studycenter.ethz.ch)

m Solution must be submitted at latest one day before the next lecture
(23:59h)

m Discussion of the exercise in the session one week after the submission.
Feedback will be provided in the week after the submission.


studycenter.ethz.ch

Exercises

m The solution of the weekly exercises is thus voluntary but
stronly recommended.



No lacking resources!

For the exercises we use an online development environment
that requires only a browser, internet connection and your
ETH login.

If you do not have access to a computer: there are a a lot of computers
publicly accessible at ETH.



Online Tutorial

‘e
ET.ri -

Wiess

For a smooth course entry we provide
Goal: leveling of the different programming skills.
Written mini test for your self assessment in the second

exercise session.

an online C++ tutorial



Exams

The exam (in examination period 2018) will cover
m Lectures content (lectures, handouts)

m Exercise content (exercise sessions, exercises).

Written exam.
We will test your practical skills (programming skills) and theoretical

knowledge (background knowledge, systematics).



Offer (VVZ)

m During the semester we offer weekly programming exercises
that are graded. Points achieved will be taken as a bonus to
the exam.

m The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of
0.25. The admission to specially marked bonus depends on
the successful completion of other exercises. The achieved
mark bonus expires as soon as the lecture is given anew.



Offer (Concretely)

m 3 bonus exercises in total; 2/3 of the points suffice for the
exam bonus of 0.25 marks

m You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...

m Bonus exercises must be unlocked (— experience points)
by successfully completing the weekly exercises

m |t is again not necessary to solve all weekly exercises
completely in order to unlock a bonus exercise

m Details: course website, exercise sessions, online exercise
system (Code Expert)



Academic integrity

You submit solutions that you have written yourselfand that
you have understood.

We check this (partially automatically) and reserve our rights
to invite you to interviews.

Should you be invited to an interview: don’t panic. Primary
we presume your innocence and want to know if you under-
stood what you have submitted.



Credits

m Lecture:

m Original version by Prof. B. Gartner and Dr. F. Friedrich
m With changes from Dr. F. Friedrich, Dr. H. Lehner, Dr. M. Schwerhoff

m Script: Prof. B. Gartner
m Code Expert: Dr. H. Lehner, David Avanthay and others

Rand in dieser Form



1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The
first C++Program and its Syntactic and Semantic Ingredients



What is Computer Science?

m The science of systematic processing of informations,. ..

m ... particularly the automatic processing using digital
computers.

(Wikipedia, according to “Duden Informatik”)



Computer Science vs. Computers

Computer science is not about machines, in the same
way that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

i
o

1991 .pdf

/cseducation/fellows

http://larc.unt.edu/ian/researct


http://larc.unt.edu/ian/research/cseducation/fellows1991.pdf

Computer Science vs. Computers

m Computer science is also concerned with the development
of fast computers and networks...

m ...but not as an end in itself but for the systematic
processing of informations.



Computer Science # Computer Literacy

Computer literacy: user knowledge
m Handling a computer

m Working with computer programs for text processing, email,
presentations ...

Computer Science Fundamental knowledge
m How does a computer work?
m How do you write a computer program?



Back from the past: This course

m Systematic problem solving with algorithms and the
programming language C++.

m Hence: not only
but also programming course.



Algorithm: rundamentat In  computer

Science

Algorithm:
m [nstructions to solve a problem step by step

m Execution does not require any intelligence, but precision
(even computers can do it)

m according to Muhammed al- Chvvarl7'
author of an arabic
computation textbook (about 825) :

“Dixit algorizmi...” (Latin translation)

rg/wiki/Algorithmus

wikipedia.o:


http://de.wikipedia.org/wiki/Algorithmus

Oldest Nontrivial Algorithm

Euclidean algorithm (from the elements from Euklid, 3.

century B.C.)

m Input: integersa >0,b >0
m Output: gcd of a und b

While b # 0
If « > b then
a+a—>
else:
b+ b—a

Result: a. 2



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and efficiency
discussions, proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable,
specific programming language, various
implementations possible)

Euclid: Core idea and pseudo code shown, implementation
vet missing

21



Euklid in the Box

Speicher
0 1 2 3 4 5 6 7
?
(8] (9] L=07 SR;HL'Q L — R ||springe|| R—L ||springe
L R stop pzu 69 — [8] Zu 0 — [9] Zu 0
. 7 \.
~" ~"
Programmcode Daten
Daten _
—_—A While b # 0
Links  Rechts If a > b then
a$—a—>b
else:
a
b b+ b—ua
Ergebnis: a.

Register

22



Computers — Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Folge von Symbolen auf Ein- und Ausgabeband

| | | | I l \ I T T T T
Programmcode (x ) Eingabe Ausgabe
1 1 1 1 1 1 1 1 1 1 1 1 1
Lese- /
Schreibkopf
Festprogramm-
Computer

Kontrolleinheit

Interner Zustand «Symbol liberschreiben»
«Nach links»

«Nach rechts»

«Symbol lesen»

http://en.wikipedia.org/wiki/Alan_Turing


http://en.wikipedia.org/wiki/Alan_Turing

Computer - Implementation

m 71 - Konrad Zuse (1938)
m ENIAC - John Von Neumann (1945)

Von Neumann Architektur

John von Neumann
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http://www.hs.uni-hamburg.de/DE/GNT/hh/biogr/zuse.htm
http://commons.wikimedia.org/wiki/File:John_von_Neumann.jpg

Computer

Ingredients of a Von Neumann Architecture

m Memory (RAM) for programs and data

m Processor (CPU) to process programs and data
m |/O components to communicate with the world
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Memory for data and program

m Sequence of bits from {0, 1}.

m Program state: value of all bits.

m Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
m Every memory cell has an address.

m Random access: access time to the memory cell is (nearly)
iIndependent of its address.

01001101 00101110

Addresse : 17 Addresse : 18
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Processor

The processor (CPU)

m executes instructions in machine language
m has an own "fast" memory (registers)

m can read from and write to main memory

m features a set of simplest operations = instructions (e.g.
adding to register values)

27



Programming

m With a programming language we issue commands to a
computer such that it does exactly what we want.

m The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890

N
@®

http://en.wikipedia.org/wiki/Harvard_Computers


http://en.wikipedia.org/wiki/Harvard_Computers

Computing speed

In the time, on average, that the sound takes to travel from
from my mouth to you ...

30 m = more than 100.000.000 instructions

v

a contemporary desktop PC can process more than 100
millions instructions '

TUniprocessor computer at 1 GHz.



Why programming?

m Do | study computer science or what ...
m There are programs for everything ...
m | am not interested in programming ...

m because computer science is a mandatory subject here,
unfortunately...

30



Mathematics used to be the lingua franca of the natu-
ral sciences on all universities. Today this is computer
science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics ©)

31



This is why programming!

m Any understanding of modern technology requires
knowledge about the fundamental operating principles of a
computer.

m Programming (with the computer as a tool) is evolving a
cultural technique like reading and writing (using the tools
paper and pencil)

m Programming is the interface between engineering and
computer science - the interdisciplinary area is growing
constantly.

m Programming is fun (and is useful)!

32



Programming Languages

m The language that the computer can understand (machine
language) is very primitive.

m Simple operations have to be subdivided into (extremely)
many single steps

m The machine language varies between computers.

33



Higher Programming Languages

can be represented as program text that

m can be understood by humans

m is independent of the computer model
— Abstraction!

34



Programming langauges — classification

Differentiation into
m Compiled vs. interpreted languages

m C++, C#, Java, Go, Pascal, Modula, Oberon
VS.
Python, Javascript, Matlab

m Higher programming languages vs. Assembler

m Multi-purpose programming languages vs. single purpose
programming languages

m Procedural, object oriented, functional and logical
languages.

35



Why C++7?

Other popular programming languages: Java, CH, Python,
Javascript, Swift, Kotlin, Go, ... ...

General consensus:
m ,The” programming language for systems programming: C
m C has a fundamental weakness: missing (type) safety

36



Why C++7?

Over the years, C++'s greatest strength and its greatest
weakness has been its C-Compatibility — B. Stroustrup

37

and Evolution of C++, Kap. 4.5

B. Stroustrup, Design



Why C++7?

m C++equips C with the power of the abstraction of a higher
programming language

m In this course: C++ introduced as high level language, not
as better C

m Approach: traditionally procedural — object-oriented.

38



Syntax and Semantics

m Like our language, programs have to be formed according to
certain rules.

m Syntax: Connection rules for elementary symbols (characters)
®m Semantics: interpretation rules for connected symbols.

m Corresponding rules for a computer program are simpler
but also more strict because computers are relatively

stupid.

39



Deutsch vs. C++

Deutsch
Alleen sind nicht gefahrlich, Rasen ist gefahrlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b =a * a; // b=ad’
b=b * b; // b=a*

40



C++: Kinds of errors illustrated with German sentences

m Das Auto fuhr zu schnell. Syntaktisch und semantisch korrekt.
m DasAuto fuh r zu sxhnell. syntaxfehler: Wortbildung.

m Rot das Auto ist. syntaxfehler: Satzstellung.

m Man empfiehlt dem Dozenten syntaxfehler: Satzzeichen fehlen .

nicht zu widersprechen
m Sie ist nicht gross und rothaarig.

m Die Auto ist rot.

m Das Fahrrad galoppiert schnell.

m Manche Tiere riechen gut.

4



Syntax and Semantics of C++

Syntax:

m When is a text a C++ program?

m |.e. is it grammatically correct?

m — Can be checked by a computer

Semantics:

m What does a program mean?

m Which algorithm does a program implement?
m — Requires human understanding

42



Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)
m is the “law” of C++
m defines the grammar and meaning of C++programs

m since 2011, continuously extended with features for
advanced programming
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Programming Tools

m Editor: Program to modify, edit and store C++program texts

m Compiler: program to translate a program text into machine
language

m Computer: machine to execute machine language programs

m Operating System: program to organize all procedures such
as file handling, editor-, compiler- and program execution.

4t



Language constructs with an example

m Comments/layout m constants

m Include directive m identifiers, names
m the main function m expressions

m Values effects m |- and R- values
m Types and functionality m operators

m literals m statements

m variables

45



The first C++ program

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {
// input
std::cout << "Compute a8 for a =7 ";
int a;
std::cin >> a; <—— Statements: Do something (read in a)!
// computation
int b = a * a; // b = a2 ¢—— Expressions: Compute a value (a?)!
b =Db * b; // b =a"4
// output b * b, i.e., a”8
std::cout << a << ""8 = " << b * b << "\n";

return O;
46



Behavior of a Program

At compile time:
m program accepted by the compiler (syntactically correct)

m Compiler error

During runtime:

m correct result

m incorrect result

m program crashes

m program does not terminate (endless loop)

47



“Accessories:” Comments

// Program: power8.cpp

// Raise a number to the eighth power.

#include <iostream>

int main() {
// input ¢
std::cout << "Compute a8 for a =7 ";
int a;
std::cin >> a;
// computation
int b=a * a; // b=2a2

comments

b =b * b; // b =2a4

// output b * b, i.e., a”8

std::cout << a << ""8 = " << b * b << "\n";
return O;

48



Comments and Layout

Comments
m are contained in every good program.

m document what and how a program does something and
how it should be used,

m are ignored by the compiler

m Syntax: “double slash” // until the line ends.
The compiler ignores additionally

m Empty lines, spaces,

m Indendations that should reflect the program logic

49



Comments and Layout

The compiler does not care...

#include <iostream>

int main(){std::cout << "Compute a~8 for a =7 ";
int a; std::cin >> a; int b = a * a; b =D * b;
std::cout << a << "8 = " << b*b << "\n";return 0;}

... but we do!

50



“Accessories:” Include and Main Function

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream> <———— include directive

int main() £ declaration of the main function
// input
std::cout << "Compute a8 for a =7 ";
int a;

std::cin >> a;
// computation
int b =a *x a; // b =a"2

b =Db * b; // b =2a4

// output b * b, i.e., a”8

std::cout << a << ""8 = " << b * b << "\n";
return O;

51



Include Directives

C++ consists of
m the core language
m standard library

m in-/output (header iostream)
m mathematical functions (cmath)
"

#include <iostream>
m makes in- and output available

52



The main Function

the main-function
m is provided in any C++ program

m s called by the operating system
m like a mathematical function ...

m arguments
m return value

m .. but with an additional effect

m Read a number and output the 8th power.

53



Statements: Do something!

int main() {
// input

std::cout << "Compute a8 for a =7 ";
int a;

std::cin >> a;«¢ expression statements
// computation
int b = a * a;

b=b x b;

// output b * b, i.e., a8

std::cout << a << "8 = " << b * b << "\n";
return 0;¢ return statement



Statements

m building blocks of a C++ program

m are executed (sequentially)

m end with a semicolon

m Any statement has an effect (potentially)

55



Expression Statements

m have the following form:
expr;
where expr is an expression
m Effect is the effect of expr, the value of expr is ignored.

b = bb;

56



Return Statements

m do only occur in functions and are of the form
return expr,

where expr is an expression
m specify the return value of a function

return O;

57



Statements - Effects

int main() { effect: output of the string Compute .

// input
std::cout << "Compute a”8 for a =7 ";+—__§§______///

int a;

std::cin >> a;4———— Effect: input of a number stored in a
// computation Effect: saving the computed value of ¢ - a into b
int b = a *x a;¢// b = a2

b =Db % b; // b =a"4

Effect: saving the computed value of b-b into b
// output b * b, i.e., a”8

std::cout << a << ""8 = " << b * b << "\n";
return 0;4—5\\ N\

Effect: return the value 0 Effect: output of the value of @ and the ¢
58



Values and Effects

m determine what a program does,
m are purely semantical concepts:

m Symbol 0 means Value 0 € Z
B std::cin >> a; means effect "read in a number"

m depend on the program state (memory content, inputs)

59



Statements - Variable Definitions

int main() {
// input
std::cout << "Compute a8 for a =7 ";
a;< declaration statement
type std::cin >> a;
names // computation

b=a*a; / b=a2

b =Db * b; // b= a4

// output b * b, i.e., a8

std::cout << a << ""8 = " << b * b << "\n";
return O;

60



Declaration Statements

m introduce new names in the program,
m consist of declaration and semicolon Example: int a;
m can initialize variables Example: int b = a * a;
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Types and Functionality

int:
m C++ integer type
m corresponds to (%, +, x) in math

In C++ each type has a name and
m a domain (e.g. integers)
m functionality (e.g. addition/multiplication)
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Fundamental Types

C++ comprises fundamental types for
m integers (int)

m natural numbers (unsigned int)

m real numbers (float, double)

m boolean values (bool)

n
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Variables

m represent (varying)
values
m have

® name
m type
= value
m address

m are "visible" in the
program context

int a; defines avariable with

® name: a
m type: int

m value: (initially)
undefined

m Address: determined by
compiler

64



ldentifiers and Names

(Variable-)names are identifiers

m allowed: A,...Z; a,...,2, 0,...9; _

m First symbol needs to be a character.
There are more names:

m std::cin (Qualified identifier)

65



Expressions: compute a value!

Expressions

m represent Computations

m are either primary (b)

m or composed (bxb)...

m ...from different expressions, using operators

m have a type and a value

Analogy: building blocks
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Expressions Building Blocks

// input Yo composite expression
|std::cout << "Compute a”8 for a =7 "k

int a;

std::cin >> a;

// computation
int b =a *xa; // b=a"2
||§ = b * bg— Two times composed expression

return royrtimes composed expression

67



Expressions

m represent computations
m are primary or composite (by other expressions and

operations)

a *x a

composed of

variable name, operator symbol,variable name

variable name: primary expression

m can be put into parantheses
a * alsequivalentto (a * a)
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Expressions

have type, value und effect (potentially).

b=Dbx*xbDb
a * a
m type: int (type of the operands) - e s (I elor Oz mmdln)
el prdie: of 2 a5 m Value: product of band b
m effect: assignment of the
m Effect: none.

product value to b

The type of an expression is fixed but the value and effect are
only determined by the evaluation of the expression
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Literals

m represent constant values
m have a fixed type and value
m are "syntactical values"

m 0 has type int, value 0.
m 1.2e5 has type double, value 1.2 - 10°.

70



L-Values and R-Values

std::cout << |“Compute a“8 for a =7 "|;
int a;

std::cin > p——— L-value (expression + address)

// output b * b, i.e., a”8
std::cout << a<< ""8 = " << E << "\ n";

return %
R-Value (expression that is not an L-value)

7



L-Values and R-Values

L-Wert (“Left of the assignment operator”)

m Expression with address

m Value is the content at the memory location according to
the type of the expression.

m [-Value can change its value (e.g. via assignment)

Example: variable name
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L-Values and R-Values

R-Wert (“Right of the assignment operator”)

m Expression that is no L-value

m Any L-Value can be used as R-Value (but not the other
way round)

m An R-Value cannot change its value

Example: literal 0
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Operators and Operands Building Blocks

left operand (output stream)
[ output operator right operand (string)
input l{//—
std cout "Compute a8 for a "

I

int a;

std.:cin >> a
\K \ richt onerand (variable name)

// computa+ty INput operator
int b =—= left operand (input stream)

b =Db * b; // b =a"4

//%; a}ssign ment operator ~g

std::cout << a << ""8 = " << b * b << "\n";

return O; C
& multiplication operator

74



Operators

Operators

m combine expressions (operands) into new composed
expressions

m specify for the operands and the result the types and if the
have to be L- or R-values.

m have an arity
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Multiplication Operator *

m expects two R-values of the same type as operands (arity 2)

m "returns the product as R-value of the same type", that
means formally:

m The composite expression is an R-value; its value is the product of
the value of the two operands

Examples:a * aandb * b

76



Assignment Operator =

m Left operand is L-value,
m Right operand is R-value of the same type.

m Assigns to the left operand the value of the right operand
and returns the left operand as L-value

Examplesb = b * banda = b

Attention, Trap!

The operator = corresponds to the assignment operator of mathematics
(:=), not to the comparison operator (=).

77



Input Operator »

left operand is L-Value (input stream)
right operand is L-Value

assigns to the right operand the next value read from the
Input stream, removing it from the input stream and returns
the input stream as L-value Example std::cin >> a (mostly
keyboard input)

Input stream Is being changed and must thus be an L-Value.
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Output Operator «

m left operand is L-Value (output stream)
m right operand is R-Value

m outputs the value of the right operand, appends it to the
output stream and returns the output stream as L-Value
Example: std: :cout << a (mostly console output)

m The output stream Is being changed and must thus be an
L-Value.
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Output Operator «

Why returning the output stream?
m allows bundling of output

std::cout << a << ""8 = " <K< b * b << "\n"

Is parenthesized as follows

((((std::cout << a) << ""8 = ") << b * b) << "\n")

m std::cout << a s the left hand operand of the next <<
and is thus an L-Value that is no variable name
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2. Integers

Evaluation of Arithmetic Expressions, Associativity and

Precedence, Arithmetic Operators, Domain of Types int,
unsigned int
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Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a”8 for a = 7";
std::cin >> a;

r=axa; // r
r*xr; //r

a~2
a~4

H
I

std::cout << "a"8 = " << r*r << ’\n’;
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Terminology: L-Values and R-Values

L-Wert (“Left of the assignment operator”)
m Expression identifying a memory location

m For example a variable
(we'll see other L-values later in the course)

m Value is the content at the memory location according to
the type of the expression.

m [-Value can change its value (e.g. via assignment)
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Terminology: L-Values and R-Values

R-Wert (“Right of the assignment operator”)
m Expression that is no L-value
m Example: integer literal 0

m Any L-Value can be used as R-Value (but not the other way
round) ...

m ...by using the value of the L-value
(e.g. the L-value a could have the value 2, which is then
used as an R-value)

m An R-Value cannot change its value
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L-Values and R-Values
R-Value

std::cout << |"Compute a"8 for a =7 "|;

int a;

std::cin > plt——— L-value (expression + address)
L-value (expression + address)

std::cout << a<< ""8 = " << E << ".\ n";

return |§|;
N~ R-Value (expression that is not an L-value)
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Celsius to Fahrenheit

// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =7 ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "
<< 9 % celsius / 5 + 32 << " degrees Fahrenheit.\n";

return O;
86



9 % celsius / 5 + 32

9 % celsius / 5 + 32

m Arithmetic expression,
m contains three literals, a variable, three operator symbols
How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction
9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence
("bind more strongly") than additive operators (+, -)
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Associativity

From left to right

9 * celsius / 5 + 32
bedeutet

((9 * celsius) / 5) + 32
Rule 2: Associativity

Arithmetic operators (%, /, %, +, -) are left associative: oper-
ators of same precedence evaluate from left to right
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Arity

Sign

-3 -4
means
(-3) - 4

Rule 3: Arity

Unary operators +, - first, then binary operators +, -.
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Parentheses

Any expression can be put in parentheses by means of
m associativities

m precedences
m arities (number of operands)

of the operands in an unambiguous way (Details in the
lecture notes).

91



Expression Trees

Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

celsius

32
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Evaluation Order

"From top to bottom" in the expression tree
9 * celsius / 5 + 32

celsms

)
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Evaluation Order

Order is not determined uniquely:
9 * celsius / 5 + 32

celsms

)
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Expression Trees — Notation

Common notation: root on top
9 x celsius / 5 + 32

+

32

9 celsius
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Evaluation Order — more formally

Valid order: any node is evaluated after its children

@ C++: the valid order to
@ @ be used is not defined.

m "Good expression": any valid evaluation order leads to the
same result.
m Example for a “bad expression”: a*(a=2)
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Evaluation order

Guideline

Avoid modifying variables that are used in the same expres-
sion more than once.
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Arithmetic operations

Symbol

Arity Precedence Associativity

Unary +
Negation
Multiplication
Division
Modulo
Addition

Subtraction

N NN NN

16
16
14
14
14
13
13

right
right
left
left
links
left
left

All operators: [R-value x] R-value — R-value

98



Intertude: Assignment expression —in more
detail

m Already known: a = b means Assignment of b (R-value) to
a (L-value). Returns: L-value.

m What doesa = b = ¢ mean?
m Answer: assignment is right-associative

a=b=c = a=(b=c)

Multiple assignment: a = b = 0 = b=0; a=0
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Division
m Operator / implements integer division
5 / 2 hasvalue 2
B |n fahrenheit.cpp
9 * celsius / 5 + 32
15 degrees Celsius are 59 degrees Fahrenheit
m Mathematically equivalent...but not in C++!
9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit
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Loss of Precision

Guideline

m Watch out for potential loss of precision

m Postpone operations with potential loss of precision to
avoid “error escalation”
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Division and Modulo

m Modulo-operator computes the rest of the integer division

5 / 2 hasvalue 2, 5 % 2 hasvalue 1.
m It holds that

(-a)/b == -(a/b)
m |t also holds:

(a/ b) *xb +a % b hasthevalue of a.

m From the above one can conclude the results of division
and modulo with negative numbers
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Increment and decrement

m Increment / Decrement a number by one is a frequent
operation
m works like this for an L-value:

expr = expr + 1.

Disadvantages

m relatively long
B expr IS evaluated twice

m Later: L-valued expressions whose evaluation is “expensive”
m expr could have an effect (but should not, cf. guideline)
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In-/Decrement Operators

Post-Increment
expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment

++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement

expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)
Pra-Dekrement

—-—expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
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In-/decrement Operators

use arity prec assoz L-/R-value
Post-increment  expr++ 1 17 left [-value — R-value
Pre-increment ++expr 1 16 right  L-value — L-value
Post-decrement expr-- 1 17 left L-value — R-value
Pre-decrement  --expr 1 16 right  L-value — L-value
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In-/Decrement Operators

int a = 7;

std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9



In-/Decrement Operators

Is the expression
++expr; < we favour this

equivalent to
expr++;7?

Yes, but

m Pre-increment can be more efficient (old value does not
need to be saved)

m Post In-/Decrement are the only left-associative unary
operators (not very intuitive)

107



C++ VS, ++C

Strictly speaking our language should be named ++C because

m it is an advancement of the language C
m while C++ returns the old C.

108



Arithmetic Assignments

a +=b>b
=

a=a+b

analogously for -, *, /and %
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Arithmetic Assignments

Gebrauch Bedeutung
+= exprl += expr2 exprl = exprl + expr2
-= exprl -= expr2 exprl = exprl - expr2
*= exprl *= expr2 exprl = exprl * expr2
/= exprl /= expr2 exprl = exprl / expr2
%= exprl /= expr2 exprl = exprl 7, expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.
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Binary Number Representations

Binary representation (Bits from {0,1})
bpbn—1...b1bg

corresponds to the number b, - 2" +---+ b1 -2+ by
101011 corresponds to 43.

Least Significant Bit (LSB)
Most Significant Bit (MSB)

m



Computing Tricks

m Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ~ 103.
920 — 1) ~ 106,

2 = NG e 0P,

252 — 4. (1024) = 4Ci.
264 — 16Ei ~ 16 - 10'8.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) - mega (M, Mi) - giga (G, Gi) - tera(T, Ti) - peta(P, Pi) - exa (E, Ei)

2



Hexadecimal Numbers

Numbers with base 16
hohp—1 ... hihg

corresponds to the number

By - 16"+« -« + hy - 16 + hy.

notation in C++: prefix 0x

Oxff corresponds to 255.

Hex Nibbles
hex | bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 1
C 1100 12
d 1101 13
e 1110 14
f M 15

3



Why Hexadecimal Numbers?

m A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.

m “‘compact representation of binary numbers”
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Why Hexadecimal Numbers?

“For programmers and technicians” (user manual of the chess
computers Mephisto 11, 1981)

-4 0O

C3 o
Ca .3

Beispiele:

a) Anzeige 8200
MEPHISTO ist mit genau 2 Bauern-Einheiten im Vorteil

b) Anzeige 7F00
MEPHISTO ist mit genau 1 Bauern-Einheit im Nachteil

Die Anzeige erfolgt in hexadezimaler Schreibweise. Im Gegensatz zum
gewohnten Dezimalsystem gehen die Ziffern an jeder Stelle von 0 bis F
(A=10,B=11, 15)
Fir mathematisch Vorgebildete nachstehend die Umrechnungsformel
in das dezimale Punktsystem:

ABCD = (Ax163) + (Bx162) + (Cx16') + (Dx169)

Fir A gilt: 7 =-1; 8 = 0; 9 = +1 usw.
Eine Bauerneinheit (B) wird ausgedriickt in 162 = 256 Punkten.
Dieses auf den ersten Blick vielleicht etwas komplizierte System dient
der Service-Freundlichkeit von MEPHISTO, sowie insbesondere der
Entwicklungsarbeit an zukiinftigen, noch starkeren Programmen, ist
also mehr flr unsere Programmierer und Techniker vorgesehen.
Beispiele:
c) Anzeige 805E

(E=14) Umrechnung nach folgendem Verfahren:

(14x160) + (5x161) + (0x162) + (0x163) = 14+80+0+0

= +94 Punkte.

d) Anzeige 7F80

(7=-1; F=15) Umrechnung wie folgt

(0x160) + (8x16") + (15x162) - (1x163) — 0+128+3840-4096
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Why Hexadecimal Numbers?

The NZZ could have saved a lot of space ...

OLOOLLT0 01011010 01011010
Freitag, 8. Juni 2012 . Nr. 131 - 233, Jhg Q001016 01016110 01001161 wwwnarch  Fr. 00 - €350

01000010 01100101
01110010 01101001

01100011 01101600 01110100 O1100101

00100000 11111100 01100010
01100101 01110010 00100000
01101110 01100101 01110101 011-
00101 01110011 00106000 010-
01101 01100001 01110011

1110011 01100001

01100110 01100101

n7

003

ioote1 o11-
0100 0110- 000 o0
oo 01910 01001010 11111100 01110010 01001 -

01000110 01101100 11111100
oli000n




Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is
<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;

} Minimum int value is -2147483648.
Maximum int value is 2147483647.

Where do these numbers come from?
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Domain of the Type int

m Representation with B bits. Domain comprises the 25
Integers:

(2B~ _oB-l 1 . —10,1,...28°t 2281 1

m On most platforms B = 32
m For the type int C++ guarantees B > 16

m Background: Section 2.2.8 (Binary Representation) in the
lecture notes.
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Over- and Underflow

m Arithmetic operations (+,-,*) can lead to numbers outside
the valid domain.

m Results can be incorrect!
power8.cpp: 158 = —1732076671
m There Is no error message!
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The Type unsigned int

m Domain
{0,1,...,28 -1}

m All arithmetic operations exist also for unsigned int.
m Literals: 1u, 17u...
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Mixed Expressions

m Operators can have operands of different type (e.g. int and
unsigned int).
17 + 17u
m Such mixed expressions are of the “more general” type
unsigned int.
®m int-operands are converted to unsigned int.
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Conversion

int Value Sign unsigned int Value

T >0 T

x\<0_/x+23

Due to a clever representation (two's complement), no addi-
tion is internally needed
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Conversion “reversed”

The declaration
int a = 3u;
converts 3u to int.

The value is preserved because it is in the domain of int;
otherwise the result depends on the implementation.
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Signed Numbers

Note: the remaining slides on signed numbers, computing
with binary numbers, and the two’'s complement, are not
relevant for the exam
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Signed Number Representation

m (Hopefully) clear by now: binary number representation
without sign, e.g.

[b31bso ... bolu = by - 2% + by - 250 + - by

m Looking for a consistent solution

The representation with sign should coincide with the unsigned so-
lution as much as possible. Positive numbers should arithmetically
be treated equal in both systems.
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Computing with Binary Numbers (4 digits)

Simple Addition
2
+3

5)
Simple Subtraction

5
-3

0010
+0011

0101,

0101
—0011

00104

D10

210
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Computing with Binary Numbers (4 digits)

Addition with Overflow

7 0111
+10 +1010
17 (1)0001y = 1i9(= 17 mod 16)
Subtraction with underflow
5 0101
+(—10) 1010

-5 (...11)1011, = 1139(= —5 mod 16)



Why this works

Modulo arithmetics: Compute on a circle?

s\\ ‘ I”I '/, s\\\\“I"II',/
<\ 2 QRSN
,'/,I“I‘“\\\‘ _|_ ,"/II,'I‘“\\\\‘

11=23=-1= 4=16=
mod 12 mod 12

\\\\\\\\

3=1b=...
mod 12

3The arithmetics also work with decimal numbers (and for multiplication)
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Negative Numbers (3 Digits)

a —a

0 000 000 O
1T 001 111 -1
2 010 1m0 -2
3 01m 101 -3

100 -4

The most significant bit decides about the sign and it
contributes to the value.



Two's Complement

m Negation by bitwise negation and addition of 1
—2 = —[0010] = [1101] + [0001] = [1110]

m Arithmetics of addition and subtraction identical to
unsigned arithmetics

3—2=3+(—2)=[0011] + [1110] = [0001]
m Intuitive “wrap-around” conversion of negative numbers.

-n—28_n

m Domain: —28-1_  9B-1_1
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3. Logical Values

Boolean Functions; the Type bool; logical and relational
operators; shortcut evaluation
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Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even'";
else
std::cout << "odd";

Behavior depends on the value of a Boolean expression
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Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0or1

m 0 corresponds to “false”
m 1 corresponds to “true”
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The Type bool in C++

m represents logical values
m Literals false and true
m Domain {false, true}

bool b = true; // Variable with value true
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Relational Operators

a < b (smallerthan)
a >= b (greater than)
a == (equals)

a !=b (notequal)

arithmetic type x arithmetic type — bool

R-value x R-value — R-value
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Table of Relational Operators

Symbol | Arity | Precedence | Associativity
smaller < 2 11 left
greater > 2 1 left
smaller equal <= 2 M left
greater equal >= 2 1 left
equal == 2 10 left
unequal I= 2 10 left

arithmetic type x arithmetic type — bool

R-value x R-value — R-value
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Boolean Functions in Mathematics
m Boolean function
f:{0,13* = {0,1}

m 0 corresponds to “false”.
m 1 corresponds to “true”.
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AND(z, y)

m “logical And”

f:{0,1}* = {0,1}

m 0 corresponds to “false”.
m 1 corresponds to “true”.

| O |8
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Logical Operator &&

a & b (logical and)

bool X bool — bool

R-value x R-value — R-value

int n -1;
int p 3;
bool b = (n < 0) & (0 < p); // b = true
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OR(z, y)

m “logical Or"

f:{0,1}* = {0,1}

m 0 corresponds to “false”.
m 1 corresponds to “true”.

xVy

OR(z,y)

| O |8
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Logical Operator | |

allb (logical or)

bool X bool — bool

R-value x R-value — R-value

int n 1;
int p 0;
bool b= (n<0) || (0<p); // b= false
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NOT(x)
m “logical Not”

f:4{0,1} —{0,1}

m 0 corresponds to “false”.
m 1corresponds to “true”.

NOT(x)
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Logical Operator !

b (logical not)

bool — bool

R-value — R-value

int n = 1;
bool b = I(n < 0); // b = true
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Precedences

'b && a

0

(Ib) && a

a & b || c && d

)

(a && b) || (c & d)

allb && clld

0

all (b&& c) Il d
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Table of Logical Operators

Symbol | Arity | Precedence | Associativity
Logical and (AND) && 2 6 left
Logical or (OR) I 2 5 left
Logical not (NOT) ! 1 16 right
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Precedences

The unary logical operator !
binds more strongly than
binary arithmetic operators. These
bind more strongly than
relational operators,
and these bind more strongly than
binary logical operators.

7+x<y&&y!'=3*xz || Db
7+x<y&&y!'!'=3x*z]|| (b)
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Completeness

m AND, OR and NOT are the v XOR(z,y)
boolean functions available in 0 0
C++. 011 1

m Any other binary boolean function 110 1
can be generated from them. P 0
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Completeness: XOR(x, y) T Dy

XOR/(z,y) = AND(OR(z,y), NOT(AND(z,v))).

r®y=(rVy A-(zAy).

x 1l y) & '(x && y)



Completeness Proof

m |dentify binary boolean functions with their characteristic
vector.

x|y | XOR(x,y)

0]0 0 characteristic vector: 0110
011 1

1 O ’I XOR = fOllO
111 0
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Completeness Proof

m Step 1: generate the fundamental functions fooo1, foo10, fo100,

flOOO

fooor = AND(z, y)

fooro = AND(z, NOT(y))
for00 = AND(y, NOT(z))
fi000 = NOT(OR(x,y))
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Completeness Proof

m Step 2: generate all functions by applying logical or

Ji101 = OR(f1000, OR(fo100, fooo1))

m Step 3: generate fyoo

foooo = 0.
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bool Vs int: Conversion

bool — int
B bool can be used whenever int is true  — 1
expected - and vice versa. false — 0
m Many existing programs use int instead it — bool
of bool
.. .. . #0 — true
This is bad style originating from the |
language C . 0 - jabe

bool b = 3; //

b=tru
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DeMorgan Rules

m!(a & b)
m!(a |l b)

(ta |l !b)
(la && !b)

! (rich and beautiful) == (poor or ugly)
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Application: either ... or (XOR)

Il & '(x & y) xory, and not both

x Il y) & (!'x || 'y) xory and one of them not
T('x && 'y) && !'(x && y) notnone and not both

1('x && 'y || x && y) not: both or none
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Short circuit Evaluation

m Logical operators && and | | evaluate the left operand first.

m If the result is then known, the right operand will not be
evaluated.

x!1=0&& z/ x>y

= No division by 0
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4. Defensive Programming

Constants and Assertions



Sources of Errors

m Errors that the compiler can find:
syntactical and some semantical errors

m Errors that the compiler cannot find:
runtime errors (always semantical)
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The Compiler as Your Friend: Constants

Constants
B are variables with immutable value
const int speed_of_light = 299792458;

m Usage: const before the definition

159



The Compiler as Your Friend: Constants

m Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;

speed_of_light = 300000000;

compiler: errorj

m Tool to avoid errors: constants guarantee the promise
“value does not change”
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Constants: Variables behind Glass




The const-guideline

const-guideline

For each variable, think about whether it will
change its value in the lifetime of a program. If
not, use the keyword const in order to make
the variable a constant.

A program that adheres to this guideline is called
const-correct.
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Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on

track
3. Question the (seemingly) obvious, there could be a typo in

the code
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Against Runtime Errors: Assertions

assert (expr)

m halts the program if the boolean expression expr is false
B requires #include <cassert>
m can be switched off (potential performance gain)
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Assertions for the ged(z, y)

Check if the program is on track ...

// Input x and y
std::cout << "x =7 ";
std::cin >> x;
std::cout << "y =7 ";
std::cin >> y;

Input arguments for calcu-
lation

// Check validity of inputs
assert(x > 0 && y > 0); +—— Precondition for the ongoing computation

. // Compute gcd(x,y), store result in variable a
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Assertions for the ged(z, y)

.. and question the obvious! ...

assert(x > 0 && y > 0);+—— Precondition for the ongoing computation
. // Compute gcd(x,y), store result in variable a

assert (a >= 1);

assert (x %4 a==0& y % a == 0); Properties  of

for (int i = a+l; i <= x && i <= y; ++1i) the gcd
assert(!(x % i==0&& y % i == 0));
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Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>
assert(x > 0 & y > 0); // Ignored

. // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
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Fail-Fast with Assertions

m Real software: many C++
files, complex control
flow

m Errors surface late(r) —
Impedes error
localisation

m Assertions: Detect errors
early
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5. Control Structures |

Selection Statements, Iteration Statements, Termination,
Blocks

169



Control Flow

m Up to now: linear (from top to bottom)
m Interesting programs require “branches” and “jumps”

// Project Hangman

%ﬁile (game_not_over) {
if'(word.contains(guess)) {
} else {
) cen

}
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Selection Statements

Implement branches
m if statement
m if-else statement
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if-Statement

if ( condition )
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even'";

If condition is true then
statement is executed

m statement: arbitrary
statement (body of the
if-Statement)

m condition: convertible to
bool
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if-else-statement

if ( condition )
statement1

else
statement2

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even'";
else
std::cout << "odd";

If condition Is true then
statementT is executed, oth-
erwise statement2 is exe-
cuted.

m condition: convertible to
bool.

m statement?: body of the
if-branch

m statement2: body of the
else-branch
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Layout!

int a;
std::cin >> a;
if (a % 2 ==0)
std::cout << "even";
else
std: :cout << "odd";

AN

Indentation

Indentation

AN
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lteration Statements

Implement loops

B for-statement
B while-statement
B do-statement
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Compute1+2+...+n

// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

#include <iostream>

int main ()
{
// input
std::cout << "Compute the sum 1l+...+n for n =? ";
unsigned int n;
std::cin >> n;

// computation of sum {i=1}“n i
unsigned int s = 0;

for (unsigned int i = 1; i <= n; ++i) s += i;

// output
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for-Statement Example

for(unsigned int i=1; i <= n; ++i)
s += 1i;

Assumptions:n == 2, s == 0
i s

i== wahr s ==
i== wahr s ==
i==3 falsch

(/)]
Il
I
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GauB as a Child (1777 - 1855)

m As you probably know, there exists a more efficient way to
compute the sum of the first n natural numbers. Here's a
corresponding anecdote:

m Math-teacher wanted to keep the pupils busy with the
following task:

Compute the sum of numbers from 1 to 100!
m Gauld finished after one minute.

178



The Solution of Gaul

m The requested number is

I14+2+3+---+98+99 + 100.

m This is half of

1+ 2 4 -~ + 99 + 100
+ 100 + 99 + - + 2 + 1
= 101 + 101 + --- + 101 + 101

m Answer: 100 - 101/2 = 5050
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for-Statement: Syntax

for (init statement; condition; expression)
body statement

m init statement: expression statement, declaration
statement, null statement

m condition: convertible to bool
B expression: any expression
m body statement: any statement (body of the for-statement)
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for-Statement: semantics

for ( init statement condition ; expression )
statement

B /nit-statement is executed
m condition is evaluated

® true: Iteration starts
statement is executed
expression is executed

m false: for-statement is ended.
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for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += 1i;
Here and in most cases:
m expression changes its value that appears in condition .

m After a finite number of iterations condition becomes false:
Termination
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Infinite Loops

m Infinite loops are easy to generate:
for ( ; ;) ;

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.

m .. but can in general not be automatically detected.

for (init; cond; expr) stmt;
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Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each C++-
Program P and each input I if the program P terminates
with the input I.

This means that the correctness of programs can in general
not be automatically checked.*

“Alan Turing, 1936. Theoretical questions of this kind were the main motivation for

Alan Turing to construct a computing machine.
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Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n—1} dividesn.

A loop that can test this:

unsigned int d;
for (d=2; n%d !'= 0; ++d);
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Example: Termination

unsigned int d;
for (d=2; n)d != 0; ++d); // for n >= 2

m Progress: Initial value d=2, then plus 1in every iteration
(++d)

m Exit: n%d !'= 0 evaluatesto false as soon as a divisor is
found — at the latest, once d == n

m Progress guarantees that the exit condition will be reached
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Example: Correctness

unsigned int d;
for (d=2; n)d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then isn prime.
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Blocks

m Blocks group a number of statements to a new statement
{statementl statement2 ... statementN}
m Example: body of the main function

int main() {

}

m Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += 1i;
188
std::cout << "partial sum is " << s << "\n";:



ntr ments |l

Visibility, Local Variables, While Statement, Do Statement,
Jump Statements
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main block

Visibility
Declaration in a block is not visible outside of the block.

int main()

{

I

3 int i = 2;

“13
std::cout << i; // Error: undeclared name
return O;

,Blickrichtung”

/\\.'J
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Control Statement defines Block

In this respect, statements behave like blocks.

int main()
{
% |for (unsigned int i = 0; i < 10; ++i)
= s += i;
std::cout << i; // Error: undeclared name
return 0;
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Scope of a Declaration

Potential scope: from declaration until end of the part that contains the
declaration.

in the block in function body
{ int main() {
@ int i = 2; int i = 2;
5 @
(&) [@N DI
21} § return O;
}

in control statement

for (int i = 0; i < 10; ++i) {s +=3i; ... }
scope 192




Scope of a Declaration

Real scope = potential scope minus potential scopes of declarations of
symbols with the same name

int main()

=1

int i = 2;

for (int i = 0; i < 5; ++i)
// outputs 0,1,2,3,4
std::cout << i;

// outputs 2

std::cout << i;

return O;

in main

-
&L

C

&

scope of i
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Automatic Storage Duration

Local Variables (declaration in block)
m are (re-)created each time their declaration is reached

m memory address is assigned (allocation)
m potential initialization is executed

m are deallocated at the end of their declarative region
(memory is released, address becomes invalid)
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Local Variables

int main()

{
int i = b;
for (int j = 0; j < 5; ++j) {
std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1
}
}

Local variables (declaration in a block) have automatic
storage duration.
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while Statement

while (condition)
statement

m statement: arbitrary statement, body of the while
statement.

m condition: convertible to bool.
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while Statement

IS equivalent to

197



while-Statement: Semantics

while (expression)
statement

m condition iIs evaluated
B true: iteration starts
statement is executed

m false: while-statement ends.
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while-statement: why?

m In a for-statement, the expression often provides the
progress (“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += i;

m If the progress is not as simple, while can be more
readable.
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Example: The Collatz-Sequence

B ng=n
it , Ifn,_; even
mn =< 2 _ 0> 1
3n;—1+1 |fni_1 odd

n=5:5,16, 8, 4, 2,1, 4 2,1, ... (repetition at 1)

(n € N)
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The Collatz Sequence in C++

// Program collatz.cpp. Computes the Collatz sequence of a number n.
#include <iostream>

int main() {
// Input
std::cout << "Compute the Collatz sequence for n =7 ";
unsigned int n;
std::cin >> n;

// Iteration

while (mn > 1) {
if @%2==0)n=n/2;
elsen=3%n + 1;
std::cout << n << " ",

}
std::cout << "\n";
return O;

}
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The Collatz Sequence in C++

n = 27:

82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,
242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,
233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,
445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,
850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,
6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300,
650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106,
53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
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The Collatz-Sequence

Does 1 occur for each n?
m |t is conjectured, but nobody can prove it!

m If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for
some n.
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do Statement

do
statement

while (condition);

m statement: arbitrary statement, body of the do statement.
m condition: convertible to bool.
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do Statement

Is equivalent to
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do-Statement: Semantics

do
statement

while (condition);

m |teration starts

m statement is executed.
B condition Is evaluated

B true: iteration begins
m false: do-statement ends.
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do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =7 ";

std::cin >> a;

s += a;

std::cout << "sum = " << s << "\n";
} while (a !'= 0);

207



Conclusion

m Selection (conditional branches)

m if and if-else-statement

m Iteration (conditional jumps)

m for-statement
B while-sStatement
m do-statement

m Blocks and scope of declarations
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Jump Statements

B break;
B continue;
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break-Statement

break;

m Immediately leave the enclosing iteration statement
m useful in order to be able to break a loop “in the middle” ®

5and indispensible for switch-statements
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Calculator with break

Sum up integers (if 0 then stop)

int a;
int s = 0;
do {
std::cout << "next number =7 ";
std::cin >> a;
s += a; /* irrelevant in last iteration */
std::cout << "sum = " << s << "\n";
} while (a != 0);

n



Calculator with break

Suppress irrelevant addition of 0:

int a;
int s = 0;
do {
std::cout << "next number =7 ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";
} while (a !'= 0)
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Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {
std::cout << "next number =7 ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";
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Calculator without break

Version without break evaluates a != 0 twice (and requires
an additional block).

std::cout << "next number =7 ";
std::cin >> a;
if (a '=0) {

s += a;

std::cout << "sum = " << g << "\n";
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continue-Statement

continue;

m Jump over the rest of the body of the enclosing iteration
statement

B Iteration statement is not left.
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break and continue in practice

m Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)

m But they result in additional jumps and thus potentially
complicate the control flow

m Their use Is thus controversial, and should be carefully
considered
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Calculator with continue

lgnore negative input:

for (5;) {
std::cout << "next number =7 ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";
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Equivalence of Iteration Statements

We have seen:
B while and do can be simulated with for
It even holds:

m The three iteration statements provide the same
“expressiveness” (lecture notes)

m Not so simple if a continue is used
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Control Flow

Order of the (repeated) execution of statements

m generally from top to bottom...
m ...exceptin selection and iteration statements

condition

if ( condition )

statement false
statement
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Control Flow if else

condition

statement false

statement2

if ( condition )
statement1

else
statement2
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Control Flow for

for (init statement condition ; expression)
statement

Init-statement

condition

statement
false

expression
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Control Flow break in for

Init-statement

condition
statement

expression

break
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Control Flow continue in for

Init-statement

condition

statement
ontinue

expression
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Control Flow while

condition

statement

false
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Control Flow do while

statement

condition

%Te

true
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Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto). if
Languages based on them:
m Machine Language goto
m Assembler (“higher” machine
language)
m BASIC, the first programming language
for the general public (1964)
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BASIC and home computers...

..allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)


http://de.wikipedia.org/wiki/Commodore_64

Spaghetti-Code with goto

bers
using the programming language BA-
SIC:
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The “right” Iteration Statement

Goals: readability, conciseness, in particular
m few statements
m few lines of code
m simple control flow
m simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbersin {0,...,100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (1% 2 ==0)
continue;
std::cout << i << "\n";
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Odd Numbersin {0,...,100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 !'=0)
std::cout << i << "\n";
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Odd Numbersin {0,...,100}

Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Jump Statements

m implement unconditional jumps.
m are useful, such as while and do but not indispensible

m should be used with care: only where the control flow is
simplified instead of making it more complicated
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Outputting Grades

1. Functional requirement:

6 — "Excellent ... You passed!"
5,4 — "You passed!"
3 — "Close, but ... You failed!"

2,1 — "You failed!"
otherwise — "Error!"

2. Moreover: Avoid duplication of text and code
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Outputting Grades with if Statements

int grade;

if (grade == 6) std::cout << "Excellent ... ";

if (4 <= grade && grade <= 6) {
std::cout << "You passed!";

} else if (1 <= grade && grade < 4) {
if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control flow — and thus program behaviour -
not quite obvious



Outputting Grades with switch Statement

Jump to matching case

switch (grade) { ¢
case 6: std::cout <<

"Excellent ... ";

case 5: Fall-through
case 4: std::cout << "You passed!";

break; 4 Exit switch
case 3: std::cout << "Close, but ... ";
case 2: Fall-through
case 1: std::cout << "You failed!";

break; 4 Exit switch

default: std::cout << "Error!"; 4—— |n all other cases

}

Advantage: Control flow clearly recognisable
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The switch-Statement

switch (expression)
statement

m expression: Expression, convertible to integral type

m statement : arbitrary statemet, in which case and
default-lables are permitted, break has a special meaning.
m Use of fall-through property is controversial and should be

carefully considered (corresponding compiler warning can
be enabled)
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Semantics of the switch-statement

switch (expression)
statement
B expression IS evaluated.

m |f statement contains a case-label with (constant) value of
condition, then jump there

m otherwise jump to the default-lable, if available. If not,

jump over statement.
B The break statement ends the switch-statement.
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Control Flow switch

switch

break
statement

break

case

case

default
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7. Floating-point Numbers |

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range
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“Proper” Calculation

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =7 ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;
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Fixed-point numbers

m fixed number of integer places (e.g. 7)
m fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082« third place truncated

Disadvantages

m Value range is getting even smaller than for integers.

m Representability depends on the position of the decimal
point.
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Floating-point numbers

m Observation: same number, different representations with
varying “efficiency”, e.g.

0.0824 = 0.00824 - 10! =0.824-107!
=8.24-1072 =824-1074
Number of significant digits remains constant

m Floating-point number representation thus:

m Fixed number of significant places (e.g. 10),
m Plus position of the decimal point via exponent
m Numberis Mantissa x 10Exponent
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Types float and double

m are the fundamental C++ types for floating point numbers

m approximate the field of real numbers (R, +, x) from
mathematics
m have a big value range, sufficient for many applications:

m float: approx. 7 digits, exponent up to £38
®m double: approx. 15 digits, exponent up to +308

m are fast on most computers (hardware support)
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Arithmetic Operators

Analogous to int, but ...

m Division operator / models a “proper” division (real-valued,
not integer)

m No modulo operator, i.e. no %
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Literals

are different from integers by providing

m decimal point 123e-7f
1.0: type double, value 1 [\j AL/\\
1.27f : type float, value 1.27 integer part exponent

m and / or exponent. actional sart

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 - 1077

247

1.23e-7f : type float, value 1.23 - 107"



Computing with float: Example

Approximating the Euler-Number

o 1
= S ~271828. .

- !

using the first 10 terms.
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Computing with float: Euler Number

std::cout << "Approximating the Euler number... \n";

]
o

// values for i-th iteration, initialized for i
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {
t /= 1i; // 1/@G-1) > 1/i!
e += t;
std::cout << "Value after term " << i << ": "
<< e << "\n";
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Computing with float: Euler Number

Value
Value
Value
Value
Value
Value
Value
Value
Value

after
after
after
after
after
after
after
after
after

ternm
term
term
term
term
term
term
term
term

© 00 NO O WN -

NNDNMDDNDDNDDNDNDNDDN

.66667
.70833
.71667
.71806
.71825
.71828
.71828
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Mixed Expressions, Conversion

m Floating point numbers are more general than integers.

m In mixed expressions integers are converted to floating
point numbers.

9 * celsius / 5 + 32
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Holes in the value range

float ni;

std::cout << "First number =7 "; input 11
std::cin >> nl;

float n2;

std::cout << "Second number =7 "; input 1.0
std::cin >> n2;

float d;

std::cout << "Their difference =7 "; nput 01

std::cin >> d;

What is going on here?

std::cout << "Computed difference - input difference =
<< nl1 - n2 - d << "\n"; output 2.23517e-8

N
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Value range

Integer Types:

m Over- and Underflow relatively frequent, but ...

m the value range is contiguous (no holes): Z is “discrete”.
Floating point types:

m Overflow and Underflow seldom, but ...

m there are holes: R is “continuous”.
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8. Floating-point Numbers |l

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines;
Harmonic Numbers
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Floating-point Number Systems

A Floating-point number system is defined by the four natural
numbers:

m $ > 2, the base,

m p > 1, the precision (number of places),

m ¢, the smallest possible exponent,

B e, the largest possible exponent.

Notation:
F(B, P, €min, emax)
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Floating-point number Systems
F(B,p, €min, €max) CONtains the numbers
p—1 )
+ ;) diﬁ_l : 667
d; € {0,...,6—1}, e€{emmn,---,Cmax}-

represented in base f3:

+ do.dl ce dp—l X 667
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Floating-point Number Systems

Representations of the decimal number 0.1 (with 8 = 10):

1.0-107Y 0.1-10°, 0.01-10%,
Different representations due to choice of exponent
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Normalized representation

Normalized number:
+ d().d1 . dp_1 X 66, Clo 7é 0

Remark 1

The normalized representation is unique and therefore pref-
ered.

Remark 2

The number 0, as well as all numbers smaller than [géwin,
have no normalized representation (we will come back to
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Set of Normalized Numbers

F* (67 P Emin, emax)
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Normalized Representation

Example F*(2,3, —2,2) (only positive numbers)
dg.d1d2‘€:—2 e=—1 e=0 e=1 e=2
1.004 0.25 0.5 1 2 4
1.01, 0.3125 0.625 1.25 2.5 5)
1.10, 0.375 0.75 1.5 3 6
1.11, 0.4375 0.875 1.75 3.5 7

0 8
1 f f f f

1.00-272=1 111-22=7



Binary and Decimal Systems

m Internally the computer computes with g = 2
(binary system)

m Literals and inputs have 5 = 10
(decimal system)

m Inputs have to be converted!
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Conversion Decimal — Binary

Assume, 0 < x < 2.
Binary representation:

0 ‘
Tr = Z bZ2Z = bo,b_lb_gb_g ce

1=—00

-1 . 0 )
= by + Z b;2' = by + Z bi,122_1

1=—00 1=—00

= by + ( i bi_12i) /2

1=—00

l‘/zb_l.b_gb_gb_4
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Conversion Decimal — Binary

Assume 0 < x < 2.
m Hence: 2/ = b_l.b_zb_gb_4 .= 2- (l‘ — b())
m Step 1 (for z): Compute by:
b 1, fa>1
07 ) 0, otherwise

m Step 2 (for z): Compute b_q,b_s, .. .:
Go to step 1 (for 2’ =2 - (z — b))
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Binary representation of 1.1

x by ©—0b 2(x—10b)
1.1 by=1 0.1 0.2
02 b1 =0 0.2 0.4
0.4 by =0 0.4 0.8
0.8 b3 =0 0.8 1.6
1.6 by=1 0.6 1.2

by = 1 0.2 0.4

= 1.00011, periodic, not finite
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pinary Numper representations or 1.1 and
0.1

m are not finite, hence there are errors when converting into a
(finite) binary floating-point system.

m 1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly
Inaccurate approximation of these numbers.

mIndiff.cpp: 1.1 — 1.0 # 0.1
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pinary Numper representations or 1.1 and
0.1

on my computer:

1.1 = 1.1000000000000000888178. ..
1.1f = 1.1000000238418. ..
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Computing with Floating-point Numbers
Example (3 =2, p = 4):

1.111-272
+ 1.011-27F

— 1.001 - 2V

1. adjust exponents by denormalizing one number 2. binary addition
of the significands 3. renormalize 4. round to p significant places, if
necessary

n



The IEEE Standard 754

defines floating-point number systems and their rounding
behavior and is used nearly everywhere

m Single precision (float) numbers:
F*(2,24,—126,127) (32 bit) plus 0, o, ...
m Double precision (double) numbers:

F*(2,53,—1022,1023) (64 bit)  pluso,os, ...

m All arithmetic operations round the exact result to the next
representable number
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The IEEE Standard 754

Why
F*(2,24,—126,127)7

m 1sign bit
m 23 bit for the significand (leading bit is 1 and is not stored)

m 8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0, co,...)

= 32 bit in total.
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The IEEE Standard 754

Why
F*(2,53,—1022,1023)?

m 1sign bit
m 52 bit for the significand (leading bit is 1 and is not stored)

m 11 bit for the exponent (2046 possible exponents, 2 special
values: 0, oo,...)

= 64 bit in total.
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Example: 32-bit Representation of a Floating Point
Number

[31][30][20 ] 28 ] 27 | z¢ | 2 2 | = | 22] ] o] o] e ] e s o e e e s e = 2 e

+ Exponent Mantisse

2-126 - 9127 1.00000000000000000000000
0,00,... 1.I1111111111111111111111
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Floating-point Rules Rule 1

Rule 1
Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i !=1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1
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Floating-point Rules Rule 2

Rule 2

Do not add two numbers of very different orders of magni-
tude!

1.000 - 2°
+1.000 - 2"
= 1.00001 - 2°
“="1.000-2° (Rounding on & places)

Addition of 1 does not have any effect!
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Harmonic Numbers Rule 2

m The n-the harmonic number is

no1
H,=)> - ~Inn.
i=11

m This sum can be computed in forward or backward
direction, which is mathematically clearly equivalent
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Harmonic Numbers

Rule 2

// Program: harmonic.cpp

// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{
// Input

std::cout << "Compute H n for n =? ";

unsigned int n;
std::cin >> n;

// Forward sum

float fs = 0;

for (unsigned int i = 1; i
fs += 1.0f / i;

// Backward sum

float bs = 0;

for (unsigned int i = n; i
bs += 1.0f / i;

// Output

std::cout << "Forward sum
<< "Backward sum

return 0;

<= n; ++i)

>= 1; —--i)

=" << fs << "\n"
= " << bs << "\n";
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Harmonic Numbers

Results:

[ |
Compute H n for n =7
Forward sum = 15.4037
Backward sum = 16.686

[ |
Compute H n for n =7
Forward sum = 15.4037
Backward sum = 18.8079

10000000

100000000

Rule 2
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Harmonic Numbers Rule 2

Observation:

m The forward sum stops growing at some point and is “really”
wrong.

m The backward sum approximates H,, well.

Explanation:

mForl+1/2+1/3+---, later terms are too small to actually
contribute

m Problem similar to 2° +1 “=" 2°
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Floating-point Guidelines Rule 3

Rule 4

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.
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Randy Glasbergen, 1996
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9. Functions |

Defining and Calling Functions, Evaluation of Function Calls,
the Type void
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Functions

m encapsulate functionality that is frequently used (e.g.
computing powers) and make it easily accessible

m structure a program: partitioning into small sub-tasks, each
of which is implemented as a function

= Procedural programming; procedure: a different word for function.
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Example: Computing Powers

double a;

int n;

std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;

if (n<0) {//amn= (1/a)"(-n) _f) "Funktion pow"
a=1.0/a;
n = -n;

}

for (int i = 0; i < n; ++i)
result *= a;

std::cout << a << """ << n << " = " << result << ".\n'";
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Function to Compute Powers

// PRE: e >= 0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e)
{
double result = 1.0;
if (e <0) { // b7e

= (1/b)~(-e)
b =1.0/b;
e = -e;

}

for (int 1 = 0; i < e; ++i)
result *= b;

return result;
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Function to Compute Powers

// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()

{
std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25
std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(-2.0, 9) << "\n"; // outputs -512

return O;

}
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Function Definitions

return type argument types

P ———

T fname (T; pname,, Ty pname,, ..., Ty pnamey)
block

.

body

function name formal arguments
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Defining Functions

m may not occur locally, i.e. not in blocks, not in other
functions and not within control statements
m can be written consecutively without separator in a program

double pow (double b, int e)
{

}

int main ()

{

}
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Example: Xor

// post: returns 1 XOR r
bool Xor(bool 1, bool r)
{
return 1 & !r || '1 && r;

}
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Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number

// computed with backward sum
float Harmonic(int n)
{

float res = 0;

for (unsigned int i = n; i >= 1; --i)
res += 1.0f / i;

return res;
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Example: min

// POST: returns the minimum of a and b
int min(int a, int b)
{
if (a<b)
return a;
else
return b;
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Function Calls

fname ( expression,, expression,, ..., expression )

m All call arguments must be convertible to the respective
formal argument types.

m The function call is an expression of the return type of
the function. Value and effect as given in the
postcondition of the function fname.

Example: pow(a,n): Expression of type double
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Function Calls

For the types we know up to this point it holds that:

m Call arguments are R-values
— call-by-value (also pass-by-value), more on this soon

m The function call is an R-value.

fname: R-value x R-value x --- x R-value — R-value
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Evaluation of a Function Call

m Evaluation of the call arguments
m Initialization of the formal arguments with the resulting

values
m Execution of the function body: formal arguments behave
laike local variables

m Execution ends with
return expression;

Return value yiels the value of the function call.
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Call of pow

Example: Evaluation Function Call

double pow(double b, int e){
assert (e >= 0 || b != 0);
double result = 1.0;

if (e<0) {
// b"e = (1/b)~(-e)
b=1.0/b;
e = -e;

}

for (int i = 0; i < e ; ++i)
result * = b;
return result;

O
o

pow (2.0, -2)



sometimes em formal arguments

m Declarative region: function definition

m are invisible outside the function definition

m are allocated for each call of the function (automatic
storage duration)

m modifications of their value do not have an effect to the
values of the call arguments (call arguments are R-values)
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Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {
b =1.0/b;
e = —-e;
}
for (int i = 0; i < e ; ++i)
r *x = b;
return r;
}

N

int main(){
double b = 2.0;
int e = -2;
double z = pow(b, e);
<< z; // 0.25
<< b; // 2
<< e; // -2

std::cout
std::cout
std::cout
return 0;

}

Not the formal arguments b and e of pow but the vari-

ables defined here locally in the body of main
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The type void

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {
std::cout << n(u << 1 << n’ LPLY J << ")\Il";

3

int main() {
print_pair(3,4); // outputs (3, 4)
return O;
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The type void

m Fundamental type with empty value range

m Usage as a return type for functions that do only provide an
effect
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void-Functions

m do not require return.

m execution ends when the end of the function body is
reached or If

B return; IS reached
or

B return expression; is reached.

X

Expression with type void (e.g. a call
of a function with return type void
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Functions and return

The behavior of a function with non-void return type is
undefined if the end of the function body is reached without
a return statement.

Wrong:

bool compare(float x, float y) {

float delta = x - y;

if (delta*delta < 0.001f) return true;
}

Here the value of compare (10,20) is undefined.
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Functions and return

The behavior of a function with non-void return type is
undefined if the end of the function body is reached without
a return Statement.

Better:

bool compare(float x, float y) {
float delta = x - y;
if (delta*delta < 0.001f)
return true;
else
return false;

}
All execution paths reach a return
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Functions and return

The behavior of a function with non-void return type is
undefined if the end of the function body Is reached without
a return statement.

Even better and simpler

bool compare(float x, float y) {
float delta = x - y;
return deltaxdelta < 0.001f;
}
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10. Functions Il

Pre- and Postconditions Stepwise Refinement, Scope,
Libraries and Standard Functions
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Pre- and Postconditions

m characterize (as complete as possible) what a function does

m document the function for users and programmers (we or
other people)

m make programs more readable: we do not have to
understand how the function works

m are ignored by the compiler

m Pre and postconditions render statements about the
correctness of a program possible — provided they are
correct.
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Preconditions

precondition:
m what is required to hold when the function is called?

m defines the domain of the function

0¢ is undefined fore < 0

// PRE: e >=0 || b !'= 0.0
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Postconditions

postcondition:
m What is guaranteed to hold after the function call?

m Specifies value and effect of the function call.

Here only value, no effect.

// POST: return value is b~e
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Pre- and Postconditions

m should be correct:

m /f the precondition holds when the function is called then
also the postcondition holds after the call.

Funktion pow: works for all numbers b # 0
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Pre- and Postconditions

m We do not make a statement about what happens if the
precondition does not hold.

m C++-standard-slang: “Undefined behavior”.

Function pow: division by 0
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Pre- and Postconditions

m pre-condition should be as weak as possible (largest
possible domain)

m post-condition should be as strong as possible (most
detailed information)
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White Lies...

// PRE: e > = 0 || b !'= 0.0
// POST: return value is b~"e

Is formally incorrect:
m Overflow if e or b are too large

m »° potentially not representable as a double (holes in the
value range!)
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White Lies are Allowed

// PRE: e > = 0 || b !'= 0.0
// POST: return value is b~"e

The exact pre- and postconditions are platform-dependent and often

complicated. We abstract away and provide the mathematical conditions.

= compromise between formal correctness and lax practice.
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Checking Preconditions...

m Preconditions are only comments.

m How can we ensure that they hold when the function is
called?
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...With assertions

#include <cassert>

// PRE: e >= 0 || b !'= 0.0

// POST: return value is b~e

double pow(double b, int e) {
assert (e >=0 || b = 0);
double result = 1.0;
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Postconditions with Asserts

m The result of “complex” computations is often easy to check.
m Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p*p/4 - q is nonnegative
// POST: returns larger root of the polynomial x"2 + p x + q
double root(double p, double q)
{
assert(p*p/4 >= q); // precondition
double x1 = - p/2 + sqrt(p*p/4 - q);
assert(equals(x1*x1+p*x1+q,0)); // postcondition
return x1;
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Exceptions

m Assertions are a rough tool; if an assertions fails, the
program is halted in a unrecoverable way.

m C++provides more elegant means (exceptions) in order to
deal with such failures depending on the situation and
potentially without halting the program

m Failsafe programs should only halt in emergency situations
and therefore should work with exceptions. For this course,
however, this goes too far.
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Stepwise Refinemen

A simple technique to solve
complex problems

Niklaus Wirth. Program development by
stepwise refinement. Commun. ACM 14,
4, 1971

P. Wegner
Education Editor
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Stepwise Refinement

m Solve the problem step by step. Start with a coarse solution on a high
level of abstraction (only comments and abstract function calls)

m At each step, comments are replaced by program text, and functions are
implemented (using the same principle again)

m The refinement also refers to the development of data representation
(more about this later).

m If the refinement is realized as far as possible by functions, then partial
solutions emerge that might be used for other problems.

m Stepwise refinement supports (but does not replace) the structural
understanding of a problem.

322



Example Problem

Find out if two rectangles intersect!
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Coarse Solution

(include directives omitted)
int main()
{

// input rectangles

// intersection?

// output solution

return O;
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Refinement 1: Input Rectangles

hl

(1'17'91)

(:Ula Y1, Wy, h‘l)

o (962, Y2, W2, h2)

(w2, y2) Wo

}LQ
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Refinement 1: Input Rectangles

Width w and height h may be negative.

ol @y, wh)

w <0 (z,y)



Refinement 1: Input Rectangles

int main()

{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, wil, hi;

std::cin >> x1 >> y1 >> wl >> hil;

int x2, y2, w2, h2;

std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?
// output solution

return O;
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Refinement 2: Intersection? and Output

int main()

{

input rectangles

bool clash = rectangles_intersect(xl,yl,wl,hl,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";
else

std::cout << "no intersection!\n";

return O;
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Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int x2, int y2, int w2, int h2)

{

return false; // todo

3

int main() {

input rectangles
intersection?

output solution

return 0;
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Refinement 3: Intersection Function...

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int %2, int y2, int w2, int h2)

{

return false; // todo

}

Function main
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Refinement 3: ...with PRE and POST

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles,

// where wil, hl, w2, h2 may be negative.
// POST: returns true if (x1, y1, wil, hl) and
// (x2, y2, w2, h2) intersect

bool rectangles_intersect(int x1, int y1, int wl, int hil,
int x2, int y2, int w2, int h2)

{

return false; // todo

}
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Refinement 4: Interval Intersection

Two rectangles intersect if and only if their z and y-intervals
Intersect.

I [y1, 41 + ]

(x1,91) wy i
2| [y2, y2 + hol

(fo ’y2) wWa

[z1, 21 + wi]
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Refinement 4: Interval Intersections

// PRE: (x1, y1, wi, hl), (x2, y2, w2, h2) are rectangles, where
// wl, hl, w2, h2 may be negative.
// POST: returns true if (x1, y1, wi, hl),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int wl, int hil,
int x2, int y2, int w2, int h2)

{

return intervals_intersect(xl, x1 + wl, x2, x2 + w2)

&& intervals_intersect(yl, y1 + hil, y2, y2 + h2); /
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Refinement 4: Interval Intersections

// PRE: [al, bl1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a]l if a>b

// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)

{

return false; // todo

}

Function rectangles_intersect

Function main
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Refinement 5: Min and Max

// PRE: [al, bl1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return max(al, bl) >= min(a2, b2)
&% min(al, bl) <= max(a2, b2);
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Refinement 5: Min and Max

// POST: the maximum of x and y is returned
int max(int x, int y)
if (x>y) return x; else Vs
} already exists in the standard library

// POST: the minimum Zf/f/ggdzy/i§/;;turned
int min(int x, int y)

if (x<y) return x; else return y;

}

Function intervals_intersect

Function rectangles_intersect
338
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Back to Intervals

// PRE: [al, bl1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [al, bl],[a2, b2] intersect
bool intervals_intersect(int al, int bl, int a2, int b2)
{
return std::max(al, bl) >= std::min(a2, b2)
&& std::min(al, bl) <= std::max(a2, b2); v
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Look what we have achieved step by step!

#include <iostream> int main ()
#include <algorithm> {
std::cout << "Enter two rectangles [x y w h each]\n";

// PRE: [al, bl], [a2, h2] are (generalized) intervals, int x1, y1, wi, hi;
// with [a,b] := [b,a] if a>b std::cin >> x1 >> y1 >> w1 >> hi;
// POST: returns true if [al, b1l,[a2, b2] intersect int x2, y2, w2, h2;
bool intervals_intersect(int al, int bl, int a2, int b2) std::cin >> x2 >> y2 >> w2 >> h2;
{ bool clash = rectangles_intersect(x1,yl,wl,h1,x2,y2,w2,h2);

return std::max(al, bl) >= std::min(a2, b2) if (clash)

&& std::min(al, bl) <= std::max(a2, b2); std::cout << "intersection!\n";
} else
std::cout << "no intersection!\n";

// PRE: (x1, y1, wi, h1), (x2, y2, w2, h2) are rectangles, where return 0;
// wl, hl, w2, h2 may be negative. }

// POST: returns true if (x1, y1, wi, hl),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int yi, int wil, int hi,
int x2, int y2, int w2, int h2)
{
return intervals_intersect(xl, x1 + wil, x2, x2 + w2)
&% intervals_intersect(yl, yl1 + hi, y2, y2 + h2);
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Result

m Clean solution of the problem
m Useful functions have been implemented
intervals_intersect

rectangles_intersect

=

Ergebnis

Saubere Loésung des Problems
Funktionen sind entstanden
s




Giiltigkeit f

Where can a Function be Used?

#include <iostream>

int main()

{

std::cout << f(1); // Error: f undeclared
return O;

}

int f(int i) // Scope of f starts here
{

return i;

}
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Scope of a Function

m s the part of the program where a function can be called

m is defined as the union of all scopes of its declarations
(there can be more than one)

declaration of a function: like the definition but without

{...}

double pow(double b, int e);
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Giiltigkeit f

This does not work...

#include <iostream>

int main()
{

std::cout << £f(1); // Error: f undeclared
return O;

}

int f£(int i) // Scope of f starts here
{
return i;

}
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...but this works!

#include <iostream>
int f£(int i); // Gueltigkeitsbereich von f ab hier

int main()

{
std::cout << f(1);
return O;

}

int £(int i)
{

return i;

}
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Forward Declarations, why?

Functions that mutually call each other:

int gC(...
int £(..
o |t
3 g(..
ool
=l
“| 2] int g(...
|
(..
}

); // forward declaration

.) // £ valid from here

.) // ok

.) // ok
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Reusability

m Functions such as rectangles_intersect and pow are
useful in many programs.
m “Solution”: copy-and-paste the source code

m Main disadvantage: when the function definition needs to
be adapted, we have to change all programs that make use
of the function
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Level 1: Outsource the Function

// PRE: e >= 0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e)
{
double result = 1.0;
if (e <0) { // b7e

= (1/b)~(-e)
b =1.0/b;
e = -e;

}

for (int 1 = 0; i < e; ++i)
result *= b;

return result;
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Level 1: Include the Function

// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp" +—— file In working directory

int main()

{
std::cout << pow( 2.0, -2) << "\n";
std::cout << pow( 1.5, 2) << "\n";
std::cout << pow( 5.0, 1) << "\n";
std::cout << pow(-2.0, 9) << "\n";

return O;



Disadvantage of Including

m #include copies the file (mymath.cpp) into the main
program (callpow2 . cpp).

m The compiler has to (re)compile the function definition for
each program

m This can take long for many and large functions.
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Level 2: Separate Compilation

of mymath.cpp independent of the main program:

double pow(double b,

int e) .
{ g++ —c mymath.cpp 150(]@1“@1’11@6&1
st 38111100001101010001
¥ 11111110

mymath.cpp mymath.o
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Level 2: Separate Compilation
Declaration of all used symbols in so-called header file.

// PRE: e >0 || b !'= 0.0
// POST: return value is b~e
double pow(double b, int e);

mymath.h
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Level 2: Separate Compilation

of the main program, independent of mymath. cpp, if a
declaration from mymath is included.

#include <iostream>

#include "mymath.h"

int main()

{
std::cout << pow(2,-2) << "\n'";
return O;

}

Funktion main
111100001101010001

010101101011010001
1 1010
11 1010

callpow3.cpp callpow3.o
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The linker unites...

mymath.o

Funktion main
111100001101010001
010101101011010001
1 1010

11 1010|
callpow3.o
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... what belongs together

Funktion main

010101101011010001
1 1010
11 1010

mymath.o callpow3.o

Executable callpow3
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Availability of Source Code?

Observation

mymath. cpp (source code) is not required any more when
the mymath.o (object code) is available.

Many vendors of libraries do not provide source code.
Header files then provide the only readable informations.
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Open-Source Software

m Source code is generally available.

m Only this allows the continued development of code by users and
dedicated “hackers”.

m Even in commercial domains, open-source software gains ground.

m Certain licenses force naming sources and open development. Example
GPL (GNU Genereal Public License)

m Known open-source software: Linux (operating system), Firefox
(browser), Thunderbird (email program)...

357



Libraries

m Logical grouping of similar functions
pow
exp
cmath
log

sin



Name Spaces...

// cmath
namespace std {

double pow(double b, int e);

double exp(double x);
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...Avoid Name Conflicts

#include <cmath>
#include "mymath.h"

int main()

{
double x = std::pow(2.0, -2); // <cmath>
double y = pow(2.0, -2); // mymath.h
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Name Spaces / Compilation Units

In C++ the concept of separate compilation is independent of

the concept of name spaces
In some other languages,e.g. Modula / Oberon (partially also
for Java) the compilation unit can define a name space.
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Functions from the Standard Library

m help to avoid re-inventing the wheel (such as with
std: :pow);
m lead to interesting and efficient programs in a simple way;
m guarantee a quality standard that cannot easily be achieved
with code written from scratch.
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Example: Prime Number Test with sqrt

n > 21s a prime number if and only if there is no d in
{2,...,n—1} dividing n .

unsigned int d;
for (d=2; n % d != 0; ++d);
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Prime Number test with sqrt
n > 21s a prime number if and only if there is no d in

{2,..., yn]} dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound & n % d != 0; ++d);

m This works because std: :sqrt rounds to the next
representable double number (IEEE Standard 754).
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Prime Number test with sqrt

// Test if a given natural number is prime.
#include <iostream>

#include <cassert>

#include <cmath>

int main ()
{
// Input
unsigned int n;
std::cout << "Test if n>1 is prime for n =7 ";
std::cin >> n;
assert (n > 1);

// Computation: test possible divisors d up to sqrt(n)
unsigned int bound = std::sqgrt(n):
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Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
X =7y;
y =1t
}
int main(){
int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // fail! @
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Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged

void swap(int@ X, in y) {

int t = x;

X =7y;

y =1

}

int main(){
int a =
int b =
swap(a, b);
assert(a==1 && b==2); // ok! @

2;
1;
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Sneak Preview: Reference Types

m We can enable functions to change the value of call
arguments.

m Not a new concept specific to functions, but rather a new
class of types

~—

Reference types (e.g. int&)
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11. Reference Types

Reference Types: Definition and Initialization, Pass By Value,
Pass by Reference, Temporary Objects, Const-References
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Swap!

// POST: values of x and y have been exchanged

void swap(in X, in y) {

int t = x;

X =7Y;

y =t

}

int main() {
int a = 2;
int b = 1;

swap(a, b);
assert(a == 1 && b == 2); // ok! (:)
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Reference Types

m We can make functions change the values of the call
arguments

m not a function-specific concept, but a new class of types:
reference types
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Reference Types: Definition

T& read as “T-reference”

:

underlying type

m T& has the same range of values and functionality as T ...
m ...but initialization and assignment work differently
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Anakin Skywalker alias Darth Vader




Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias

darth_vader = 22; assignment to the L-value behind the alias

std::cout << anakin_skywalker; // 22

anakin_skywalker darth_vader

HEEEEEEF INEEEEEEEEEEE
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rererence lypes: Intiatization and
Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // effect: anakin_skywalker = 22

m A variable of reference type (a reference) must be initialized
with an [-Value

m The variable becomes an alias of the L-value (a different
name for the referenced object)

m Assignment to the reference updates the object behind the
alias
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Reference Types: Implementation

Internally, a value of type T& is represented by the address of
an object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: literal 5 has no address
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Pass by Reference

Reference types make it possible that functions modify the value of their call arguments

initialization of the formal arguments: i

void increment (int& i)«f— . .
becomes an alias of call argument j

++1i;

}

int j = 5;
increment (j);
std::cout << j; // 6

j i
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Pass by Reference

Formal argument is of reference type:

=- Pass by Reference

Formal argument is (internally) initialized with the address
of the call argument (L-value) and thus becomes an alias.
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Pass by Value

Formal argument is not of reference type:
= Pass by Value

Formal argument is initialized with the value of the actual
parameter (R-Value) and thus becomes a copy.
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rRererences N the context oT
Intervals_intersect

// PRE: [al, bl], [a2, b2] are (generalized) intervals,
// POST: returns true if [al, bl], [a2, b2] intersect, in which case
// [1, h] contains the intersection of [al, bl], [a2, b2]
bool intervals_intersect(int& 1, int& h,
int al, int bl, int a2, int b2) {

sort(al, bl); a @
sort(a2, b2); ) B - 4
1 = std::max(al, a2); // Assignments as by

h = std::min(bl, b2); // via references
return 1 <= h;

}

int 1lo = 0; int hi = O;
if (intervals_intersect(lo, hi, 0, 2, 1, 3)) // Initialization
Std::CO'llt << ||[|| << 10 << u,n << hl << Il]ll << "\Il"; // [1’2] 381



rRererences N the context oT
Intervals_intersect

// POST: a <= b
void sort(int& a, int& b) {
if (a > b)
std::swap(a, b); // Initialization ("passing through" a, b

3

bool intervals_intersect(int& 1, int& h,
int al, int b1, int a2, int b2) {
sort(al, bl); // Initialization
sort(a2, b2); // Initialization
1 = std::max(al, a2);
h = std::min(bl, b2);
return 1 <= h;

} 382



Return by Reference

m Even the return type of a function can be a reference type:
Return by Reference

int& inc(int& i) {
return ++i;

}

m call inc(x), for some int variable x, has exactly the
semantics of the pre-increment ++x

m Function call itself now is an L-value
m Thus possible: inc(inc(x)) or ++(inc(x))
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Temporary Objects

What is wrong here?

Return value of type int& be-
int& foo(int i) { comes an alias of the formal
return i; +———— argument (local variable i),

whose memory lifetime ends
after the call

}

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior
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The Reference Guidline

Reference Guideline

When a reference is created, the object referred to must
“stay alive” at least as long as the reference.
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Const-References

m have type const T &

m type can be interpreted as “(const T) &”

m can be initialized with R-Values (compiler generates a
temporary object with sufficient lifetime)

const T& r = lvalue;
r is initialized with the address of lvalue (efficient)

const T& r = rvalue;

r is initialized with the address of a temporary object with the
value of the rvalue (pragmatic)
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What exactly does Constant Mean?

Consider L-value of type const T. Case: 1T is no reference type.

= Then the [-value is a constant

const int n = §5;

int& a = n; // Compiler error: const-qualification discarded
a = 6;

The compiler detects our cheating attempt
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What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.

= Then the L-value Is a read-only alias which cannot be used
to change the underlying L-value.

int n = 5;

const int& r = n; // r is read-only alias of n
r = 6; // Compiler error: read-only reference

int& rw = n; // rw is read-write alias
rw = 6; // OK
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When to use const T&?

void f_1(7% arg); void f_2(const 7& arg);

m Argument types are references; call arguments are thus not
copied, which is efficient
m Butonly £_2 “promises” to not modify the argument

Rule

If possible, declare function argument types as const T&
(pass by read-only reference) : efficient and safe.

Typically doesn't pay off for fundamental types (int, double, ...). Types with a larger
memory footprint will be introduced later in this course.

389



12. Vectors |

Vector Types, Sieve of Erathostenes, Memory Layout, Iteration
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Vectors: Motivation

m Now we can iterate over numbers
for (int i=0; i<mn ; ++i) {...}
m Often we have to iterate over data. (Example: find a cinema
in Zurich that shows “C++ Runner 2049” today)

m Vectors allow to store homogeneous data (example:
schedules of all cinemas in Zurich)
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Vectors: a first Application

The Sieve of Erathostenes
m computes all prime numbers < n

m method: cross out all non-prime numbers

2

3

5

7

at the end of the crossing out process, only prime numbers
remain.

m Question: how do we cross out numbers?
m Answer: with a vector.

/|

n

13

7]

17

19

P

23
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Sieve of Erathostenes with Vectors

#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {

}

// input
std::cout << "Compute prime numbers in {2,...,n-1} for n =7 ";
unsigned int n; std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n-1], initialized to false
std: :vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)
if (lcrossed_out[i]) { // i is prime
std::cout << i << " "
// cross out all proper multiples of i
for (unsigned int m = 2*i; m < n; m += i) crossed_out[m] = true;
}
std::cout << "\n";
return O;
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Memory Layout of a Vector

A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

Memory segments for a value of type T each
(T occupies e.g. 4 bytes)
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Random Access

Given
B vector vec with T elements
B int expression exp with valuei > 0

Then the expression
vec [exp]

m is an L-value of type T
m that refers to the ith element vec (counting from 0!)

I I I I |
T T T T

vec[0lvec[1lvec[2]vec[3] 397




Random Access

vec [exp]

m The value i of exp is called index
m []isthe index operator (also subscript operator)
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Random Access

Random access is very efficient:

p: address of vec

l

zl+ s -4: address of vec[4]

\\/_/

S: memory consumption
of T

(in cells)

W_/

vec[7]
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Vector Initialization

B std::vector<int> vec(5);
The five elements of vec are intialized with zeros)

B std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2

B std::vector<int> vec{4, 3, 5, 2, 1};
the vector is initialized with an initialization list

B std::vector<int> vec;
An initially empty vector is initialized
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Attention

Accessing elements outside the valid bounds of a vector leads
to undefined behavior

std: :vector vec(10);
for (unsigned int i = 0; i <= 10; ++i)
vec[i] = 30; // Runtime error: accessing vec[10]
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Attention

Bound Checks

When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of el-
ement accesses.
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Vectors Offer Great Functionality

Here a few example functions, additional follow later in the
course.

std: :vector<int> v(10);

std::cout << v.at(10);
// Access with index check — runtime error
// Ideal for homework

v.push_back(-1); // -1 is appended (added at end)
std::cout << v.size(); // outputs 11
std::cout << v.at(10); // outputs -1
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13. Characters and Texts |

Characters and Texts, ASCII, UTF-8, Caesar Code



Characters and Texts

m We have seen texts before:

std::cout << "Prime numbers in {2,...,999}:\n";

String:Literal

m can we really work with texts? Yes!

Character: Value of the fundamental type char
Text: std: :string ~ vector of char elements
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The type char (“character”)

Represents printable characters (e.g. ’a’) and control
characters (e.g. >\n?)

char ¢ = ’a’;

/\

Declares and ini- literal of type char
tialises variable ¢ of
type char with value

408
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The type char (“character”)

Is formally an integer type
m values convertible to int / unsigned int

m all arithmetic operators are available (with dubious use:

what is ’a’/’b’ ?)
m values typically occupy 8 Bit

domain:
{—128,...,127} or {0,...,255}

409



The ASCII-Code

m Defines concrete conversion rules char —
(unsigned) int

Zeichen — {0,..., 127}

'AY, 'B’, ... , 'Z’ —> 65,66, ...,90
a’, ’b’, ... , 'z’ —> 97,98 ...,122
200, 217, ... , '9 —48.49, ... 57

m |s supported on all common computer systems
m Enables arithmetic over characters

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c¢; // abcdefghijklmnopqrstuvuxyz 0



Extension of ASCII: Unicode, UTF-8

m Internationalization of Software = large character sets

required. Thus common today:
m Character set Unicode: 150 scripts, ca. 137,000 characters
m encoding standard UTF-8: mapping characters <+ numbers

m UTF-8is a variable-width encoding: Commonly used
characters (e.g. Latin alphabet) require only one byte, other
characters up to four

m Length of a character’s byte sequence is encoded via bit
patterns

Useable Bits | Bit patterns
7 | 0XXXXXXX
17 | 110xxxxx 10xXXXXXX
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Some Unicode characters in UTF-8

Symbol | Codierung (jeweils 16 Bit)

<

<’ 11101111 10101111 10111001
%% 11100010 10011000 10100000
11100010 10011000 10000011
%g 11100010 10011000 10011001
A 01000001

PS.: Search for apple "unicode of death" PS.. Unicode & UTF-8 are not relevant for the exam

html

ode

racters-in-unic

cha

ogspot.ch/2008/12/funny

N
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Caesar-Code

Replace every printable character in a text by its
pre-pre-predecessor.

%
o (33) — 'Y (125)




Caesar-Code: shift-Function

// PRE: divisor > O

// POST: return the remainder of dividend / divisor
// with 0 <= result < divisor

int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {
if (c >= 32 && c <= 126) { // ¢ is printable
c = 32 + mod(c - 32 + s5,95);

}
"- 32" transforms interval [32,126] to
return c; [0794] ;
} "mod(z, 95)" computes z mod 95 In

[0, 94]
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout

void caesar(int s) {

std::cin >> std::noskipws;$ii\fi3jii?e <ios>

char next; Conversion to bool: returns false if
i t:cin >> H— ¢ NS
vhile (std::cin >> next) and only if the input is empty

std::cout << ShiftéEEEEiszi\§\
}

} Shift printable characters by s
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Caesar-Code: Main Program

Encode: shift by n (here: 3)

int main() {
int s;
std::cin >> s; Khoor#Zruog/#p|#sdvvzrug#lv#45671

// Shift input by s

caesar(s); Encode: shift by —n (here: -3)

return O;

}

Hello World, my password is 1234.
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Caesar-Code: Generalisation

m Better: from arbitrary

id int
void caesar(int &) { character source (console,
std::cin >> std::noskipws; .
file, ...) to arbitrary character
char next; sink (console, ...)

while (std::cin >> next) {
std::cout << shift(next, s);
}
}

m Currently only from
std::cin tO std: :cout >—
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14. Characters and Texts Il

Caesar Code with Streams, Text as Strings, String Operations

418



Caesar-Code: Generalisation

m Better: from arbitrary

id int
void caesar(int &) { character source (console,
std::cin >> std::noskipws; .
file, ...) to arbitrary character
char next; sink (console, ...)

while (std::cin >> next) {
std::cout << shift(next, s);
}
}

m Currently only from
std::cin tO std: :cout >—
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Interlude: Abstract vs. Concrete Types

DestroyBox

abstract, void move_house(DestroyBox& db) {
( generic ) // any destroy box will do
db.dispose(old_ikea_couch);

T db.dispose(cheap_wine) ;
/ (is a) \

' o
( concrete, ) FireBox fb(5000°C); ShredBox sb;
° specific move_house (fb) ; move_house(sb) ;

ShredBox FireBox

[u-}

Icons on current and next slide taken from flaticon.com. Authors are: DinosoftLabs, Freepik, Kirill Kazachek, Smashicons,
Vectors Market, xnimrodx. 420



Abstract and Concrete Character Streams

DestroyBox std::ostream
abstract, Cﬁ
- ( generic ) Qo000
/ (isa)

| .
-\ o

d concrete, E >_
Py specific i

ShredBox FireBox std::ofstream std::cout
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Caesar-Code: Generalisation

]
void caesar(std::istream& in, std: :istream/std:  ostream
td::ost t . ]
ot S())S{ream& °us s an abstract input/output
stream of chars

in >> std::noskipws; . . .
m Function is called with

char next; concrete streams, e.g.:
while (in >> next) { m Console: std::cin/cout
out << shift(next, s); m Files: std::ifstream/

} ofstream

}

422



Caesar-Code: Generalisation, Example 1
#include <iostream>

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std: :cin to
std::cout
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Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>

// in void main():
std::string to_file_name = ...; // Name of file to write to
std::ofstream to(to_file_name); // Output file stream

caesar(std::cin, to, s);

Calling the generalised caesar function: from std: :cin to file
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Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <fstream>

// in void main():

std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from file to file
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Caesar-Code: Generalisation, Example 4

#include <iostream>
#include <sstream>

// in void main(Q):
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to
std: :cout
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Streams: Final Words

Note: You only need to be able to use streams

m User knowledge, on the level of the previous slides, suffices
for exercises and exam

m |.e. you do not need to know how streams work internally

m At the end of this course, you'll hear how you can define
abstract, and corresponding concrete, types yourself
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Texts

m Text “to be or not to be” could be represented as
vector<char>

m Texts are ubiquitous, however, and thus have their own typ
in the standard library: std: :string

m Requires #include <string>
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Using std::string

m Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"
m Initialise with variable length:
std::string text(n, ’a’)
text is filled with n >a’s
m Comparing texts:
if (textl == text2)

true if character-wise equal
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Using std::string

m Querying size:
for (unsigned int i = 0; i < text.size(); ++i)

Size not equal to text length if multi-byte encoding is used, e.g. UTF-8
m Reading single characters:

if (text[0] == ’a’) ... // or text.at(0)
text [0] does not check index bounds, whereas text.at (0) does

m Writing single characters:
text[0] = ’b’; // or text.at(0)
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Using std::string

m Concatenate strings:

text = ":-";
text += ")";
assert(text == ":-)");

m Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string
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https://en.cppreference.com/w/cpp/string

15. Vectors Il

Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments
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Multidimensional Vectors

m For storing multidimensional structures such as tables,
matrices, ...

m ...vectors of vectors can be used:

std::vector<std::vector<int>> m; // An empty matrix
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Multidimensional Vectors

In memory: flat

m[0] [0]

m[0] [1]

m[0] [2]

m[1] [0]

m[1] [1]

m[1] [2]

%/—/%/—/

In our head: matrix

m[0]

rowsl

columns

m[1]

0

1

\
4

2

0

m[0] [0]

m[0] [1]

m[0] [2]

1

m[1] [0]

m[1] [1]

m[1] [2]

434



Multidimensional Vectors: Initialisation

Using initialisation lists:

// A 3-by-5 matrix
std::vector<std::vector<std::string>> m = {
{IIZHH, IIBEII, IILUII’ IIBSII’ IlGEII}’

{IIFRH, "VD", IIVSII’ "NE", "JU"},

{"AR", "AI", nowu’ anu’ "ZG"}

};

assert(m[1] [2] == "VS");
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Multidimensional Vectors: Initialisation

Fill to specific size:

unsigned int a = ...;
unsigned int b e

// An a-by-b matrix with all ones
std: :vector<std::vector<int>>
m(a, std::vector<int>(b, 1));

m (type std: :vector<std::vector<int>>) is a vector of length a, whose elements (type
std::vector<int>) are vectors of length b, whose Elements (type int) are all ones

436

(Many further ways of initialising a vector exist)



Multidimensional Vectors and Type Aliases

m Also possible: vectors of vectors of vectors of ...:
std: :vector<std::vector<std::vector<...>>>

m Type names can obviously become looooooong
m The declaration of a type alias helps here:

using Name = Typ;

——

Name that can now be used to existing type
access the type
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Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was output to stream ’out’
void print(const imatrix& m, std::ostream& out);

int main() {
imatrix m = ...;
print(m, std::cout);

}

Recall: const reference for enfficiency (no copy) and safety (immutable)
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Application: Shortest Paths

Factory hall (n x m square cells)
obstacle

free cell

>

Jrting position of the robot —T——T—T— T T T —

target position of the robof

L]

[ Goal:  find the shortest F
- path of the robot from S to
T via free cells. SR -




Application: shortest paths

Solution




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 15|16 |7)|8|9 15|16 (17 [ 18 | 19

9 110 [:::)] 14|15 |16 | 17 | 18

{40l alalaalqyf15 (16| 1
target position \\\\\\\\\\\\

| shortest |78
7T length 21

NG 19

9 (10| M

This solves the original problem also: start in T

follow a path with decreasing lenghts g 23 |22 | 21 | 22
1 | | | | | | RN

19 | 20

20 | 21




This problem appears to be different

Find the lengths of the shortest paths to all possible targets.
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Preparation: Input Format

rows columns

8 12K obstacle

P X___X____
—_— X___X____
~—4X---X-T--
—_——————— X___

start position target position



Preparation: Sentinels

44t




Preparation: Initial Marking
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The Shortest Path Program

m Read in dimensions and provide a two dimensional array
for the path lengths

#include<iostream>
#include<vector>

int main()
{
// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns
Sentinel
// define a two-dimensional
// array of dimensions w//
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int» floor (n+2, std::vector<int>(m+2));



The Shortest Path Program

m Input the assignment of the hall and intialize the lengths
int tr = 0;
int tc = 0;
for (int r=1; r<n+1l; ++r)
for (int c=1; c<m+1; ++c) {
char entry = ’-’;
std::cin >> entry;

if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;

else if (entry == ’X’) floorl[r][c] = -2;
else if (entry == ’-’) floor([r] [c] -1;
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Das Kurzeste-Wege-Programm

m Add the surrounding walls

for (int r=0; r<n+2; ++r)
floor[r] [0] = floor[r] [m+1]

]
|
N

for (int c=0; c<m+2; ++c)
floor[0] [c] = floor[n+1] [c]

I
|
N
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Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

\

unmarked neighbours of
cells with length 1
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Main Loop

Find and mark all cells with path lengthsi=1,2,3...

for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+l; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1]([c] == i-1 || floor[r+1][c] == i-1 ||
floor[r] [c-1] == i-1 || floor[r][c+1] == i-1 ) {
floor[r]l[c] = i; // label cell with i
progress = true;
}
}
if (!progress) break;
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The Shortest Paths Program

Mark the shortest path by walking backwards from target to
start.

2int r = tr; int c = tc;2

3while (floor[r][c] > 0)3 {
4const int d = floor[r][c]l - 1:;4
5floor[r] [c] = -3;5

6if (floor[r-1]1[c] == d) --r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c-1] == d) --c;

else ++c; // (floor[r] [c+1] == d)
6}
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Finish
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The Shortest Path Program: output

Output

for (int r=1; r<n+l; ++r)

{

for (int c=1; c<m+1l; ++c)

if (floor[r][c] == 0)
std::cout << ’S’;
else if (r == tr && c
std::cout << ’T’;
else if (floorl[r][c]
std::cout << ’0’;
else if (floorl[r][c]
std::cout << ’X’;
else
std::cout << ’-7;
std::cout << "\n";

}

— tc)

000000X—-———~—

oXXX-oX-—----

00SX-000000-
——-X-—-XXXo-
—-—-X--—-X-o00-
—-—-X-—-X-o0--
-—-X-—-X-T--
[ X____
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The Shortest Paths Program

m Algorithm: Breadth-First Search (Breadth-first vs. depth-first
search is typically discussed in lectures on algorithms)

m The program can become pretty slow because for each 7 all
cells are traversed

m Improvement: for marking with i, traverse only the
neighbours of the cells marked with i — 1.

m Improvement: stop once the goal has been reached
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16. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, n-Queen Problem, Lindenmayer
Systems

455



Mathematical Recursion

m Many mathematical functions can be naturally defined
recursively

m This means, the function appears in its own definition

1 itn <1

n-(n—1)!, otherwise

nl ="
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Recursion in C++: In the same Way!

ifn<1

n! = L
n-(n—1)!, otherwise

// POST: return value is n!
unsigned int fac(unsigned int n) {

if (n <= 1)
return 1;
else

return n * fac(n-1);
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Infinite Recursion

m is as bad as an infinite loop ...
m ...but even worse: it burns time and memory

void f() {
£fO //f() — f() — ... — stack overflow
}
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Recursive Functions: Termination

As with loops we need guaranteed progress towards an exit
condition (~ base case)

Example fac(n):
m Recursionendsifn <1
m Recursive call with new

unsigned int fac(
unsigned int n) {

argument < n if (<= 1)
m Exit condition will thus be ell;:turn 1;
reached eventually i € S
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Recursive Functions: Evaluation

int fac(int n) {

if (n <= 1) . _
R fac(4) ~ int n = 4
else < fac(n - 1) ~» int n = 3
return n * fac(n-1);
}
std::cout << fac(4); Every call of fac operates on its

OWnn
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The Call Stack

For each function call:

m push value of the call argument
onto the stack

m always work with the top value

m at the end of the call the top value
Is removed from the stack

n=1 11 =1]
fac(l)/\ 1
ln=2 2. 1=2]
faC(Q)A 2
ln=3 3 91— 6]
fac(S)A 6
ln=4 4 3\!’:24|
fac(4) 24
std:cout << gac(4)
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Euclidean Algorithm

m finds the greatest common divisor ged(a, b) of two natural
numbers a and b

m is based on the following mathematical recursion (proof in
the lecture notes):

if b =0
gcd(a, b) = @ 1
ged(b, a mod b), otherwise
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Euclidean Algorithm in C++

a, it b =10
ged(a, b) =
ged(b, @ mod b), otherwise

unsigned int gcd(unsigned int a, unsigned int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);

Termination: a mod b < b, b thus
gets smaller in each recursive call
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Fibonacci Numbers

0, if n=20
F, =11, ifn=1
Fn—1+Fn_2, lfn>].

0,1,1,2,3,5,8,13,21,34,55.89 . ..



Fibonacci Numbers in C++

Laufzeit

fib(50) takes “forever” because it computes
Fis two times, Fy; 3 times, Fys 5 times, Fy5 8 times, Fyy 13
times,

Fy3 21times ... Fy ca. 107 times (1)
unsigned int fib(unsigned int n) {

if (n == 0) return O;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

466



Fast Fibonacci Numbers

ldea:

m Compute each Fibonacci number only once, in the order
Fy, Fi, F5, ... F,

m Memorize the most recent two Fibonacci numbers
(variables a and b)

m Compute the next number as a sum of aand b

Can be implemented recursively and iteratively, the latter is easier/more
direct
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Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return O;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1 very fast, also for £ib(50)

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // F, »
a =Db; // a becomes F;_;
b += a_old; // b becomes F, |+ F, 5, i.e. F;

}
(Fi_g, Fi_1) — (Fi—1, F7)

return b;

}
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Recursion and lteration

Recursion can always be simulated by
m Iteration (loops)
m explicit “call stack” (e.g. via a vector)

Often recursive formulations are simpler, but sometimes also
less efficient.
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The Power of Recursion

m Some problems appear to be hard to solve without
recursion. With recursion they become significantly simpler.

m Examples: The n-Queens-Problem, The towers of Hanol,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting) , ...

m ...and the 2. bonus exercise: Nonograms

470



The n-Queens Problem

m Provided is a n timesn
chessboard

m For examplen =6

m Question: is it possiblt to
position n queens such that
no two queens threaten
each other?

m If yes, how many solutions
are there?
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Solution?

m Try all possible placements?

] (f) possibilities. Too many!

m Only ne queen per row: n" possibilities. Better — but still
too many.

m |dea: don't proceed with futile attempts, retract incorrect
moves instead = Backtracking
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Solution with Backtracking

w\ / Second Queen in

next row (no colli-
/ \ sion)

queens

o | O | N | O
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Solution with Backtracking

All  squares in
next row  for-

biden. Track back
|

queens

0

2

h
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Solution with Backtracking

X X X \M Move queen one
= step further and

try again

queens

O | O | w | O
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Search Strategy Visualized as a Tree

" e ANN
W T TN
W ><4</§<>< x/o/\>>>< o// \\
_N g X></\>>X Xé/\.



Check Queen

using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.

// does not share a common row, column or diagonal

// with any of the queens on rows O to row-1

bool valid(const Queens& queens, unsigned int row) {
unsigned int col = queens[row];

for (unsigned int r = 0; r != row; ++r) {
unsigned int ¢ = queens[r];
if (col == c || col = row ==c -1 || col + row == ¢c + 1)

return false; // same column or diagonal

}

return true; // no shared column or diagonal

}
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Recursion: Find a Solution

// pre: all queens from row O to row-1 are valid,

// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row) {

if (row == queens.size())

return true;
for (unsigned int col = 0; col != queens.size(); ++col) {

queens [row] = col;
if (valid(queens, row) && solve(queens,row+1))
return true; // (else check next position)

}

return false; // no valid configuration found

}
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Recursion: Count all Solutions

// pre: all queens from row O to row-1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the

// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row) {
if (row == queens.size())
return 1;
int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col) {
queens [row] = col;

if (valid(queens, row))
count += nSolutions(queens,row+l);

}

return count;
477
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Main Program

// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main() {
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)) {
print (queens) ;
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl
} else
std::cout << "no solution" << std::endl;

return O;

}
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Lindenmayer-Systems (L-Systems)

Fractals from Strings and Turtles

m L[-Systems have been invented by the Hungarian biologist Aristid Lindenmayer
(1925-1989) to model the growth of plants.

m Rociircinn ic nf ratireco raloviant far the avam hiit | . Quctame thameaolvvac ara nnt
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Definition and Example

m{F, +, -}

m alphabet ¥

m X*: finite words over X
m production P: ¥ — X*
m initial word sy € X*

mF

Definition

The triple £ = (3, P, so) is an L-System.

FIF+F+
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The Language Described

Worter wg, wy, ws, ... € X% P(F)=F+F+
Wy = So wy = F
F+F+
wy; = P(wp) w; = [FHF|+
\( \
wy = P(w) wy =|F+F+|HIF +F +
P(F)P(+)P(F)P(+)
Definition

P(ciey...cp) = P(c1)P(ca) ... P(cy)
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Turtle Graphics

Turtle with position and direction

&

Turtle understands 3 commands:

F: move one
step forwards v

tracel IE

+: rotate by 90
degrees v/

@

—: rotate by —90
degrees v

»
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Draw Words!

wi=F+F+V
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lindenmayer: Main Program

word wy € X*:

int main() {
std::cout << "Maximal Recursion Depth =7 ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0 w=wy=F
produce(w,n) ;

return O;
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lindenmayer: production

// POST: recursively iterate over the production of the characters

// of a word.
// When recursion limit is reached, the word is "drawn"

void produce(std::string word, int depth) {
if (depth > 0) { W=w; = W= Wit
for (unsigned int k = 0; k < word.length(); ++k)
produce (replace(word[k]), depth-1);
} else { draw w = w,
draw_word(word) ;
}
}
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lindenmayer: replace

// POST: returns the production of c
std::string replace(const char c) {
switch (c) {
case ’'F’:
return "F+F+";
default:
return std::string (1, c); // trivial production c -> c
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lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word(const std::string& word) {
for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:
turtle::forward(); // move one step forward
break;
case ’'+7:
turtle::1left(90); // turn counterclockwise by 90 degrees
break;
case ’'-’:
turtle::right(90); // turn clockwise by 90 degrees
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The Recursion

(Implementation above proceeds depth-first)
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L-Systeme: Erweiterungen

m arbitrary symbols without graphical interpetation
m arbitrary angles (snowflake)

m saving and restoring the state of the turtle — plants (bush)

P S,
b 3
S S
R WSS Ged St
E:L Fae
£, ;
Y rf;"u
] <,
?m\? Cafn,
L ;
-
£y Py g
S R A
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17. Recursion 2

Building a Calculator, Formal Grammars, Extended Backus
Naur Form (EBNF), Parsing Expressions
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Motivation: Calculator

Goal: we build a command line calculator

Input: 3 + 5

Output: 8

Input: 3 / 5

Output: 0.6

Input: 3 + 5 * 20
Output: 103

Input: (3 + 5) * 20
Output: 160

Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, ¥, / and numbers
floating point arithmetic

precedences and associativities like in C++
parentheses

unary operator -



Naive Attempt (without Parentheses)

double 1lval;
std::cin >> 1lval;

char op;

while (std::cin >> op && op != ’=7) {
double rval;
std::cin >> rval;

if (op == ’+7)
lval += rval;

else if (op == ’%’) 1nput 2 + 3 * 3 =
lval *= rval; Result 15

else ...

}

std::cout << "Ergebnis " << lval << "\n";
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Analyzing the Problem

Input:

13+ 4% (15 — 7% 3) =

\\___“\f,_k_,/

Needs to be stored such
that evaluation can be per-
formed
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Analyzing the Problem

13+ 4% (15 —17x%3)

“Understanding an expression requires lookahead to
upcoming symbols!

We will store symbols elegantly using recursion.

We need a new formal tool (that is independent of C++).
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Formal Grammars

m Alphabet: finite set of symbols
m Strings: finite sequences of symbols

A formal grammar defines which strings are valid.

To describe the formal grammar, we use:
Extended Backus Naur Form (EBNF)
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Short Communications
Programming Languages

What Can We Do about the
Unnecessary Diversity of
Notation for Syntactic
Definitions?

Niklaus Wirth
Federal Institute of Technology (ETH), Ziirich, and
Xerox Palo Alto Research Center

Kcy“’ord.lndl’h-u syntactic description

The population of programming languages is stead-
ily growing, and there is no end of this growth in sight.
Many language definitions appear in journals, many
are found in technical reports, and perhaps an even
greater number remains confined to proprietory circles.
After frequent exposure to these definitions, one can-
not fail to notice the lack of “common denominators.”
The only widely accepted fact is that the language
structure is defned hy a symu But even notation for
agreed stan-
dard form, although the \md:rlym; ancestor is invaria-
bly the Backus-Naur Form of the Algol 60 report. As
variations are often only slight, they become annoying
for their very lack of an apparent motivation.

Out of sympathy with the troubled reader who is
weary of adapting to a new variant of BNF each time
another language definition appears, and without any
ity, 1 venture to submit a simpl
notation that has proven valuable and satisfactory in
use. It has the following properties to recommend it:

Copyright © 1977, Association for Computing Machincry, nc.

G rmission (0 republish, but not for profit, all or part of

this material is granted provided that ACM's copyright notice is

given and that reference is made o the publication, 10 its date of

issue, and o the fact that reprinting privileges were granted by per-

siseion of the Amocistin for Compuring
Xes

inery
present : ., Palo Alto Re-
search C‘nl:l. 3333 Coyote Hill Road, Palo Alln CA 94304,

Communications November 1977
of Volume 20

the ACM Number 11

‘The notation distinguishes clearly between meta-,
terminal, and nonterminal symbols.

2. It does not exclude characters used as metasymbols
from use as symbols of the language (as e.g. " in
BNF).

3. It contains an explicit iteration construct, and

thereby avoids the heavy use of recursion for
expressing simple repetition.

4. It avoids the use of an explicit symbol for the
empty string (such as (empty) or €).

5. Itis based on the ASCII character set.

This meta language can therefore conveniently be
used to define its own syntax, which may serve here as
an example of its use. The word identifier is used to
denote nonterminal symbol, and literal stands for termi-
nal symbol. For brevity, idenifier and character are
not defined in further detail.

syntax = .
production = =" expression ".".
expression = term}.

term = factor {factor}.

factor = ifier | hier | "(" expression ")" |

xpression "
* character {character}

Repetition is denoted by curly brackets, i.e. {a}
stands for e | a|aa|aaa| . . . . Optionality is expressed
by square brackets, i.c. [a] stands for a | €. Parentheses
merely serve for grouping, e.g. (a|b)c stands for ac | be.
Terminal symbols, i.e. literals, are enclosed in quote
marks (and, if a quote mark appears as a literal itself, it
is written twice), which is consistent with common
practice in programming languages.

"|"{"" expression "

literal -

Received January 1977; revised February 1977



Number

An integer Is a sequence of digits. A sequence of digits ist

m a digit or 2

m a digit followed by a sequence of digits 210 19

unsigned integer = digits .
digit =0’ | )9 | )90 | ’30 | ’4° | ’5’/!\’6’ | ;7) | ' 8? | 1’9,

digits = digit | digit digits.  ziternative
T terminal symbo

498
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Number (non-recursive)

An integer is a sequence of digits. A sequence of digits ist

m adigit, or 2

m a digit followed by an arbitrary number of digits 2 01 9

unsigned integer = digits .
digit =0 | 19 | )90 | '3 | ’4° | ’ 5 | ’6? | ;7) | '8 | 1’9,

digits = digit { digit }.

499
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Number, extended

A floating point number is
m a sequence of digits, or
m a sequence of digits followed by . followed by digits

Float = Digits | Digits "." Digits.
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Expressions

-(3-(4-5))*(3+4%5) /6

What do we need in a grammar?

m Number, ( Expression )
-Number, -( Expression )
m Factor * Factor, Factor

Factor / Factor, ...

m ferm + Term, Term Expression

Term - Term, ...
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The EBNF for Expressions

A factor is
m a number,
B an expression in parentheses or

m a negated factor. .
non-terminal symbol

factor = unsignednumber/

| " (" expression ")}

| "-" factor. \
/ terminal symbol

alternative
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The EBNF for Expressions

factor = unsigned_number
| " (" expression ")"
| "-" factor.

Implication: a factor starts with
m a digit, or

m with “(", or

m with "-"".
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The EBNF for Expressions

A term is
m factor,
m factor * factor, factor / factor,

m factor * factor * factor, factor / factor * factor, ...

term = factor {<"*" factor | "/" factor/\}.

optional repetition
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The EBNF for Expressions

factor = unsigned_number
| " (" expression ")"
| "-" factor.
term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.
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Parsing

m Parsing: Check if a string is valid according to the EBNF.

m Parser: A program for parsing.
m Useful: From the EBNF we can automatically generate a
parser:

m Rules become functions

m Alternatives and options become if-statements.

m Nonterminial symbols on the right hand side become function
calls

m Optional repetitions become while-statements
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Rules

factor = unsigned number
| " (" expression ")"
| "-" factor.
term = factor { "*" factor | "/" factor }.

expression = term { "+" term | "-" term }.
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Functions (Parser)

Expression is read from an input stream.

// POST: returns true if and only if in_stream = factor
// and in this case extracts factor from in_stream
bool factor (std::istream& in_stream);

// POST: returns true if and only if in_stream = term ...,
// and in this case extracts all factors from in_stream
bool term (std::istream& in_stream);

// POST: returns true if and only if in_stream = expression ...
// and in this case extracts all terms from in_stream
bool expression (std::istream& in_stream);



Functions (Parser with Evaluation)

Expression is read from an input stream.

// POST: extracts a factor from in_stream
// and returns its value
double factor (std::istream& in_stream);

// POST: extracts a term from in_stream
// and returns its value
double term (std::istream& in_stream);

// POST: extracts an expression from in_stream
// and returns its value
double expression (std::istream& in_stream);
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One Character Lookahead...

...to find the right alternative.

// POST: the next character at the stream is returned
// without being consumed. returns O if stream ends.
char peek (std::istream& input){

if (input.eof()) return 0; // end of stream

return input.peek(); // next character in input

}

// POST: leading whitespace characters are extracted from input
// and the first non-whitespace character on input returned
char lookahead (std::istream& input) {

input >> std::ws; // skip whitespaces

return peek(input);
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Parse numbers

bool isDigit(char ch){
return ch >= 0’ && ch <= ’9’;
}
// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int unsigned_number (std::istream& input){
char ch = lookahead(input);
assert(isDigit(ch));
unsigned int num = O;
while(isDigit(ch) && input >> ch){ // read remaining digits

num = num * 10 + ~h - 00 .
ch = peek(input ) o o
} unsigned number =digit { digit }.
return num; djgit =20]212]°22|°3? |4’ |5 |6 |°T’| ¢
512
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Cherry-Picking

...to extract the desired character.

// POST: if expected matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& in_stream, char expected)
{
if (lookahead(in_stream) == expected){
in_stream >> expected; // consume one character
return true;
}

return false;
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Evaluating Factors

double factor (std::istream& in_stream)

{

}

double value;

if (consume(in_stream, ’(’)) {
value = expression (in_stream);
consume (in_stream, ’)’);

} else if (consume(in_stream, ’-’)) {
value = -factor (in_stream);
} else {

value = unsigned_number (in_stre

} factor = " (" expression ")"

return value;

| "-" factor
| unsigned number.
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Evaluating Terms

double term (std::istream& in_stream)

{
double value = factor (in_stream);
while(true){
if (consume(in_stream, ’*’))
value *= factor(in_stream);
else if (consume(in_stream, ’/’))
value /= factor(in_stream)
else
return value;
}
}

term = factor { "*" factor | "/" factor }.515



Evaluating Expressions

double expression (std::istream& in_stream)
{
double value = term(in_stream);
while(true){
if (consume(in_stream, ’+’))
value += term (in_stream);
else if (consume(in_stream, ’-’))
value -= term(in_stream)
else
return value;

expression = term { "+" term | "-" term }.
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Recursion!

Expression
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EBNF — and it works!

EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_ number

| "(" expression ")"

| "-" factor.
term = factor { "*" factor | "/" factor }.
expression = term { "+" term | "-" term }.

std::stringstream input ("1-2-3");
std::cout << expression (input) << "\n"; // -4
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18. Structs

Rational Numbers, Struct Definition
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Calculating with Rational Numbers

m Rational numbers (QQ) are of the form Z with n and d in Z

m C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves! @
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Vision

How it could (will) look like

// input

std::cout << "Rational number r
rational r;

std::cin >> r;

std::cout << "Rational number s
rational s;

std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s

<< n N \Il" ;
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A First Struct

Invariant: specifies valid
value combinations (infor-
M mal). )

struct rational {
int n;%””/”’/”;:////
int d; INV: 4 !'= 0

}.

’ member variable (denominator)

m struct defines a new type

m formal range of values: cartesian product of the value
ranges of existing types

m real range of values: rational C int x int.
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Accessing Member Variables

struct rational {
int n;

int d; // INV: 4 != 0

};

rational add (ratiomal a, rational b)<{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d =
return result;
}
n
T’d.

a.d *x b.d;

a, by
ag by

ap - bd + aq -

ad-bd
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A First Struct: Functionality

A struct defines a new type, not a variable!

// new type rational

struct rational { Meaning: every object of the new type is
int n; <« represented by two objects of type int the
int d; // INV: d !'= 0 objectsare callednandd.

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n+i_b¢Q_i__i;gi§:g£§é::===h_-
result.d a.d *x b.d;

return result; member access to the int objects of a.
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Input

// Input r

rational r;

std::cout << "Rational number r:\n";
std::cout << " numerator =7 ";
std::cin >> r.n;

std::cout << " denominator =7 ";

std::cin >> r.d;

// Input s the same way
rational s;
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Vision comes within Reach ...

// computation
const ratiomal t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";
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Struct Definitions

name of the new type (identifier)

|

struct T {

T1 hame;«
names of the un- names of the mem-
derlying types T2 fiaesss ber variables

T,, hame,,«;

}

Range of Values of T: Ty x Ty X ... X T,
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Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined

529



Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and -value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different
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Structs: Accessing Members

expression of struct-type T name of a member-variable of type T.

\« f_;pgm of type Ty; value is

eXp[’ namek the value of the object desig-

nated by namey,

member access operator .
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Structs: Initialization and Assignment

Default Initialization:
rational t;
m Member variables of t are default-initialized

m for member variables of fundamental types nothing
happens (values remain undefined)
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Structs: Initialization and Assignment

Initialization:
rational t = \{5, 1\};

m Member variables of t are initialized with the values of the
list, according to the declaration order.
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Structs: Initialization and Assignment

Assignment:

rational s;
rational t = s;

m The values of the member variables of s are assigned to the
member variables of t.
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Structs: Initialization and Assignment

t.n .n
o = add (r, s) 4

Initialization: K—J

rational t = add (r, s);

m tis initialized with the values of add(r, s)
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Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

m t Is default-initialized
m The value of add (r, s) isassignedtot

536



Structs: Initialization and Assignment

rational s; «+— member variables are uninitialized

(1.5} member-wise initialization:

t.n=1, t.d =5

rational t

rational u = t; «— member-wise copy

t = u; « member-wise copy

rational v = add (u,t); «+— member-wise copy
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Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...

: 2 4
m ..otherwise we had, for example, 3 # G
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Structs as Function Arguments

void increment(rational dest, const rational src)
{

dest = add (dest, src); // modifies local copy only
}

Call by Value'!

rational a;

rational b;

a.d = 1; a.n = 2;

b = a;

increment (b, a); // no effect!
std::cout << b.n << "/" << b.d; // 1/ 2
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Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference

rational a;

rational b;

a.d =1; a.n = 2;

b = a;

increment (b, a);

std::cout << b.n << "/" < b.d; // 2/ 2



User Defined Operators

Instead of

rational t = add(r, s);
we would rather like to write

rational t = r + s;

This can be done with Operator Overloading (— next week).
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19. Classes

Overloading Functions and Operators, Encapsulation, Classes,
Member Functions, Constructors
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Overloading Functions

m Functions can be addressed by name in a scope

m |t is even possible to declare and to defined several
functions with the same name

m the “correct” version is chosen according to the signature
of the function.
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Function Overloading

B A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

m the compiler automatically chooses the function that fits “best” for a
function call (we do not go into details)

std:
std:
std:
std:

:cout
:cout
:cout
:cout

<< sq (3); // compiler chooses f2
<< sq (1.414); // compiler chooses f1
<< pow (2); // compiler chooses f4
<< pow (3,3); // compiler chooses £f3
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Operator Overloading

m Operators are special functions and can be overloaded
m Name of the operator op:

operatorOp

m we already know that, for example, operator+ exists for
different types
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Adding rational Numbers — Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;
}

const ratiomal t = add (r, s);
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Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d = a.d * b.d;

return result;

}

const rational t = r + s;
/I\
Infix notation
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Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator- (rational a, rational b);

// POST: return value is the product of a and b
rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b !=0
rational operator/ (rational a, rational b);
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Unary Minus

has the same symbol as the binary minus but only one
argument:

// POST: return value is -a
rational operator- (rational a)
{

a.n = -a.n;

return a;

549



Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a ==
bool operator== (rational a, rational b)

{

return a.n * b.d == a.d * b.n;

1
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Arithmetic Assignment

We want to write

rational r;

r.n=1; r.d = 2; // 1/2
rational s;
s.n=1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6
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Operator+=  First Trial

rational operator+= (rational a, rational b)

{
a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

does not work. Why?

m The expression r += s has the desired value, but because the
arguments are R-values (call by value!) it does not have the desired
effect of modifying r.

m The result of r += s is, against the convention of C++ no L-value.
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Operator +=

rational& operator+= (rational& a, rational b)

{
a.n = a.n * b.d + a.d * b.n;
a.d x= b.d;
return a;

}

this works

m The L-value a Is increased by the value of b and returned as
L-value

r += s; now has the desired effect.
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In/Output Operators

can also be overloaded.
m Before:

std::cout << "Sum is " << t.n << "/" << t.d << "\n";

m After (desired):

std::cout << "Sum is " << t << "\n'";
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In/Output Operators
can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out, rational r)

{

return out << r.n << "/" << r.d;

}

writes r to the output stream
and returns the stream as L-value.
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Input

// PRE: in starts with a rational number of the form "n/d4d"

// POST: r has been read from in
std::istream& operator>> (std::istream& in, rational& r){

char c; // separating character ’/’
return in >> r.n >> c >> r.d;

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>gr; operator >>

=7 .
) ’

std::cout << "Rational n
rational s;
std::cin >> s;

operator +
// computation and output V////’

std::cout << "Sum is " << r + s << ".\n";

A

operator<<
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A new Type with Functionality...

struct rational {

int n;

int d; // INV: d != 0
};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d = a.d * b.d;

return result;
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...should be in a Library!

rational.h

m Definition of a struct rational
m Function declarations

rational.cpp

m arithmetic operators (operator+, operator+=, ...)
m relational operators (operator==, operator>, ...)
m in/output (operator >>, operator <<, ..)
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Thought Experiment

The three core missions of ETH:
m research

m education

m technology transfer

We found a startup: RAT PACK®!
m Selling the rational library to customers
m ongoing development according to customer’'s demands
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The Customer is Happy

...and programs busily using rational.
m output as double-value (¢ — 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;

return result / r.d;

}
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The Customer Wants More

“Can we have rational numbers with an extended value
range?”
m Sure, no problem, e.g.

struct rational struct rational {
. unsigned int n;
unsigned int d;
bool is_positive;

};
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New Version of RAT PACK®

‘%’Q It sucks, nothing works any more!
m \What is the problem?

‘%@ —2 is sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to
double Is the problem, our library is
correct.

S Up to now it worked, therefore the new
version is to blame!
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Liability Discussion

// POST: double approximation of r
double to_double (rational r){

double result = r.n;
return result / r.d; T-is_positive and result.is_positive

} do not appear.

correct using... ...not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

struct rational {
int n;
int d;

}; };
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We are to Blamel!

m Customer sees and uses our representation of rational
numbers (initially r.n, r.d)

m When we change it(r.n, r.d, r.is _positive), the
customer'’s programs do not work anymore.

m No customer is willing to adapt the programs when the
version of the library changes.

= RAT PACK® is history...
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ldea of Encapsulation (Information Hiding)

m Atype is uniquely defined by its value range and its
functionality

m The representation should not be visible.

m = The customer is not provided with representation but
with functionality!

T

str.length(),
v.push_back(1),...
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Classes

m provide the concept for encapsulation in C++

m are a variant of structs
m are provided in many object oriented programming
languages
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Encapsulation: public / private

clm Is used instead of struct If anything at all

shall be “hidden”

int n;
int d; // INV: d != 0
};
only difference
m struct: by default nothing is hidden

B class: by default everything is hidden
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Encapsulation: public / private

Good news: r.d = 0 cannot happen

. - :
class rational { any more by accident.

int n;
. . . | =
.1nt d; // INV: d =0 Bad news: the customer cannot do
}; anything any more ...

Application Code .
...and we can't, either.

rational r; (no operator+,...)
r.n = 1; // error: n is private
r.d = 2; // error: d is private

int i = r.n; // error: n is private
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Member Functions: Declaration

class rational {

public:
(// POST: return value is the numerator of this instance
o int numerator () comnst member function
w return nj
o < ¥
= // POST: return value is the denominator of this instance
> int denominator () const { .
o member functions have ac-
return d; <= .
N cess to prlvate data
¢, .
rivate: \\ .
P int n: the scope of members in a
int df /] INV: di= 0 ¢>=.|Class Is the whole class, inde-
}: ’ pendent of the declaration or-
H
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Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational i member access

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner
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Member Functions: Definition

// POST: returns numerator of this instance
int numerator () const

{

return n;

}

m A member function is called for an expression of the class. in the

function, this is the name of this implicit argument. this itself is a
pointer to It.

m const refers to the instance this, i.e, it promises that the value
associated with the implicit argument cannot be changed

® nis the shortcut in the member function for this->n (precise
explanation of “=>" next week)
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const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)

{n=0N;}
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;

int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an
Instance cannot be changed via this function.
const items can only call const member functions.
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Comparison

Roughly like this it were ...

class rational {
int n;

public:
int numerator () const

{

return this->n;
}
};

rational r;

std::cout << r.numerator();

... without member functions

struct bruch {
int n;

};

int numerator (const bruch& dieser)

{
return dieser.n;
}

bruch r;

std::cout << numerator(r);
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viemper-vemnnition:
Class

class rational {
int n;

public:
int numerator () comnst

{

return n;
}
};
m No separation between

declaration and definition
(bad for libraries)

IN-Class VvsS. OUUt-0T1-

class rational {
int n;

public:
int numerator () comnst;

};
int rational: :numerator () const

{

return n;

m This also works.
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Constructors

m are special member functions of a class that are named like
the class

m can be overloaded like functions, i.e. can occur multiple
times with varying signature

m are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.

m if there is no matching constructor, the compiler emits an
error message.
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Initialisation? Constructors!

class rational

{
public:
rational (int num, int den)
. n (num), d (den) Imtlallzatlon.ofthe
c member variables
assert (den != 0); +—— function body.
}
};

rational r (2,3); // r = 2/3
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Constructors: Call

m directly
rational r (1,2); \small // initialisiert r mit 1/2
m indirectly (copy)

rational r = rational (1,2);
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Initialisation “rational = int"?

class rational

{
public:
rational (int num)
:n (num), 4 (1)
{} <+— empty function body
};

rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion
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The Default Constructor

class rational

{
public: empty list of arguments
rational ()*///////
:n (0), d (1)
{3
};

rational r; // r =0

= There are no uninitiatlized variables of type rational any
more!
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Alterantively: peteting a perault
Constructor

class rational
{
public:
rational () = delete;
};
rational r; // error: use of deleted function ’rational::rational

= There are no uninitiatlized variables of type rational any
more!
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User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) <—— rational. values of type int can now
:n (num), d (1) be converted to rational.

{}

rational r = 2; // implizite Konversion
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The Default Constructor

m is automatically called for declarations of the form
rational r;

m is the unique constructor with empty argmument list (if
existing)
m must exist, if rational r; is meant to compile

m if in a struct there are no constructors at all, the default
constructor is automatically generated
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RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)

{
double result = r.numerator();
return result / r.denominator();

1

m We can adapt the member functions together with the
representation v/
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RAT PACK® Reloaded ...

class rational { int numerator () const
o} {
e .
) private: return n;
%5 int n; }
@) int d;
};
class rational { int numerator () const{
if (is_positive)
private: return n;
— unsigned int n; else {
ég unsigned int 4; int result = n;
[go! bool is_positive; return -result;
}; }

}
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RAT PACK® Reloaded ?

int numerator () const

class rational { y
private: if (is_positive)
i i return n;

unsigned int n;
else {

unsigned int d;

bool is_positive; int result = n;

return -result;

}; )
}

m value range of nominator and denominator like before
m possible overflow in addition
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Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of *this
int numerator () const;

private:
// none of my business

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.
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Fix: “our” type rational::integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of *this
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.g:

m implicit conversion int — rational: :integer
m function double to_double (rational::integer)
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RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)

{

rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}
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Separate Declaration and Definition

class rational {

public:
rational (int num, int denum);
using integer = long int;
integer numerator () const;

private:

};

rational::rational (int num, int den):
n (num), d (den) {}
rational: :integer rational::numerator () const
~
{ AN
return n; class name = member name

1

rational.h

rational.cpp
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20. Dynamic Data Structures |

Dynamic Memory, Addresses and Pointers, Const-Pointer
Arrays, Array-based Vectors
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Recap: vector<i’>

m Can be initialised with arbitrary size n
m Supports various operations:

e = v[il; // Get element
v[i] = e; // Set element
1 = v.size(); // Get size

v.push_front(e); // Prepend element
v.push_back(e); // Append element

m A vector is a dynamic data structure, whose size may
change at runtime



Our Own Vector!

m Today, we'll implement our own vector: vec
m Step 1: vec<int> (today)
m Step 2: vec<T'> (later, only superficially)
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Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?
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new for Arrays

underlying type

| new
Texpr]

new-0O type int, value n

m Effect: new contiguous chunk of memory n elements of
type T is allocated
I I I I I I I |

m This chunk of memory is called an array (of length n)
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new for Arrays

underlying type
= new

T[Q@r]

new-0O type int, value n

m Value: the starting address of the memory chunk

P—— I I I I I I

m Type: A pointer T (more soon)

596



Outlook: new and delete

new

TLexpr]

u

m So far: memory (local variables, function arguments) “lives”
only inside a function call

m But now: memory chunk inside vector must not “die” before
the vector itself

m Memory allocated with new is not automatically deallocated
(= released)

m Every new must have a matching delete that releases the
memory explicitly — in two weeks 597



new (Without Arrays)

underlying type

!
new [(...)

/

new-Operator constructor arguments

m Effect: memory for a new object of type T is allocated ...

m ...and initialized by means of the matching constructor

m Value: address of the new T object, Type: Pointer T

m Also true here: object “lives” until deleted explicitly
(usefulness will become clearer later)
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Pointer Types

T* Pointer type for base type T

An expression of type Tx is called pointer (to T)

int* p; // Pointer to an int
std::string* q; // Pointer to a std::string
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Pointer Types

T* Pointer type for base type T

A T* must actually pointtoa T

int* p = ...;
std::string* q = p; // compiler error!
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Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7£f£d89d5f7cc

P

int (e.g. 5) addr

addr T
(e.g. 0x7££fd89d5f7cc) p
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Address Operator
Question: How to obtain an object’s address?
1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr«— expr: l-value of type T

m Value of the expression: the address of object (l-value) expr
m Type of the expression: A pointer Tx (of type T')

602



Address Operator

int i = 5; // i initialised with 5
int* p = &i; // p initialised with address of i

TN

5 &i = addr

addr T T

i

Next question: How to “follow” a pointer?
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Dereference Operator

Answer: by using the dereference operator *

*eXpr<— expr: r-value of type T

m Value of the expression: the value of the object located at
the address denoted by expr

m Type of the expression: T
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Dereference Operator

int i = 5;
int* p = &i; // p = address of i

int j = *p; // j =5

*p =5 5 &i = addr

T addr T T

J i p
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Address and Dereference Operator

pointer (R-value)

object (L-value)
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Mnenmonic Trick

The declaration
T* p; // pis of the type “pointer to T”

can be read as

T *p;wis of type T

Although this is legal, we
do not write it like this!
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Null-Pointer

m Special pointer value that signals that no object is pointed
to

m represented b the literal nullptr (convertible to Tx)

int* p = nullptr;

m Cannot be dereferenced (runtime error)
m Exists to avoid undefined behaviour

int* p; // Accessing p is undefined behaviour
int* q = nullptr; // q explicitly points nowhere
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Pointer Arithmetic: Pointer plus int

T+* p =new T'[n]l; // p points to first array element

P p+3 p+n

v ~~ ~

Question: How to point to rear elements? — via Pointer

arithmetic:

m p yields the value of the first array element, *p its value

m *x(p + i) yields the value of the ith array element, for
0<i<n

B *p IS equivalentto *(p + 0)
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Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // pO points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element

*(p3 + 2) = 600; // set value of 6th element to 600

std::cout << *(p0 + 5); // output 6th element’s value (i.e. 600)

L1 1 2 1 3 1 4 1 5 1 600 | 7 |
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Pointer Arithmetic: Pointer minus int

m If ptris a pointer to the element with index k& in an array a

with length n
m and the value of expris an integeri, 0 < k —i < n,

then the expression
ptr - expr
provides a pointer to an element of a with index k — 4.

a ptr-expr ptr.

| | |

1 1 1 1 1 1 1 |
K
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Pointer Subtraction

m If p7 and p2 point to elements of the same array a with
length n
m and 0 < kq, ko < n are the indices corresponding to p1 and
p2, then
p1-p2 has value ky - ko

I

Only valid if p7 and p2 point into the same array.

m The pointer difference describes how far apart the
elements are from each other in memory
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Pointer Operators

Description || Op | Arity | Precedence | Associativity | Assignment
Subscript 112 17 left R-value — L-
value
Dereference || * |1 16 right R-Wert — L~
Wert
Address & |1 16 rechts L-value  —

R-value

Precedences and associativities of +, -, ++ (etc.) as in Chapter 2
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Pointers are not Integers!

m Addresses can be interpreted as house numbers of the memory, that is,
integers

m But integer and pointer arithmetic behave differently.

ptr + 1isnotthe next house number but the s-next, where s is the
memory requirement of an object of the type behind the pointer ptr.

m Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to intx
int a = ptr; // error: invalid conversion from int* to int

614



Sequential Pointer Iteration

char*x p = new char[3]{’x’, ’y’, ’z’};

for (chare 1t = p;
it I=p + 3; Abort if end reached

++it ({ Advance pointer element-wise

std::cout << *it <<’ ’; Output current element: 'x’

}
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Random Access to Arrays

char*x p = new char[3]{’x’, ’y’, ’z’};

[ x | v ]

VA

m The expression *(p + i)
m can also be written as p[il
mEg pll] == x(p + 1) ==y’
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Random Access to Arrays

iteration over an array via indices and random access:
char*x p = new char[3]{’x’, ’y’, ’z’};
for (int 1 = 0; i < 3; ++i)

std::cout << p[i] <<’ 7;

But: this is less efficient than the previously shown sequential
access via pointer iteration
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Random Access to Arrays

T+ p = new 7T'[n];
| | | | | | | |

—~—

size s
ofaT

m Access p[il, i.e. x(p + i), “costs” computationp+i-s

m |teration via random access (p[01, p[1], ...) costs one
addition and one multiplication per access

m |teration via sequentiall access (++p, ++p, ...) costs only one
addition per access

m Sequential access is thus to be preferred for iterations
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rReading a DOOK ...wIth random access
...with sequential access

Random Access Sequential Access

m open book on page 1 m open book on page 1
m close book m turn the page

m open book on pages 2-3 m turn the page

m close book m turn the page

m open book on pages 4-5 m turn the page

m close book m turn the page

_ |



Static Arrays

B int* p = new int[expr] creates a dynamic array of size
expr

m C+-+has inherited static arrays from its predecessor
language C: int al[cexpr]

m Static arrays have, among others, the disadvantage that
their size cexpr must be a constant. l.e. cexpr can, eg. be 5
or 4x3+2, but kein von der Tastatur eingelesener Wert n.

m A static array variable a can be used just like a pointer

m Rule of thumb: Vectors are better than dynamic arrays,
which are better than static arrays
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Arrays in Functions

C++-covention: arrays (or a segment of it) are passed using

two pointers
begin end
4 4
I I I I I I I I I |

m begin: Pointer to the first element

m end: Pointer past the last element

m [begin, end) Designates the elements of the segment of
the array

m [begin, end) is empty if begin == end

m [begin, end) must be a valid range, i.e. a (pot. empty)
array segment
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Arrays in (mutating) Functions: £ill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int* begin, int* end, int value) {
for (int* p = begin; p != end; ++p)
*p = value;

int* p = new int[5];
£ill1(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}
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Functions with/without Effect

m Pointers can (like references) be used for functions with
effect. Example: £ill

m But many functions don’t have an effect, they only read the
data

m = Use of const

m So far, for example:

0;
Zero;

const int zero
const int& nil
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Positioning of Const

Where does the const-modifier belong to?

const 7T is equivalent to T const (and can be written like this):

<— 1int const zero
<— 1int const& nil

const int zero
const int& nil

Both keyword orders are used in praxis
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Const and Pointers

Read the declaration from right to left

int const pi; pl is a constant integer

int const* p2; p2 is a pointer to a constant integer

int* const p3; p3 IS a constant pointer to an integer

int const* const p4; p4 is a constant pointer to a constant inte-

ger
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Non-mutating Functions: print

There are also non-mutating functions that access elements of an array
only in a read-only fashion

// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed

void print( - :
. . Const pointer to const int
int const* const begin,

const int* const end : : -
) Likewise (but different keyword order)

for (int const* pg= begin; p != end; ++p)
std::cout << *p <<

Pointer, not const, to const int

Pointer p may itself not be const since it is mutated (++p)
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const IS not absolute

m The value at an address can change even if a
const-pointer stores this address.

Beispiel

int a[5];

const int* beginl = a;

intx* begin2 = a;

*beginl = 1; // error *beginl is const

*begin2 = 1; // ok, although *begin will be modified

B const IS a promise from the point of view of the
const-pointer, not an absolute guarantee
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Wow - Palindromes!

// PRE: [begin end) is a valid range of characters

// POST: returns true if the range forms a palindrome

bool is_palindrome (const char* begin, const char* end) -
while (begin < end)

if (*(begin++) != *(--end)) return false;
return true;
}
begin end
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Arrays, new, Pointer: Conclusion

Arrays are contiguous chunks of memory of statically unknown size

new T'[n] allocates a T-array of size n

T* p = new T [n]: pointer p points to the first array element

Pointer arithmetic enables accessing rear array elements

Sequentially iterating over arrays via pointers is more efficient than

random access

new T allocates memory for (and initialises) a single T-object, and

yields a pointer to it

m Pointers can point to something (not) const, and they can be (not)
const themselves

m Memory allocated by new is not automatically released (more on this
soon)

m Pointers and references are related, both “link” to objects in memory.

See also additional the slides pointers.pdf)



Array-based Vector

m Vectors ...that somehow rings d Unser eigener Vektor!
bell =

. NOW We knOW hOW to allocate = Wir implementieren unseren eigenen Vektor: vec
memory chunks of arbitrary size = Sewit t: vecciae> (neute

m Schritt 2: vec<T™> (spater, nur kurz angeschnitten)
m ...we can implement a vector,
based on such a chunk of memory

B avec — an array-based vector of
int elements



Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() comnst; // Size of vector
int& operator[] (int i); // Access an element
void print(std::ostream& sink) const; // Output elems.

}
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Constructor avec: :avec()

avec::avec(unsigned int size)

: count(size) £

elements = new int[sizel; Allocate memory
}

Side remark: vector is not initialised with a default value
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Excursion: Accessing Member Variables

avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

elements IS @ member variable of our avec instance

That instance can be accessed via the pointer this
elements IS a shorthand for (*this) .elements
Dereferencing a pointer (*this) followed by a member
access (.elements) is such a common operation that it can
be written more concisely as this->elements

m Mnemonic trick: “Follow the pointer to the member
variable”

EEEE
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Function avec: :size ()

int avec::size() const 4£ Doesn’t modify the vector

return this->count; ¢

Usage example:

avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec: : operator[]

int& avec::operator[] (int i) {

return this->elements[i];
}

Flement access with index check:

int& avec::at(int i) comnst {
assert(0 <= i && i < this->count);

return this->elements[i];

3
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Function avec: : operator[]

int& avec::operator[] (int i) {
return this->elements[i];

}
Usage example:

avec v = avec(7);

std::cout << v[6]; // Outputs a "random" value
v[6] = 0;

std::cout << v[6]; // Outputs 0
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runction avec::operatoril IS needed
twice

int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

m The first member function is not const and returns a
non-const reference

avec v = ...; // A non-const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Modifying elements is allowed

m It is called on non-const vectors
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runction avec::operatoril IS needed
twice

int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

m The second member function is const and returns a const
reference

const avec v = ...; // A const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Compiler error: modifications are not allowed

m It is called on const vectors
Also see the example getters_and_const.cpp attached to this
PDF
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#include <iostream>



// A simple cell class, basically a degenerated vector with just one element,

// is used to demonstrate how const and non-const getter functions can (or

// cannot) be used with const and non-const cell instances.



// Class cell, version 1

class cell_v1 {

  int value; // Private state

public:

   // A simple constructor.

  cell_v1(int v): value(v) {}

  

  // A getter (not const whatsoever).

  // For a vector, the getter would be operator[](unsigned int i).

  int& get() { return value; }

};





// // Class cell, version 2: This class is *rejected* by the compiler since its

// // getter, if accepted, would allow modifying a const cell.

// class cell_v2 {

//   int value;

// public:

//   cell_v2(int v): value(v) {}

 

//   // This getter is marked as const, and as such could be called on const cells.

//   // However, the getter returns a non-const reference, through which the

//   // const cell could be modified. To prevent this, the compiler rejects this

//   // getter.

//   int& get() const { return value; } // COMPILER ERROR

// };





// Class cell, version 3

class cell_v3 {

  int value;

public:

  cell_v3(int v): value(v) {}

  

  int& get() { return value; } // Non-const getter

  const int& get() const { return value; } // Const getter

};





int main() {

  // Using cell version 1

  cell_v1 c1{1};

  std::cout << c1.get() << '\n'; // OK: reading from the cell

  c1.get()++; // OK: modifying the non-const cell

  std::cout << c1.get() << '\n'; // OK: reading



  const cell_v1 cc1{1};

  // std::cout << cc1.get() << '\n'; // COMPILER ERROR (although only reading)

        // cc1 is const and the compiler therefore tries to find a const getter.

        // However, cell_v1 does not declare a const getter.





  // const cell_v2 cc2{1}; // const cell

  // c2.get()++; // Would modify the const cell





  // Using cell version 3

  cell_v3 c3{1};

  std::cout << c3.get() << '\n'; // OK: reading

  c3.get()++; // OK: modifying

  std::cout << c3.get() << '\n'; // OK: reading



  const cell_v3 cc3{1};

  std::cout << cc3.get() << '\n'; // OK: reading

  // cc3.get()++; // COMPILER ERROR: would modify the const cell 



  return 0;

}




Function avec: :print ()

Output elements using sequential access:

void avec::print(std::ostream& sink) const {

for (int* p = this->elements;

p != this->elements + this->count;
++p) ¢

Advance pointer element-wis Abort iteration if
past last element

sink << *p << 7 7
}

}

{
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Function avec: :print ()

Finally: overload output operator:

operator<<(

sink,

vec.print(sink);
return g

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {
vec.print(sink);
return sink;

}
Observations:

m CAnctant rofaranrcrAa +A «somamr cinecena 11nrhanceaAd

vec) {
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Further Functions?

class avec {

void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element

}

Commonalities: such operations need to change the vector's
size
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Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be
resized later on

21117

T T
first last

Possibility:
m Allocate more memory than initially necessary
m Fill from inside out, with pointers to first and last element
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Resizing arrays

310(3[2[1]|7]419]9|8

T T
first last

m But eventually, all slots will be in use

m Then unavoidable: Allocate larger memory block and copy
data over
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Resizing arrays

3lo[3][2]1[7 | o]9]8
T T
first last

Deleting elements requires shifting (by copying) all preceding
or following elements

3101312171998
T T
first last

Similar: inserting at arbitrary position
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21. Dynamic Data Structures Il

Linked Lists, Vectors as Linked Lists



Different Memory Layout: Linked List

m No contiguous area of memory and no random
access

m Fach element points to its successor

m Insertion and deletion of arbitrary elements is
simple

>3 > 8 > 8

1 > 5 > 6 : ?
pointer

= Our vector can be implemented as a linked list
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Linked List: Zoom

element (type struct 1llnode)

P

5

A 4

®

value (type int)

struct llnode {
int value;
llnode* next;

llnode(int v, llnode* n): value(v), next(n) {} // Constructor

};

next(type 1lnodex*)
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Vector = Pointer to the First Element

element (type struct 1llnode)

A 4

P

o— 5| @

value (type int) next (type 1lnodex)

class 1llvec {
llnode* head;

public: // Public interface identical to avec’s
llvec(unsigned int size);
unsigned int size() comnst;

};



Function 1lvec: :print ()

struct llnode {
int value;
llnode* next;

};...

void llvec::print(std::ostream& sink) const {

for (llnode*x n = this->head;
n != nullptr; ¢ Abort if end reached
n = n->next) ¢ Advance pointer element-wise

sink << n->value << ’ ’; Output current element

{

%
%

650



Function 1lvec: :print ()

void 1llvec::print(std::ostream& sink) const {
for (llnode* n = this->head;
n != nullptr;
n = n->next)
{
sink << n->value << ’ ’; // 156
}
}

this->head
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Function 1lvec: :operator []

Accessing ith Element is implemented similarly to print ():

int& llvec::operator[] (unsigned int i) {

llnode* n = this->head;

for (5 0 < i; --i) ¢ Step to ith element

n = n->next;

return n->value; ¢ Return ith element
}
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Function 11vec: :push_front ()

Advantage 11lvec: Prepending elements is very easy:

void llvec::push_front(int e) {

this->head =

new llnode{e, this->head};

this->head

4

1

\ 4

5

\ 4

6

\
l

Attention: If the new 11node weren't allocated dynamically, then it would
be deleted (= memory deallocated) as soon as push_front terminates
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Function 11lvec: :11lvec()

Constructor can be implemented using push_front ():

llvec::1lvec(unsigned int size) {

this->head = nullptr; head initially points to nowhere
s SIS L L

this->push_front (0);

Use case:

llvec v = 1llvec(3);
std::cout << v; // 0 0 0
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Function 1lvec: :push_back ()

Simple, but inefficient: traverse linked list to its end and

append new element

void llvec::push_back(int e) {
llnode* n = this->head;

Start at first € and g0 to the last
element

for (; n->next != nullptr; n = n->next);

n->next =

Append new element to
new llnode{e, nullptr}; ‘ cEPrently lavgt
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Function 1lvec: :push_back ()

m More efficient, but also slightly more complex:

1. Second pointer, pointing to the last element: this->tail
2. Using this pointer, it is possible to append to the end directly

I'~

1 @ @

L 2
(@)}

L 4
Ul

this->head this->tail

m But: Several corner cases, e.g. vector still empty, must be
accounted for
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Function 1lvec: :size()

Simple, but inefficient: compute size by counting

unsigned int llvec::size() const {

unsigned int c = 0; £ Count initially 0

for (llnode* n = this->head;

1= c
n != nullptr; Count linked-list length

n = n->next)
++C;

return c; <
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Function 1lvec: :size()

More efficient, but also slightly more complex: maintain size
as member variable

1. Add member variable unsigned int count to class 1llvec

2. this->count must now be updated each time an
operation (such as push_front) affects the vector’s size
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Efficiency: Arrays vs. Linked Lists

m Memory: our avec requires roughly n ints (vector size n),

our 11vec roughly 3n ints (a pointer typically requires 8

byte)

-
» llvec: 10 ms

appending (insert at back) [100,000x]:
> avec: 2 ms
-

removing first [100,000x]:
>

» llvec: 4 ms
removing last [100,000x]:
» avec: 0 ms

-

Runtime (with avec = std: :vector, 11vec = std: :1list):

prepending (insert at front) [100,000x]:

removing randomly [10,000x]:
> avec: 3 ms
>
inserting randomly [10,000x]:
> avec: 16 ms
-
fully iterate sequentially (5000 elements) [5,000x]:
> avec: 354 ms
>
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22. Containers, Iterators and
Algorithms

Containers, Sets, Iterators, const-Iterators, Algorithms,
Templates



Vectors are Containers

m Viewed abstractly, a vector is
1. A collection of elements
2. Plus operations on this collection

m In C++, vector<T> and similar data structures are called
container

m Called collections in some other languages, e.g. Java
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Container properties

m EFach container has certain characteristic properties
m For an array-based vector, these include:

m Efficient index-based access (v[i])

Efficient use of memory: Only the elements themselves require
space (plus element count)

Inserting at/removing from arbitrary index is potentially inefficient
Looking for a specific element is potentially inefficient

Can contain the same element more than once

Elements are in insertion order (ordered but not sorted)
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Containers in C++

m Nearly every application requires maintaining and
manipulating arbitrarily many data records

m But with different requirements (e.g. only append elements,
hardly ever remove, often search elements, .. .)

m That's why C++'s standard library includes several
containers with different properties, see
https://en.cppreference.com/w/cpp/container

m Many more are available from 3rd-party libraries, e.g.
https://www.boost.org/doc/libs/1_68_0/doc/html/
container.html, https://github.com/abseil/abseil-cpp
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https://github.com/abseil/abseil-cpp

£eXample container:

std: :unordered_set<7™>

m A mathematical set is an unordered, duplicate-free
collection of elements:

{1,2,1} ={1,2} = {2,1}
m In C++: std: :unordered_set<7>
m Properties:

m Cannot contain the same element twice

m Elements are not in any particular order

m Does not provide index-based access (s[i] undefined)
m Efficient “element contained?” check

m Efficient insertion and removal of elements

m Side remark: implemented as a hash table
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Use Case std: :unordered_set<7™>

Problem:
m given a sequence of pairs (name, percentage) of Code
Expert submissions ...
// Input: file submissions.txt
Friedrich 90
Schwerhoff 10

Lehner 20
Schwerhoff 11

m ... determine the submitters that achieved at least 50%

// Output
Friedrich
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Use Case std: :unordered_set<7™>

std::ifstream in("submissions.txt");
std: :unordered_set<std::string> names; Set of names, initially empty

std::string name; ¢

unsigned int score;

while (in >> name >> score) { Innmgpx‘r nai!'f -
. Record name if score suf-
if (50 <= score) T( fices

names.insert (name) ;

3

std::cout << "Unique submitters: " Output recorded names

<< names << ’\n’;
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Example Container: std: :set<7T>

m Nearly equivalent to std: :unordered_set<7>, but the
elements are ordered

{1,2,1} = {1,2} # {2,1}

m Element look-up, insertion and removal are still efficient
(better than for std: :vector<T>), but less efficient than for
std: :unordered_set<[>

m That's because maintaining the order does not come for
free

m Side remark: implemented as a red-black tree
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Use Case std: :set<I>

std::ifstream in("submissions.txt");

std: :set<std::string> names;

std: :string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)
names.insert (name) ;

3

’ . ... and the output is in
std::cout << "Unique submitters: " | amhmmUmlg£5r||

<< names << ’\n’;



Printing Containers

m Recall: avec: :print () and 11lvec: :print ()

m What about printing set, unordered_set, ...?

m Commonality: iterate over container elements and print
them
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Similar Functions

Lots of other useful operations can be implemented by
iterating over a container:

contains(c, e): true iff container c contains element e
min/max(c): Returns the smallest/largest element

sort (c): Sorts c¢'s elements

replace(c, el, e2): Replaces each el in c with e2
sample(c, n): Randomly chooses n elements from c
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Recall: Iterating With Pointers

m Iteration over an array:

m Point to start element: p = this->arr
m Access current element: *p
m Check if end reached:
p == this->arr + size
m Advance pointer:p = p + 1

m |teration over a linked list:

m Point to start element: p = this->head
m Access current element: p->value

m Check if end reached: p == nullptr

m Advance pointer: p = p->next

N CEEC L
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[terators

m |teration requires only the previously shown four operations
m But their implementation depends on the container

m = Fach C++container implements their own Iterator

m Given a container c:

it = c.begin(): Iterator pointing to the first element
it = c.end(): Iterator pointing behind the last element
*it: Access current element

++it: Advance iterator by one element

m |terators are essentially pimped pointers
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[terators

m Iterators allow accessing different containers in a uniform way:
*xit, ++it, etc.

m Users remain independent of the container implementation

m Iterator knows how to iterate over the elements of “its” container

m Users don't need to and also shouldn’t know internal details
=

container container container

[TTTTT1] %@ﬁ%(

674



Example: Iterate over std: :vector

it is an iterator specific to std: :vector<int>

std::vector<int> v = {1, 2, 3}; it initially points to the first element

for (std::vector<int>::iterator it&="v.begin()

it !'= v.end(); Abort if it reached the end

++it) 4£ Advance it element-wise
*¥it = -*it; ¢ Negate current element (e — —e)

}

std::cout << v; // -1 -2 -3
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Example: Iterate over std: :vector

Recall: type aliases can be used to shorten often-used type
names

using ivit = std::vector<int>::iterator; // int-vector iterator

for (ivit it = v.begin(Q);
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Negate as a Function

As before: passing a range (interval) to work on

void neg(std::vector<int>::iterator begin;
std::vector<int>::iterator end) {

for (std::vector<int>::iterator it = begin;

it != end;
++it) {
*it = —-*it;

}
}

Negate elements in
interval [begin, end)
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Negate as a Function

As before: passing a range (interval) to work on

void neg(std::vector<int>::iterator begin;
std::vector<int>::iterator end);

// in main():
std::vector<int> v = {1, 2, 3};
neg(v.begin(), v.begin() + (v.size() / 2)); Negate first half
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Algorithms Library in C++

m The C++standard library includes lots of useful algorithms
(functions) that work on iterator-defined intervals [begin,
end)

m For example find, £i11 and sort; see also
https://en.cppreference.com/w/cpp/algorithm

m Thanks to iterators, these > 100 (!) algorithms can be
applied to any* container: the 17 (!) C++standard container,
our avec and 1lvec (discussed next), etc.

m Without this uniform access to container elements, we
would have to duplicate lots of code

679
Not every aleorithm can be applied to every container. It is, e.g. Not possible to sort a std: :set.


https://en.cppreference.com/w/cpp/algorithm

An iterator for 11lvec

We need:

1. An 1lvec-specific iterator with at least the following
functionality:

m Access current element: operator*
m Advance iterator: operator++
m End-reached check: operator!= (or operator==)

2. Member functions begin() and end () for 11lvec to get an
iterator to the beginning and past the end, respectively
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Iterator 11lvec: :iterator (Step 1/2)

class 1llvec {

public:
class iterator {

};

3

m The iterator belongs to our vector, that's why iterator is a
public inner class of 11vec

m Instances of our iterator are of type 1lvec: :iterator
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Iterator 11lvec: :iterator (Step 1/2)

class iterator {

llnode* node; ¢ Pointer to current vector element

public:

iterator(1llnode* n); Create iterator to specific element
iterator& operator++(); Advance iterator by one element
int& operator* () const; Access current element

bool operator!=(const iterator& other) const; 4—

Compare with other iterator




Iterator 11lvec: :iterator (Step 1/2)

// Constructor
llvec::iterator::iterator(llnode* n): node(n)

Let iterator point to n initially

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {
assert(this->node != nullptr);

this->node = this->node->next; Advance iterator by one element

return *this; Return reference to advanced iterator
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Iterator 11lvec: :iterator (Step 1/2)

// Element access
int& 1llvec::iterator: :operator*() const {

return this->node->value; Access current element
}

// Comparison: when are two iterators not equal?
bool llvec::iterator: :operator!=(
const llvec::iterator& other) const
{
return this->node != other.node;

3

this iterator different from other if they

point to different element
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An iterator for 11vec (Repetition)

We need:
1. An 1lvec-specific iterator with at least the following

functionality:
m Access current element: operator*
m Advance iterator: operator++

m End-reached check: operator!= (or operator==)

2. Member functions begin() and end () for 11vec to get an
iterator to the beginning and past the end, respectively
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lterator 11lvec: :iterator (Step 2/2)

class 1llvec {

public:
class iterator {...};

iterator begin();
iterator end();

}

1l1lvec needs member functions to issue iterators pointing to
the beginning and past the end, respectively, of the vector
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lterator 11lvec: :iterator (Step 2/2)

llvec::iterator llvec::begin() {

return llvec::iterator(this->head) ;
}
Iterator to first vector element

llvec::iterator llvec::end() {

return llvec::iterator(nullptr);
}
Iterator past last vector element
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Const-lterators

m In addition to iterator, every container should also
provide a const-iterator const_iterator

m Const-iterators grant only read access to the underlying
Container

m For example for 11lvec:

llvec::const_iterator llvec::cbegin() const;
llvec::const_iterator llvec::cend() const;

const int& llvec::const_iterator::operator*() const;

m Therefore not possible (compiler error):
*(v.cbegin()) = 0
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Const-lterators

Const-Iterator can be used to allow only reading:

llvec v = ...;
for (llvec::const_iterator it = v.cbegin(); ...)
std::cout << *it;

It would also possible to use the non-const iterator here
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Const-lterators

Const-lterator must be used If the vector is const:

const llvec v = ...;
for (llvec::const_iterator it = v.cbegin(); ...)
std::cout << *it;

It is not possible to use iterator here (compiler error)
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Range-based for Loop

m Sequential iteration over an 11lvec, using an iterator (const-iterator
possible, as are other containers):

llvec v(3); // v == {0, 0, 0O}
for (llvec::iterator it = v.begin(); it != v.end(); ++it)
std::cout << xit; // 000

m Can alternatively be written as follows:
for (int i : v) std::cout << i; // 000

Is then translated to an iterator-based loop.
m Mutating access is possible as well:

for (int& i : v) i += 3;
for (int i : v) std::cout << i; // 369
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Type-generic Container

Type-specific containers

[}

186U 107737 9
]

LSAU 107737 9
P

Type-generic container

USBU 107797 9
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https://upload.wikimedia.org/wikipedia/commons/d/df/Container_01_KMJ.jpg (CC BY-SA 3.0)
PS.: Templates are not relevant for the exam
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Type-generic Container

Class cell: a simple, single-element container for int

class cell { cell::cell(int e)
. Ml Constructor stores e .
int element; : element(e) {}
public: int& cell::value() {
cell(int e); return this->element;

int& value();

}
¥

Better: generic cel1<E> for every element type E (analogous
to std: :vector<E>)
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Type-generic Container with Templates

Templates enable type-generic functions and classes:

template<typename E> Let E an arbitrary type ...

class cell {
...then cell manages an ele-
ment of type E

E element;

public:

cell(E e);
E& value();
};

m Types can be used as parameters
m Type parameters are valid in the “templated” scope
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Type-generic Container with Templates

m Signatures and implementations must be “templated”

m For separately provided implementations, the class prefix
must be written in generic form

template<typename E> template<typename E>
class cell { cell<E>::cell(E e)
E element; : element(e) {3}
public: template<typename E>
cell(E e); E& cell<E>::value() {
E& value(); return this->element;

}; }
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Type-generic Container with Templates

cell<int> c1(313);
cell<std::string> c2("terrific!")

m For declarations, e.g. cell<int>, type parameters must be

provided explicitly ...

m ...but they are inferred by the compiler everywhere else, e.g.
for ¢1(313), i.e. when invoking the generic constructor
cell(E e) (where type parameter E is instantiated by the
compiler with int )
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More Templates: Generic Output Operator

m Goal: A generic output operator << for iterable Containers:
llvec, avec, std: :vector, std::set, ...

m |e std::cout << c << ’\n’ should work for any such
container c
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More Templates: Generic Output Operator

m Generic output operator with two type parameters

template <typename S, typename C>
S& operator<<(S& sink, const C& container);

Intuition: operator works for every out-
put stream sink of type S and every con-
tainer container of type C
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More Templates: Generic Output Operator

m Generic output operator with two type parameters

template <typename S, typename C>
S& operator<<(S& sink, const C& container);

m The compiler infers suitable types from the call arguments

std::set<int> s = ...;
std::cout << s << ’\n’; S = std: :ostream, C = std: :set<int>
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More Templates: Generic Output Operator

Implementation of << constrains S and ¢ (Compiler errors if
not satisfied):

template <typename S, typename C>
S& operator<<(S& sink, const C& container) {
for (typee= ;:const_iterator it = container.begin();

}

C must appropriate itera-
tors - with appropriate

return sink; functions

3
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More Templates: Generic Output Operator

Implementation of << constrains s and ¢ (Compiler errors if
not satisfied):
template <typename S, typename C>

S& operator<<(S& sink, const C& container) {
for (typename C::const_iterator it = container.begin();

it != container.end();
++it) {
sink << *it << ’ 7 S must support outputting elements

(*it) and characters (> ?)

}

return sink;

3
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Templates: Conclusion

m Templates realise static code generation/static
metaprogramming in C++

m Template code is copied per type instantiation. When using
cell<int> and cell<std::string>, the compiler creates
two Instantiated copies of cell’'s code: conceptually, the
two (no longer generic) classes cell_int and
cell_stdstring.

m Templates reduce code duplication and facilitate code
reuse

m Compiler errors that refer to templates are unfortunately
often even more complex than C++ errors usually already
are -



23. Dynamic Datatypes and Memory
Management




Problem

Last week: dynamic data type

Have allocated dynamic memory, but not released it again. In
particular: no functions to remove elements from 1lvec.
Today: correct memory management!
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GOoal: Class StaCck with ~memory
management

class stack{
public:
// post: Push an element onto the stack
void push(int value);
// pre: non-empty stack
// post: Delete top most element from the stack
void pop();
// pre: non-empty stack
// post: return value of top most element
int top() comst;
// post: return if stack is empty
bool empty() const;
// post: print out the stack
void print(std::ostream& out) const;
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Recall the Linked List

element (type 11node)

o | 8>

value (type int) next (type 1lnodex)

struct llnode {

int value;

llnode* next;

// constructor

llnode (int v, llnode* n) : value (v), next (n) {}
};

707



Stack = Pointer to the Top Element

element (type 11node)

*r—> S| 0—>

br

value (type int) next (type 11lnodex)

class stack {
public:
void push (int value);

private:
1lnode* topn;
};
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Recall the new Expression

underlying type

1
new [(...)

/

new-Operator constructor arguments

m Effect: memory for a new object of type T is allocated ...
m ...and initialized by means of the matching constructor
m Value: address of the new T object, Type: Pointer T*!
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The new Expression push (4)

m Effect: new object of type T is allocated in memory ...
m ...and intialized by means of the matching constructor
m Value: address of the new object

void stack::push(int value) {
topn = new llnode(value, topn);

}
topn
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The delete Expression

Objects generated with new have dynamic storage duration:
they “live” until they are explicitly deleted

delete expr type void
A

N
delete-Operator  pginter of type T* pointing to an ob-
ject that had been created with new.

m Effect: object is deconstructed (explanation below)
.. and memory is released.

m



delete for Arrays

delete[] expr type void

’\
pointer of type T* that

i points to an array that pre-
gelete- OperEier viously had been allocated

using new

m Effect: array is deleted and memory is released
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Who is born must die...

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks
m old objects that occupy memory...
m ...until it is full (heap overflow)
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Careful with new and delete!

rational* t = new rational; «+——— memory for t is allocated
rational* s = t; <—— other pointers may point to the same object

delete s; ¢ .. and used for releaseing the object

int nominator = (*t).denominator(); <—— error: memory released!
4'\

Dereferencing of ,dangling pointers”
m Pointer to released objects: dangling pointers

m Releasing an object more than once using delete IS a
similar severe error
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Stack Continued: pop O

void stack::pop(O{
assert (lempty());
llnode* p = topn;
topn = topn->next;

delete p; K\\
}

reminder: shortcut for (xtopn) .next
topn

p\\ug,.

L 2
(@)
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Print the Stack print ()

void stack::print (std::ostream& out) const {
for(const llnode* p = topn; p != nullptr; p = p->next)
out << p->value << " "; // 156

\P
"
1] o5 e 6

}

topn

\ 4
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Output Stack: operator«

class stack {
public:
void push (int value);
void pop();
void print (std::ostream& o) const;

private:
llnodex* topn;
};

// POST: s is written to o

std::ostream& operator<< (std::ostream& o, const stack& s){
s.print (o);
return o;

}

7



empty (), top()

bool stack::empty() const {
return top == nullptr;

}

int stack::top() const {
assert (lempty());
return topn->value;

}
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Empty Stack

class stack{
public:
stack() : topn (nullptr) {} // default constructor

void push(int value);
void pop();
void print(std::ostream& out) const;
int top() const;
bool empty() const;
private:
llnode* topn;
}
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Zombie Elements

{
stack sl1; // local variable
sl.push (1);
sl.push (3);
sl.push (2);
std::cout << s1 << "\n"; // 2 3 1
}

// sl has died (become invalid)...

m ...but the three elements of the stack s1 continue to live
(memory leak)!

m They should be released together with s1.
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The Destructor

m The Destructor of class T is the uniqgue member function
with declaration

~T();

m is automatically called when the memory duration of a class
object ends - i.e. when delete is called on an object of type
T* or when the enclosing scope of an object of type T ends.

m If no destructor is declared, it is automatically generated
and calls the destructors for the member variables
(pointers topn, no effect - reason for zombie elements

sl



Using a Destructor, it Works

// POST: the dynamic memory of *this is deleted
stack::~stack(){
while (topn != nullptr){
llnode* t = topn;
topn = t->next;
delete t;
}
}

m automatically deletes all stack elements when the stack is
being released

m Now our stack class seems to follow the guideline “dynamic
memory” (?)
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Stack Done?

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2 = si;
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

Obviously not...
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What has gone wrong?

Sl.\
3@ > 1| O—@

./Pointerto“zombie”!
s2 ) o ) )
member-wise initialization: copies
the topn pointer only.

stack s2 = sl;+—
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!
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The actual problem

Already this goes wrong:
{

stack si;
s1.push(1);
stack s2 = si;

3

When leaving the scope, both stacks are deconstructed. But
both stacks try to delete the same data, because both stacks
have access to the same pointer.
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Possible solutions

Smart-Pointers (we will not go into details here):

m Count the number of pointers referring to the same objects
and delete only when that number goes down to 0
std: :shared_pointer

m Make sure that not more than one pointer can point to an
object: std: :unique_pointer.

or:

m \We make a real copy of all data — as discussed below.
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We make a real copy

\ 4

\ 4
.Y

3@

sl @

L 4
w
®
A

—_

s?2 @

stack s2 = si;
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << sl1 << "\n"; // 3 1

s2.pop O; // ok



The Copy Constructor

m The copy constructor of a class T is the unique constructor
with declaration

T( const T& X );

m is automatically called when values of type T are initialized
with values of type T
Tx=t; (t of type T)
T x (t);
m |f there Is no copy-constructor declared then it is generated

automatically (and initializes member-wise - reason for the
problem above
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It works with a Copy Constructor

// POST: *this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {
if (s.topn == nullptr) return;
topn = new llnode(s.topn->value, nullptr);
llnode* prev = topn;
for(llnode* n = s.topn->next; n != nullptr; n = n->next){
llnode* copy = new llnode(n->value, nullptr);
prev->next = copy;

prev = copy; s.topne—— 2 | 06—~ 3 06—~ 1 | &6—@

}
} this->topn &— 2 &—> 3 &~ 1| 6—@
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Aside: copy recursively

llnode* copy (node* that){
if (that == nullptr) return nullptr;

return new llnode(that->value, copy(that->next));
}

Elegant, isn't it? Why did we not do it like this?
Reason: linked lists can become very long. copy could then

lead to stack overflow®. Stack memory is usually smaller than
heap memory.

®not an overflow of the stack that we are implementing but the call stack
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Initialization # Assignment!

stack si;

sl.push (1);

si.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = sl; // Zuweisung

sl.pop O;
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!
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The Assignment Operator

m Overloading operator=as a member function
m Like the copy-constructor without initializer, but
additionally

m Releasing memory for the “old” value
m Check for self-assignment (s1=s1) that should not have an effect

m If there is no assignment operator declared it is
automatically generated (and assigns member-wise —
reason for the problem above
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It works with an Assignment Operator!

// POST: *this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){
if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!
} // copy is cleaned up -> deconstruction
return *this; // return as L-Value (convention)

}
Cooool trick! ®
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Done

class stack{
public:
stack(); // constructor
~stack(); // destructor
stack(const stack& s); // copy constructor
stack& operator=(const stack& s); // assignment operator

void push(int value);

void pop();

int top() const;

bool empty() const;

void print(std::ostream& out) const;
private:

llnode* topn;
}
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Dynamic Datatype

m Type that manages dynamic memory (e.g. our class for a
stack)
m Minimal Functionality:
m Constructors .
m Destructor Rule of Three: if a class defines at

m Copy Constructor least one of them, it must define
m Assignment Operator’ || three
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Trees

Trees are
m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree Is
a fully connected, directed, acyclic graph.
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Trees

Use

m Decision trees: hierarchic representation
of decision rules

m Code tress: representation of a code, e.g.
morse alphabet, huffman code

m Search trees: allow efficient searching for
an element by value

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

Trees are treated in more detail in other courses (Datastructures and Algorithms (CSE),
Algorithms and Complexity (Math Bachelor))
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(Expression) Trees

-(3-(4-5))*(3+4%5) /6

fork —><— root

parent node (w.rt. 3%, )
<— child node (w.rt. +)
5 k— child node (w.rt. )

leaf .



Nodes: Forks, Bends or Leaves

node 0
6 E node
. . a[ left operand
operato ﬁ[[ right operand
tnode \
x| e =6 |x|*

*. unused
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Nodes (struct tnode)

tnode |oOp |val| left right

AN
struct tnode {
char op; // leaf node: op is ’=’
// internal node: op is ’+’, ’-’, ’%’ or ’/’
double val;
tnode* left; // == nullptr for unary minus

tnodex right;

tnode(char o, double v, tnode* 1, tnode* r)
: op(o), val(v), left(l), right(r) {}
};



Size = Count Nodes in Subtrees

m Size of a leave: 1
m Size of other nodes: 1+ sum of child nodes’ size
m E.g size of the "+"-node is 5
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Count Nodes in Subtrees

// POST: returns the size (number of nodes) of
// the subtree with root n
int size (const tnode* n) {
if (n){ // shortcut for n != nullptr
return size(n->left) + size(n->right) + 1;
}
return 0;

}

op

va

—_—

left

right

Pad

N
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Evaluate Subtrees

// POST: evaluates the subtree with root n

double eval(const tnode* n){ op | val| left | right
assert(n); » «
if (n->op == ’=’) return n->val; < |eaf .
double 1 = 0; ...or fork:

if (n->left) 1 = eval(n->left); «— op unary, or left branch
double r = eval(n->right);+——— right branch
switch(n->op){

case ’+’: return l+r;

case ’-’: return 1l-r;

case ’*’: return lx*r;

case ’/’: return 1/r;

default: return O;
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Cloning Subtrees

// POST: a copy of the subtree with root n is made
// and a pointer to its root node is returned
tnode* copy (const tnodex* n) {
if (n == nullptr)
return nullptr;
return new tnode (n->op, n->val, copy(n->left), copy(n->right));

}

op |val | left | right
P S

4t



Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear (tnode* n) {
if(n){
clear (n->left);
clear(n->right);
delete n;
}
}
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Using Expression Subtrees

// Construct a tree for 1 - (-(3 + 7))

tnode* nl = new tnode(’=’, 3, nullptr, nullptr);
tnode* n2 = new tnode(’=’, 7, nullptr, nullptr);
tnode* n3 = new tnode(’+’, 0, nl, n2);

tnode* n4 = new tnode(’-’, 0, nullptr, n3);
tnode* n5 = new tnode(’=’, 1, nullptr, nullptr);
tnode* root = new tnode(’-’, 0, nb, n4);

// Evaluate the overall tree
std::cout << "1 - (-(3 + 7)) = " << eval(root) << ’\n’;

// Evaluate a subtree
std::cout << "3 + 7 = " << eval(n3) << ’\n’;

clear(root); // free memory



Planting Trees

. creates a tree
class texpression { .
public: with one leaf

texpression (double d) k///
: root (new tnode (’=’, d, 0, 0)) {}

private:
tnodex root;

};
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Letting Trees Grow

texpression& texpression::operator-= (const texpression& e)

{

assert (e.root);

root = new tnode (’-’, 0, root, copy(e.root));
return *this;

root

}

copy (e.root) e.root

*this e’
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Raising Trees

texpression operator- (const texpression& 1,
const texpression& r){
texpression result = 1;
return result -= r;

}

texpression a = 3;
texpression b =
texpression c = 5;
texpression d

|
S

I
g
o

¢
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Rule of three: Clone, reproduce and cut trees

texpression: :~texpression(){
clear(root);

}

texpresssion: :texpression (const texpression& e)
: root(copy(e.root)) { }

texpression& texpression::operator=(const texpression& e){
if (root !'= e.root){
texpression cp = e;
std: :swap(cp.root, root);

}

return *this;

}
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Concluded

class texpression{

public:
texpression (double d); // constructor
~texpression(); // destructor
texpression (const texpression& e); // copy constructor
texpression& operator=(const texpression& e); // assignment op
texpression operator-();
texpression& operator-=(const texpression& e);
texpression& operator+=(const texpression& e);
texpression& operator*=(const texpression& e);
texpression& operator/=(const texpression& e);
double evaluate();

private:

tnode* root;

};
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From values to trees!

using number_type = texpression ;

// term = factor { "*" factor | "/" factor }
number_type term (std::istream& is){
number_type value = factor (is);
while (true) {
if (consume (is, ’*’))
value *= factor (is);

else if (consume (is, ’/’)) double_calculator.cpp

value /= factor (is); (expression value)
else -
) return value; texpression_calculator.cpp
N (expression tree) &



Concluding Remark

m In this lecture, we have intentionally refrained from
Implementing member functions in the node classes of the
list or tree’

m When there is inheritace and polymorphism used, the
iImplementation of the functionality such as evaluate, print,
clear (etc:.) is better implemented in member functions.

m In any case it is not a good idea to implement the memory
management of the composite data strcuture list or tree

within the nodes.

’Parts of the implementations are even simpler (because the case n==nullptr can be
caught more easily
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24. Subtyping, Inheritance and
Polymorphism

Expression Trees, Separation of Concerns and Modularisation,
Type Hierarchies, Virtual Functions, Dynamic Binding, Code
Reuse, Concepts of Object-Oriented Programming
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Last Week: Expression Trees

m Goal: Represent arithmetic expressions, e.g.
2 + 3 *x 2

m Arithmetic expressions form a tree structure

m Expression trees comprise different nodes: literals (e.g. 2),
binary operators (e.g. +), unary operators (e.g. , /), function

applications (e.g. cos), etc.
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Disadvantages

Implemented via a single node type:

Value left operand
struct tnode { opeﬁﬁor right operand
char op; // Operator (’=’ for literals)
double val; // Literal’s value
tnode* left; // Left child (or nullptr)

tnode* right; // ...

% unused

};...

Observation: tnode is the “sum” of all required nodes
(constants, addition, ...) = memory wastage, inelegant
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Disadvantages

Observation: tnode is the “sum” of all required nodes - and
every function must “dissect” this “sum”, e.g.

double eval(const tnodex n) {
if (n->op == ’=’) return n->val; // n is a constant

double 1 = 0;
if (n->left) 1 = eval(n->left); // n is not a unary operator

double r = eval(n->right);

switch(n->op) {
case ’+’: return l+r; // n is an addition node

case ’*’: return 1*r; // ...

= Complex, and therefore error-prone
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Disadvantages

struct tnode {
char op;
double val;
tnode* left;
tnode* right;

};...

double eval(const tnode* n) {

if (n->op == ’=’) return n->val;
double 1 = 0;
if (n->left) 1 = eval(n->left);
double r = eval(n->right);
switch(n->op) {

case ’+’: return l+r;

case ’*’: return lx*r;

This code isn't modular — we'll change that today!
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New Concepts Today

1. Subtyping

m Type hierarchy: Exp represents Exp
general expressions, Literal etc.

are concrete expression / T \

m Every Literal etC. alSO IS AN EXp  [iteral  Addition  Times
(subtype relation)

m That's why a Literal etc. can be used everywhere, where
an Exp Is expected:

Exp* e = new Literal(132);
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New Concepts Today

2. Polymorphism and Dynamic Dispatch
m Avariable of static type Exp can “host” expressions of
different dynamic types:

Exp* e = new Literal(2); // e is the literal 2
e = new Addition(e, e); // e is the addition 2 + 2

m Executed are the member functions of the dynamic type:

Exp* e = new Literal(2);
std::cout << e->eval(); // 2

e = new Addition(e, e);
std::cout << e->eval(); // 4
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New Concepts Today

3. Inheritance

m Certain functionality is shared
among type hierarchy members

m E.g. computing the size (nesting / T \

depth) of binary expressions Literal  Addition
(Addition, Times):

Exp

Exp
1 + size(left operand) + size(right operand) / \
= Implement functionality once,

and let subtypes inherit it Literal  BinExp

N

Times
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Advantages

m Subtyping, inheritance and Exp
dynamic binding enable AN
modularisation through Literal BinExp
spezialisation VAN

m Inheritance enables sharing Addition Times

common code across modules

= avoid code duplication
Exp* e = new Literal(2);
std::cout << e->eval();

e = new Addition(e, e);

std::cout << e->eval(); 76



Syntax and Terminology

struct Exp {

) cee

struct BinExp :

) e

struct Times :

) e

Exp

f

BinExp

f

Times

public Exp 1

public BinExp {

Note: Today, we focus on
the new concepts (subtyp-
ing, ...) and ignore the or-
thogonal aspect of encap-
sulation (class, private Vs.
public member variables)
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Syntax and Terminology

struct Exp {

) cee

struct BinExp :

) e

struct Times :

) e

Exp

f

BinExp

f

Times
public Exp 1

public BinExp {

BinExp is a subclass® of Exp

Exp is the superclass? of BinExp
BinExp Inherits from Exp

BinExp publicly inherits from Exp
(public), that's why BinExp is a
subtype of Exp

m Analogously: Times and BinExp

m Subtype relation is transitive: Times
Is also a subtype of Exp

Lderived class, child class  2base class, parent class
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ADSTracCct Class EXp and concrete Class
Literal

struct Exp { ...that makes Exp an abstract class

virtual int size() const = 0;
virtual double eval() const = 0;

}:
’ Activates dynamic dispatch

struct Literal : public Exp { Literal inherits from Exp ...
double val;

Enforces implementation by
derived classes ...

Literal (double v);

int size() const; ...but is otherwise just a regular class

double eval() const;

};
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Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this->val;

3
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Subtyping: A Literal is an Expression

A pointer to a subtype can be used everywhere, where a
pointer to a supertype Is required:

Literal* lit = new Literal(5);
Exp* e = 1it; // OK: Literal is a subtype of Exp

But not vice versa:
Expx e = ...
Literal* 1lit = e; // ERROR: Exp is not a subtype of Literal
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rolymorpnie: a Literal benaves LiIke a

Literal

struct Exp { m virtual member function: the
dynamic (here: Literal) type
virtual double eval(); determines the member

b function to be executed

double Literal::eval() { = dyﬂCUTHC’bH7dIﬂQ

X return this->val; m Without Virtual the static

type (hier: Exp) determines
which function is executed

m We won't go into further
details

Exp* e = new Literal(3);
std::cout << e->eval(); // 3
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Further Expressions: Addition and Times

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand

};... s

int Times::size() const {
return 1 + left->size()
+ right->size();

int Addition::size() const {
return 1 + left->size()
+ right->size();

& Separation of concerns

& Code duplication 769



Extracting Commonalities ...: BinExp

struct BinExp : public Exp {
Exp* left;
Exp* right;

BinExp(Exp* 1, Exp* r);
int size() const;

};
BinExp: :BinExp(Exp* 1, Exp* r): left(l), right(r) {3}

int BinExp::size() const {
return 1 + this->left->size() + this->right->size();

3

Note: BinExp does not implement eval and is therefore also an abstract class, just like Exp
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...Inheriting Commonalities: Addition

Addition inherits member vari-

struct Addition : public BinExp { ables (1eft, right) and func-
Addition(Exp* 1, EXP* r) ; tions (size) from BinExp
double eval() const;

};

Addition::Addition(Exp* 1, Exp* r): BinExp(l, r) {}

double Addition::eval() const { Calling the super constructor
return (constructor of BinExp) ini-
i tialises the member variables
this->left->eval() + lett and right

this->right->eval();

m



...Inheriting Commonalities: Times

struct Times : public BinExp {
Times (Exp* 1, Exp* r);
double eval() const;

};
Times::Times(Exp* 1, Exp* r): BinExp(l, r) {}

double Times::eval() const {
return
this->left->eval() =*
this->right->eval();
}

Observation: Additon::eval() and Times::eval() are very similar and could also be unified. However, this
would require the concept of functional programming, which is outside the scope of this course.



Further Expressions and Operations

m Further expressions, as classes derived from Exp, are
possible, eg. —, /, V€08, log

m A former bonus exercise (included in today’s lecture
examples on Code Expert) illustrates possibilities: variables,
trigonometric functions, parsing, pretty-printing, numeric
simplifications, symbolic derivations, ...
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Mission: Monolithic — Modular v

struct tnode {
char op;
double val;
tnode* left;
tnode* right;

}

st

ruct Literal : public Exp {
double val;

double eval() const {
return val;

}

B

double eval(const tnodex n) {

if (n->op == ’=’) return n->val;
double 1 = 0;
if (n->left != 0) 1 = eval(n->left);
double r = eval(n->right);
switch(n->op) {

case ’+’: return 1 + r;

case ’*’: return 1 - r;

case ’-’: return 1 - r;
case ’/’: return 1 / r;
default:

// unknown operator
assert (false);
}
¥

st

ruct Addition : public Exp {

double eval() const {
return left->eval() + right->eval();

}

struct Times : public Exp {

I

double eval() comst {
return left->eval() * right->eval();

}

int size (const tnode* n) const {

struct Cos : public Exp {

double eval() const {
return std::cos(argument->eval());

}
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And there is so much more ...

Not shown/discussed:
m Private inheritance (class B : publie A)
m Subtyping and polymorphism without pointers

m Non-virtuell member functions and static dispatch
(#izbwal double eval())

m Overriding inherited member functions and invoking
overridden implementations

m Multiple inheritance
_ I
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Object-Oriented Programming

In the last 3rd of the course, several concepts of
object-oriented programming were introduced, that are briefly
summarised on the upcoming slides.

Encapsulation (weeks 10-13):
m Hide the implementation details of types (private section) from users

m Definition of an interface (public area) for accessing values and
functionality in a controlled way

m Enables ensuring invariants, and the modification of implementations
without affecting user code
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Object-Oriented Programming

Subtyping (week 14):

Type hierarchies, with super- and subtypes, can be created to model
relationships between more abstract and more specialised entities

A subtype supports at least the functionality that its supertype
supports - typically more, though, i.e. a subtype extends the interface
(public section) of its supertype

That's why supertypes can be used anywhere, where subtypes are
required ...

...and functions that can operate on more abstract type (supertypes)
can also operate on more specialised types (subtypes)

The streams introduced in week 7 form such a type hierarchy: ostream
Is the abstract supertyp, ofstream etc. are specialised subtypes
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Object-Oriented Programming

Polymorphism and dynamic binding (week 14):

m A pointer of static typ 7y can, at runtime, point to objects of (dynamic)
type Ty, if T is a subtype of T

m When a virtual member function is invoked from such a pointer, the
dynamic type determines which function is invoked

m |.e. despite having the same static type, a different behaviour can be
observed when accessing the common interface (member functions) of
such pointers

m In combination with subtyping, this enables adding further concrete
types (streams, expressions, ...) to an existing system, without having to
modify the latter
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Object-Oriented Programming

Inheritance (week 14):

m Derived classes inherit the functionality, i.e. the implementation of
member functions, of their parent classes

m This enables sharing common code and thereby avoids code
duplication

m An inherited implementation can be overridden, which allows derived
classes to behave differently than their parent classes (not shown in

this course)
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25. Conclusion




Purpose and Format

Name the most important key words to each chapter.
Checklist: “does every notion make some sense for me?”

® motivating example for each chapter

© concepts that do not depend from the implementation
(language)

O© language (C++): all that depends on the chosen language
® examples from the lectures
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Kapiteluberblick

1. Introduction

2. Integers

3. Booleans

4. Defensive Programming

5./6. Control Statements

7./8. Floating Point Numbers

9./10. Functions

11. Reference Types

12./13. Vectors and Strings

14./15. Recursion

16. Structs and Overloading

17. Classes

18./19. Dynamic Datastructures

20. Containers, Iterators and Algorithms

21. Dynamic Datatypes and Memory Management
22. Subtyping, Polymorphism and Inheritance
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1. Introduction

006

Euclidean algorithm

algorithm, Turing machine, programming languages, compilation,
syntax and semantics
values and effects, fundamental types, literals, variables

include directive #include <iostream>

main function int mainO{...}

comments, layout // Kommentar

types, variables, L-value a, R-value a+b

expression statement b=b*b; , declaration statement int a;, return
statement return 0;
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2. Integers

@)
©

Celsius to Fahrenheit

associativity and precedence, arity
expression trees, evaluation order
arithmetic operators

binary representation, hexadecimal numbers
signed numbers, twos complement

arithmetic operators 9 * celsius / 5 + 32
increment / decrement expr++
arithmetic assignment expri += expr2
conversion int <> unsigned int

Celsius to Fahrenheit, equivalent resistance
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3. Booleans

©

O =
.
©

Boolean functions, completeness
DeMorgan rules

the type bool

logical operators a && 'b

relational operators x < y

precedences7 + x <y &k y != 3 * z

short circuit evaluationx =0 && z / x > y
the assert-statement, #include <cassert>

Div-Mod identity.
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4. Definsive Programming

© O

m Assertions and Constants

B The assert-statement, #include <cassert>
B const int speed_of_light=2999792458

m Assertions for the GCD
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5./6. Control Statements

@)
©

linear control flow vs. interesting programs

selection statements, iteration statements
(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

if statements if (a % 2 == 0) {..}

for statements for (unsigned int i = 1; i <= n; ++i) ...

while and do-statements while (n > 1) {...}

blocks and branches if (a < 0) continue;

Switch statement switch(grade) {case 6: }

sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades
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7./8. Floating Point Numbers

@)
©

correct computation: Celsius / Fahrenheit

fixpoint vs. floating point

holes in the value range

compute using floating point numbers

floating point number systems, normalisation, IEEE standard 754
guidelines for computing with floating point numbers

types float, double
floating point literals 1.23e-7f

Celsius/Fahrenheit, Euler, Harmonic Numbers
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9./10. Functions

@)
@

Computation of Powers

Encapsulation of Functionality

functions, formal arguments, arguments

scope, forward declarations

procedural programming, modularization, separate compilation
Stepwise Refinement

declaration and definition of functions
double pow(double b, int e){ ... }
function call pow (2.0, -2)

the type void

powers, perfect numbers, minimum, calendar
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11. Reference Types

®
O

Swap

value- / reference- semantics, pass by value, pass by reference,
return by reference

lifetime of objects / temporary objects

constants

reference type int& a
call by reference, return by reference int& increment (int& i)
const guideline, const references, reference guideline

swap, increment
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12./13. Vectors and Strings

@)
©

Iterate over data: sieve of erathosthenes

vectors, memory layout, random access
(missing) bound checks

vectors

characters: ASCII, UTF8, texts, strings

vector types std: :vector<int> a {4,3,5,2,1};

characters and texts, the type char char ¢ = ’a’;, Konversion nach
int

vectors of vectors

Streams std::istream, std::ostream

® = sieveof Erathosthenes, Caesar-code, shortest paths
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14./15. Recursion

recursive math. functions, the n-Queen problem, Lindenmayer
systems, a command line calculator

recursion

call stack, memory of recursion

correctness, termination,

recursion vs. iteration

Backtracking, EBNF, formal grammars, parsing

factorial, GCD, sudoku-solver, command line calcoulator
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16. Structs and Overloading

@)
©

build your own rational number

heterogeneous data types
function and operator overloading
encapsulation of data

struct definition struct rational {int n; int d;};

member access result.n = a.n * b.d + a.d * b.n;

initialization and assignment,

function overloading pow(2) vs. pow(3,3) ;, operator overloading

rational numbers, complex numbers
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17. Classes

© 06

rational numbers with encapsulation
Encapsulation, Construction, Member Functions

classes class rational { ... };

access control public: / private:

member functions int rational::denominator () const
The implicit argument of the member functions

finite rings, complex numbers
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18./19. Dynamic Datastructures

Our own vector

linked list, allocation, deallocation, dynamic data type

© 006

The new statement

pointer int* x;, Null-pointer nuliptr.

address and derference operator int *ip = &i; int j = *ip;
pointer and const const int *a;

® = linked list, stack
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20. Containers, Iterators and Algorithms

@)
@

vectors are containers

iteration with pointers
containers and iterators
algorithms

[terators std: :vector<int>::iterator

Algorithms of the standard library std::fill (a, a+5, 1);

implement an iterator
iterators and const

output a vector, a set
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21. Dynamic Datatypes and Memory Management

@)
O

Stack
Expression Tree

Guideline "dynamic memory*
Pointer sharing

Dynamic Datatype
Tree-Structure

new and delete

Destructor stack: : ~stack()

Copy-Constructor stack: :stack(const stack& s)
Assignment operator

stack& stack::operator=(const stack& s)

m Rule of Three

Binary Search Tree
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ZZ.

SuDtyping, rFolymorpnism and

Inheritance

®
O

extend and generalize expression trees

Subtyping
polymorphism and dynamic binding
Inheritance

base class struct Exp{}

derived class struct BinExp: public Exp{}

abstract class struct Exp{virtual int size() comnst = 0...}
polymorphie virtual double eval()

expression node and extensions
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The End

End of the Course
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