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Welcome

to the Course Informatik
at the MATH/PHYS departement of ETH Zürich.

Place and time:

Tuesday 13:15 - 15:00, ML D28, ML E12.
Pause 14:00 - 14:15, slight shift possible.

Course web page

http://lec.inf.ethz.ch/ifmp
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Team

chef assistant Vytautas Astrauskas
assistants Benjamin Rothenberger Charlotte Franke

Claire Dick David Sommer
Edoardo Mazzoni Eliza Wszola
Enis Ulqinaku Gaspard Zoss
Janet Greutmann Jannik Kochert
Kevin Kaiwen Zhang Manuel Mekkattu
Moritz Schneider Orhan Saeedi
Raul Rao Reza Se�dgar
Sammy Christen Tanja Kaister
Tobias Klenze Viera Klasovita

lecturers Dr. Malte Schwerho� / Dr. Felix Friedrich
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Registration for Exercise Sessions

Registration via web page
Registration already open
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Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed . . . Tue Wed

VÜ Ü VÜ Ü Ü Ü

Issuance

Preliminary Discussion StudyCenter

Submission

Discussion

Ü

Exercises availabe at lectures
Preliminary discussion in the following exercise session (on the
same/next day)
StudyCenter (studycenter.ethz.ch)
Solution must be submitted at latest one day before the next lecture
(23:59h)
Discussion of the exercise in the session one week after the submission.
Feedback will be provided in the week after the submission.
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Exercises
The solution of the weekly exercises is thus voluntary but
stronly recommended.
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No lacking resources!

For the exercises we use an online development environment
that requires only a browser, internet connection and your
ETH login.

If you do not have access to a computer: there are a a lot of computers
publicly accessible at ETH.

6



Online Tutorial

For a smooth course entry we provide an online C++ tutorial
Goal: leveling of the di�erent programming skills.
Written mini test for your self assessment in the second
exercise session.
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Exams

The exam (in examination period 2018) will cover

Lectures content (lectures, handouts)

Exercise content (exercise sessions, exercises).

Written exam.
We will test your practical skills (programming skills) and theoretical
knowledge (background knowledge, systematics).
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O�er (VVZ)

During the semester we o�er weekly programming exercises
that are graded. Points achieved will be taken as a bonus to
the exam.
The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of
0.25. The admission to specially marked bonus depends on
the successful completion of other exercises. The achieved
mark bonus expires as soon as the lecture is given anew.
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O�er (Concretely)

3 bonus exercises in total; 2/3 of the points su�ce for the
exam bonus of 0.25 marks
You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...
Bonus exercises must be unlocked (→ experience points)
by successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises
completely in order to unlock a bonus exercise
Details: course website, exercise sessions, online exercise
system (Code Expert)
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Academic integrity

Rule
You submit solutions that you have written yourself and that
you have understood.
We check this (partially automatically) and reserve our rights
to invite you to interviews.
Should you be invited to an interview: don’t panic. Primary
we presume your innocence and want to know if you under-
stood what you have submitted.
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Credits

Lecture:
Original version by Prof. B. Gärtner and Dr. F. Friedrich
With changes from Dr. F. Friedrich, Dr. H. Lehner, Dr. M. Schwerho�

Script: Prof. B. Gärtner
Code Expert: Dr. H. Lehner, David Avanthay and others
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1. Introduction
Computer Science: De�nition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The
�rst C++Program and its Syntactic and Semantic Ingredients
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What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital
computers.

(Wikipedia, according to “Duden Informatik”)
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Computer Science vs. Computers

Computer science is not about machines, in the same
way that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)
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Computer Science vs. Computers

Computer science is also concerned with the development
of fast computers and networks. . .
. . . but not as an end in itself but for the systematic
processing of informations.
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Computer Science 6= Computer Literacy

Computer literacy: user knowledge
Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge
How does a computer work?
How do you write a computer program?
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Back from the past: This course

Systematic problem solving with algorithms and the
programming language C++.
Hence: not only

but also programming course.
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Algorithm: Fundamental in Computer
Science
Algorithm:
Instructions to solve a problem step by step
Execution does not require any intelligence, but precision
(even computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation)
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Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3.
century B.C.)

a b a b a b a b

Input: integers a > 0, b > 0
Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a. 20



Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and e�ciency
discussions, proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable,
speci�c programming language, various
implementations possible)

Euclid: Core idea and pseudo code shown, implementation
yet missing 21



Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe
zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.
22



Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing
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Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann
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Computer

Ingredients of a Von Neumann Architecture
Memory (RAM) for programs and data
Processor (CPU) to process programs and data
I/O components to communicate with the world
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Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.
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Processor

The processor (CPU)
executes instructions in machine language
has an own "fast" memory (registers)
can read from and write to main memory
features a set of simplest operations = instructions (e.g.
adding to register values)
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Programming

With a programming language we issue commands to a
computer such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890
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Computing speed

In the time, on average, that the sound takes to travel from
from my mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100
millions instructions 1

1Uniprocessor computer at 1 GHz.
29



Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

30



Mathematics used to be the lingua franca of the natu-
ral sciences on all universities. Today this is computer
science.

Lino Guzzella, president of ETH Zurich 2015-2018, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics )
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This is why programming!

Any understanding of modern technology requires
knowledge about the fundamental operating principles of a
computer.
Programming (with the computer as a tool) is evolving a
cultural technique like reading and writing (using the tools
paper and pencil)
Programming is the interface between engineering and
computer science – the interdisciplinary area is growing
constantly.
Programming is fun (and is useful)!
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Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be subdivided into (extremely)
many single steps
The machine language varies between computers.
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Higher Programming Languages

can be represented as program text that
can be understood by humans
is independent of the computer model
→ Abstraction!
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Programming langauges – classi�cation
Di�erentiation into
Compiled vs. interpreted languages

C++, C#, Java, Go, Pascal, Modula, Oberon
vs.
Python, Javascript, Matlab

Higher programming languages vs. Assembler
Multi-purpose programming languages vs. single purpose
programming languages
Procedural, object oriented, functional and logical
languages.
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Why C++?

Other popular programming languages: Java, C#, Python,
Javascript, Swift, Kotlin, Go, ... . . .

General consensus:
„The” programming language for systems programming: C
C has a fundamental weakness: missing (type) safety
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Why C++?

Over the years, C++’s greatest strength and its greatest
weakness has been its C-Compatibility – B. Stroustrup
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Why C++?

C++equips C with the power of the abstraction of a higher
programming language
In this course: C++ introduced as high level language, not
as better C
Approach: traditionally procedural→ object-oriented.
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Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler
but also more strict because computers are relatively
stupid.

39



Deutsch vs. C++

Deutsch
Alleen sind nicht gefährlich, Rasen ist gefährlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b = a * a; // b = a2

b = b * b; // b = a4

40



C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.

DasAuto fuh r zu sxhnell.

Rot das Auto ist.

Man emp�ehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.

Das Fahrrad galoppiert schnell.

Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]

Syntaktisch korrekt, doch semantisch fehlerhaft: Falscher Artikel.
[Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch fehlerhaft.
[Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch mehrdeutig. [kein
Analogon]
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Syntax and Semantics of C++

Syntax:
When is a text a C++ program?
I.e. is it grammatically correct?
→ Can be checked by a computer

Semantics:
What does a program mean?
Which algorithm does a program implement?
→ Requires human understanding

42



Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)
is the “law” of C++
de�nes the grammar and meaning of C++programs
since 2011, continuously extended with features for
advanced programming

43



Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such
as �le handling, editor-, compiler- and program execution.
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Language constructs with an example

Comments/layout
Include directive
the main function
Values e�ects
Types and functionality
literals
variables

constants
identi�ers, names
expressions
L- and R- values
operators
statements
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The �rst C++ program
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

Statements: Do something (read in a)!

Expressions: Compute a value (a2)!
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Behavior of a Program

At compile time:
program accepted by the compiler (syntactically correct)
Compiler error

During runtime:
correct result
incorrect result
program crashes
program does not terminate (endless loop)
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“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

comments

48



Comments and Layout

Comments
are contained in every good program.
document what and how a program does something and
how it should be used,
are ignored by the compiler
Syntax: “double slash” // until the line ends.

The compiler ignores additionally
Empty lines, spaces,
Indendations that should re�ect the program logic

49



Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!
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“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

include directive
declaration of the main function

51



Include Directives

C++ consists of
the core language
standard library

in-/output (header iostream)
mathematical functions (cmath)
...

#include <iostream>
makes in- and output available

52



The main Function

the main-function
is provided in any C++ program
is called by the operating system
like a mathematical function ...

arguments
return value

... but with an additional e�ect
Read a number and output the 8th power.
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Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

expression statements

return statement
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Statements

building blocks of a C++ program
are executed (sequentially)
end with a semicolon
Any statement has an e�ect (potentially)
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Expression Statements

have the following form:
expr;

where expr is an expression
E�ect is the e�ect of expr, the value of expr is ignored.

b = b*b;
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Return Statements

do only occur in functions and are of the form
return expr;

where expr is an expression
specify the return value of a function
return 0;
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Statements – E�ects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

e�ect: output of the string Compute ...

E�ect: input of a number stored in a
E�ect: saving the computed value of a · a into b

E�ect: saving the computed value of b · b into b

E�ect: output of the value of a and the computed value of b · bE�ect: return the value 0
58



Values and E�ects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
std::cin >> a; means e�ect "read in a number"

depend on the program state (memory content, inputs)
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Statements – Variable De�nitions
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4
// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

}

declaration statement
type
names
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Declaration Statements

introduce new names in the program,
consist of declaration and semicolon Example: int a;
can initialize variables Example: int b = a * a;
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Types and Functionality

int:
C++ integer type
corresponds to (Z,+,×) in math

In C++ each type has a name and
a domain (e.g. integers)
functionality (e.g. addition/multiplication)
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Fundamental Types

C++ comprises fundamental types for
integers (int)
natural numbers (unsigned int)
real numbers (float, double)
boolean values (bool)
...
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Variables

represent (varying)
values
have

name
type
value
address

are "visible" in the
program context

int a; de�nes a variable with

name: a

type: int

value: (initially)
unde�ned

Address: determined by
compiler

64



Identi�ers and Names

(Variable-)names are identi�ers

allowed: A,...,Z; a,...,z; 0,...,9;_
First symbol needs to be a character.

There are more names:

std::cin (Quali�ed identi�er)

65



Expressions: compute a value!

Expressions

represent Computations
are either primary (b)
or composed (b*b). . .
. . . from di�erent expressions, using operators
have a type and a value

Analogy: building blocks
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Expressions Building Blocks
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

Two times composed expression

Four times composed expression
67



Expressions

represent computations
are primary or composite (by other expressions and
operations)
a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression
can be put into parantheses
a * a is equivalent to (a * a)
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Expressions

have type, value und e�ect (potentially).
a * a

type: int (type of the operands)

Value: product of a and a

E�ect: none.

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

e�ect: assignment of the
product value to b

The type of an expression is �xed but the value and e�ect are
only determined by the evaluation of the expression
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Literals

represent constant values
have a �xed type and value
are "syntactical values"

0 has type int, value 0.
1.2e5 has type double, value 1.2 · 105.
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L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value
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L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address
Value is the content at the memory location according to
the type of the expression.
L-Value can change its value (e.g. via assignment)

Example: variable name
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L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value
Any L-Value can be used as R-Value (but not the other
way round)
An R-Value cannot change its value

Example: literal 0
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Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

left operand (input stream)

right operand (variable name)
input operator

assignment operator

multiplication operator 74



Operators

Operators
combine expressions (operands) into new composed
expressions
specify for the operands and the result the types and if the
have to be L- or R-values.
have an arity
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Multiplication Operator *

expects two R-values of the same type as operands (arity 2)
"returns the product as R-value of the same type", that
means formally:

The composite expression is an R-value; its value is the product of
the value of the two operands

Examples: a * a and b * b
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Assignment Operator =

Left operand is L-value,
Right operand is R-value of the same type.
Assigns to the left operand the value of the right operand
and returns the left operand as L-value

Examples b = b * b and a = b

Attention, Trap!

The operator = corresponds to the assignment operator of mathematics
(:=), not to the comparison operator (=).
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Input Operator »

left operand is L-Value (input stream)
right operand is L-Value
assigns to the right operand the next value read from the
input stream, removing it from the input stream and returns
the input stream as L-value Example std::cin >> a (mostly
keyboard input)
Input stream is being changed and must thus be an L-Value.
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Output Operator «

left operand is L-Value (output stream)
right operand is R-Value
outputs the value of the right operand, appends it to the
output stream and returns the output stream as L-Value
Example: std::cout << a (mostly console output)
The output stream is being changed and must thus be an
L-Value.
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Output Operator «

Why returning the output stream?
allows bundling of output

std::cout << a << "^8 = " << b * b << "\n"

is parenthesized as follows

((((std::cout << a) << "^8 = ") << b * b) << "\n")

std::cout << a is the left hand operand of the next <<
and is thus an L-Value that is no variable name
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2. Integers

Evaluation of Arithmetic Expressions, Associativity and
Precedence, Arithmetic Operators, Domain of Types int,
unsigned int
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Example: power8.cpp

int a; // Input
int r; // Result

std::cout << "Compute a^8 for a = ?";
std::cin >> a;

r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << "a^8 = " << r*r << ’\n’;
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Terminology: L-Values and R-Values

L-Wert (“Left of the assignment operator”)
Expression identifying a memory location
For example a variable
(we’ll see other L-values later in the course)
Value is the content at the memory location according to
the type of the expression.
L-Value can change its value (e.g. via assignment)
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Terminology: L-Values and R-Values

R-Wert (“Right of the assignment operator”)
Expression that is no L-value
Example: integer literal 0
Any L-Value can be used as R-Value (but not the other way
round) . . .
. . . by using the value of the L-value
(e.g. the L-value a could have the value 2, which is then
used as an R-value)
An R-Value cannot change its value
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L-Values and R-Values

std::cout << "Compute a^8 for a = ? ";
int a;
std::cin >> a;

int r = a * a; // r = a^2
r = r * r; // r = a^4

std::cout << a<< "^8 = " << r * r << ".\ n";

return 0;

L-value (expression + address)
L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value
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Celsius to Fahrenheit
// Program: fahrenheit.cpp
// Convert temperatures from Celsius to Fahrenheit.
#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
int celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

15 degrees Celsius are 59 degrees Fahrenheit
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9 * celsius / 5 + 32

9 * celsius / 5 + 32

Arithmetic expression,
contains three literals, a variable, three operator symbols

How to put the expression in parentheses?
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Precedence

Multiplication/Division before Addition/Subtraction

9 * celsius / 5 + 32

bedeutet

(9 * celsius / 5) + 32

Rule 1: precedence

Multiplicative operators (*, /, %) have a higher precedence
("bind more strongly") than additive operators (+, -)
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Associativity

From left to right

9 * celsius / 5 + 32

bedeutet

((9 * celsius) / 5) + 32

Rule 2: Associativity

Arithmetic operators (*, /, %, +, -) are left associative: oper-
ators of same precedence evaluate from left to right
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Arity

Sign
-3 - 4

means

(-3) - 4

Rule 3: Arity

Unary operators +, - �rst, then binary operators +, -.
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Parentheses

Any expression can be put in parentheses by means of
associativities
precedences
arities (number of operands)

of the operands in an unambiguous way (Details in the
lecture notes).
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Expression Trees
Parentheses yield the expression tree

(((9 * celsius) / 5) + 32)

+

/

*

9 celsius 5 32
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Evaluation Order
"From top to bottom" in the expression tree

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Evaluation Order
Order is not determined uniquely:

9 * celsius / 5 + 32

+

/

*

9 celsius 5 32
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Expression Trees – Notation
Common notation: root on top

9 * celsius / 5 + 32

+

/

*

9 celsius

5

32
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Evaluation Order – more formally
Valid order: any node is evaluated after its children

E

K1 K2

C++: the valid order to
be used is not de�ned.

"Good expression": any valid evaluation order leads to the
same result.
Example for a “bad expression”: a*(a=2)
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Evaluation order

Guideline

Avoidmodifying variables that are used in the same expres-
sion more than once.
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Arithmetic operations

Symbol Arity Precedence Associativity

Unary + + 1 16 right

Negation - 1 16 right

Multiplication * 2 14 left

Division / 2 14 left

Modulo % 2 14 links

Addition + 2 13 left

Subtraction - 2 13 left

All operators: [R-value ×] R-value→ R-value
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Interlude: Assignment expression – inmore
detail

Already known: a = b means Assignment of b (R-value) to
a (L-value). Returns: L-value.
What does a = b = c mean?
Answer: assignment is right-associative

a = b = c ⇐⇒ a = (b = c)

Multiple assignment: a = b = 0 =⇒ b=0; a=0
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Division
Operator / implements integer division
5 / 2 has value 2

In fahrenheit.cpp

9 * celsius / 5 + 32

15 degrees Celsius are 59 degrees Fahrenheit

Mathematically equivalent. . . but not in C++!
9 / 5 * celsius + 32

15 degrees Celsius are 47 degrees Fahrenheit
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Loss of Precision

Guideline
Watch out for potential loss of precision
Postpone operations with potential loss of precision to
avoid “error escalation”
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Division and Modulo

Modulo-operator computes the rest of the integer division

5 / 2 has value 2, 5 % 2 has value 1.
It holds that
(-a)/b == -(a/b)

It also holds:
(a / b) * b + a % b has the value of a.

From the above one can conclude the results of division
and modulo with negative numbers
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Increment and decrement
Increment / Decrement a number by one is a frequent
operation
works like this for an L-value:
expr = expr + 1.

Disadvantages
relatively long
expr is evaluated twice

Later: L-valued expressions whose evaluation is “expensive”
expr could have an e�ect (but should not, cf. guideline)
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In-/Decrement Operators
Post-Increment
expr++

Value of expr is increased by one, the old value of expr is returned (as R-value)
Pre-increment
++expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
Post-Dekrement
expr--

Value of expr is decreased by one, the old value of expr is returned (as R-value)
Prä-Dekrement
--expr

Value of expr is increased by one, the new value of expr is returned (as L-value)
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In-/decrement Operators

use arity prec assoz L-/R-value

Post-increment expr++ 1 17 left L-value→ R-value

Pre-increment ++expr 1 16 right L-value→ L-value

Post-decrement expr-- 1 17 left L-value→ R-value

Pre-decrement --expr 1 16 right L-value→ L-value
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In-/Decrement Operators

int a = 7;
std::cout << ++a << "\n"; // 8
std::cout << a++ << "\n"; // 8
std::cout << a << "\n"; // 9
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In-/Decrement Operators

Is the expression
++expr;← we favour this

equivalent to
expr++;?

Yes, but
Pre-increment can be more e�cient (old value does not
need to be saved)
Post In-/Decrement are the only left-associative unary
operators (not very intuitive)
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C++ vs. ++C

Strictly speaking our language should be named ++C because

it is an advancement of the language C
while C++ returns the old C.
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Arithmetic Assignments

a += b
⇔

a = a + b

analogously for -, *, / and %
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Arithmetic Assignments

Gebrauch Bedeutung

+= expr1 += expr2 expr1 = expr1 + expr2

-= expr1 -= expr2 expr1 = expr1 - expr2

*= expr1 *= expr2 expr1 = expr1 * expr2

/= expr1 /= expr2 expr1 = expr1 / expr2

%= expr1 %= expr2 expr1 = expr1 % expr2

Arithmetic expressions evaluate expr1 only once.
Assignments have precedence 4 and are right-associative.
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Binary Number Representations

Binary representation (Bits from {0, 1})

bnbn−1 . . . b1b0

corresponds to the number bn · 2n + · · ·+ b1 · 2 + b0

101011 corresponds to 43.

Most Signi�cant Bit (MSB)

Least Signi�cant Bit (LSB)
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Computing Tricks

Estimate the orders of magnitude of powers of two.2:

210 = 1024 = 1Ki ≈ 103.
220 = 1Mi ≈ 106,
230 = 1Gi ≈ 109,
232 = 4 · (1024)3 = 4Gi.
264 = 16Ei ≈ 16 · 1018.

2Decimal vs. binary units: MB - Megabyte vs. MiB - Megabibyte (etc.)
kilo (K, Ki) – mega (M, Mi) – giga (G, Gi) – tera(T, Ti) – peta(P, Pi) – exa (E, Ei)
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Hexadecimal Numbers

Numbers with base 16

hnhn−1 . . . h1h0

corresponds to the number

hn · 16n + · · ·+ h1 · 16 + h0.

notation in C++: pre�x 0x
0xff corresponds to 255.

Hex Nibbles

hex bin dec
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
a 1010 10
b 1011 11
c 1100 12
d 1101 13
e 1110 14
f 1111 15
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Why Hexadecimal Numbers?

A Hex-Nibble requires exactly 4 bits. Numbers 1, 2, 4 and 8
represent bits 0, 1, 2 and 3.
“compact representation of binary numbers”
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Why Hexadecimal Numbers?
“For programmers and technicians” (user manual of the chess
computers Mephisto II, 1981)
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Example: Hex-Colors

#00FF00
r g b
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Why Hexadecimal Numbers?
The NZZ could have saved a lot of space ...
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Domain of Type int

// Output the smallest and the largest value of type int.
#include <iostream>
#include <limits>

int main() {
std::cout << "Minimum int value is "

<< std::numeric_limits<int>::min() << ".\n"
<< "Maximum int value is "
<< std::numeric_limits<int>::max() << ".\n";

return 0;
} Minimum int value is -2147483648.

Maximum int value is 2147483647.
Where do these numbers come from?
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Domain of the Type int

Representation with B bits. Domain comprises the 2B

integers:

{−2B−1,−2B−1 + 1, . . . ,−1, 0, 1, . . . , 2B−1 − 2, 2B−1 − 1}

On most platforms B = 32
For the type int C++ guarantees B ≥ 16
Background: Section 2.2.8 (Binary Representation) in the
lecture notes.
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Over- and Under�ow

Arithmetic operations (+,-,*) can lead to numbers outside
the valid domain.
Results can be incorrect!
power8.cpp: 158 = −1732076671

There is no error message!
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The Type unsigned int

Domain
{0, 1, . . . , 2B − 1}

All arithmetic operations exist also for unsigned int.
Literals: 1u, 17u . . .

121



Mixed Expressions

Operators can have operands of di�erent type (e.g. int and
unsigned int).
17 + 17u

Such mixed expressions are of the “more general” type
unsigned int.
int-operands are converted to unsigned int.
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Conversion

int Value Sign unsigned int Value

x ≥ 0 x

x < 0 x+ 2B

Due to a clever representation (two’s complement), no addi-
tion is internally needed
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Conversion “reversed”

The declaration
int a = 3u;

converts 3u to int.
The value is preserved because it is in the domain of int;
otherwise the result depends on the implementation.
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Signed Numbers

Note: the remaining slides on signed numbers, computing
with binary numbers, and the two’s complement, are not
relevant for the exam
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Signed Number Representation

(Hopefully) clear by now: binary number representation
without sign, e.g.

[b31b30 . . . b0]u =̂ b31 · 231 + b30 · 230 + · · ·+ b0

Looking for a consistent solution
The representation with sign should coincide with the unsigned so-
lution as much as possible. Positive numbers should arithmetically
be treated equal in both systems.
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Computing with Binary Numbers (4 digits)
Simple Addition

2 0010
+3 +0011

5 01012 = 510

Simple Subtraction
5 0101
−3 −0011

2 00102 = 210 127



Computing with Binary Numbers (4 digits)
Addition with Over�ow

7 0111
+10 +1010

17 (1)00012 = 110(= 17 mod 16)
Subtraction with under�ow

5 0101
+(−10) 1010

−5 (. . . 11)10112 = 1110(= −5 mod 16) 128



Why this works

Modulo arithmetics: Compute on a circle3

11 ≡ 23 ≡ −1 ≡
. . . mod 12

+
4 ≡ 16 ≡ . . .

mod 12

=
3 ≡ 15 ≡ . . .

mod 12

3The arithmetics also work with decimal numbers (and for multiplication).
129



Negative Numbers (3 Digits)
a −a

0 000 000 0
1 001 111 -1
2 010 110 -2
3 011 101 -3
4 100 100 -4
5 101
6 110
7 111

The most signi�cant bit decides about the sign and it
contributes to the value.
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Two’s Complement
Negation by bitwise negation and addition of 1
−2 = −[0010] = [1101] + [0001] = [1110]

Arithmetics of addition and subtraction identical to
unsigned arithmetics

3− 2 = 3 + (−2) = [0011] + [1110] = [0001]

Intuitive “wrap-around” conversion of negative numbers.

−n→ 2B − n

Domain: −2B−1 . . . 2B−1 − 1
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3. Logical Values

Boolean Functions; the Type bool; logical and relational
operators; shortcut evaluation
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Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression
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Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”
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The Type bool in C++

represents logical values
Literals false and true
Domain {false, true}

bool b = true; // Variable with value true
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Relational Operators

a < b (smaller than)
a >= b (greater than)

a == b (equals)
a != b (not equal)

arithmetic type × arithmetic type→ bool

R-value × R-value→ R-value
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Table of Relational Operators

Symbol Arity Precedence Associativity

smaller < 2 11 left

greater > 2 11 left

smaller equal <= 2 11 left

greater equal >= 2 11 left

equal == 2 10 left

unequal != 2 10 left

arithmetic type × arithmetic type→ bool

R-value × R-value→ R-value
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Boolean Functions in Mathematics
Boolean function

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.
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AND(x, y) x ∧ y

“logical And”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1
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Logical Operator &&

a && b (logical and)

bool × bool→ bool

R-value × R-value→ R-value

int n = -1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true
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OR(x, y) x ∨ y

“logical Or”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y OR(x, y)

0 0 0

0 1 1

1 0 1

1 1 1
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Logical Operator ||

a || b (logical or)

bool × bool→ bool

R-value × R-value→ R-value

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); // b = false
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NOT(x) ¬x
“logical Not”

f : {0, 1} → {0, 1}

0 corresponds to “false”.
1corresponds to “true”.

x NOT(x)

0 1

1 0
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Logical Operator !

!b (logical not)

bool→ bool

R-value→ R-value

int n = 1;
bool b = !(n < 0); // b = true
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Precedences

!b && a
m

(!b) && a

a && b || c && d
m

(a && b) || (c && d)

a || b && c || d
m

a || (b && c) || d
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Table of Logical Operators

Symbol Arity Precedence Associativity

Logical and (AND) && 2 6 left

Logical or (OR) || 2 5 left

Logical not (NOT) ! 1 16 right
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Precedences

The unary logical operator !
binds more strongly than

binary arithmetic operators. These
bind more strongly than

relational operators,
and these bind more strongly than

binary logical operators.
7 + x < y && y != 3 * z || ! b
7 + x < y && y != 3 * z || (!b)

Some parentheses on the previous slides were actually redundant.
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Completeness

AND, OR and NOT are the
boolean functions available in
C++.
Any other binary boolean function
can be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0
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Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)
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Completeness Proof

Identify binary boolean functions with their characteristic
vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

150



Completeness Proof

Step 1: generate the fundamental functions f0001, f0010, f0100,
f1000

f0001 = AND(x, y)
f0010 = AND(x,NOT(y))
f0100 = AND(y,NOT(x))
f1000 = NOT(OR(x, y))
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Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.
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bool vs int: Conversion

bool can be used whenever int is
expected – and vice versa.
Many existing programs use int instead
of bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

153



DeMorgan Rules

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)
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Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none
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Short circuit Evaluation

Logical operators && and || evaluate the left operand �rst.
If the result is then known, the right operand will not be
evaluated.

x != 0 && z / x > y

⇒ No division by 0
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4. Defensive Programming

Constants and Assertions
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Sources of Errors

Errors that the compiler can �nd:
syntactical and some semantical errors
Errors that the compiler cannot �nd:
runtime errors (always semantical)
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The Compiler as Your Friend: Constants

Constants
are variables with immutable value
const int speed_of_light = 299792458;

Usage: const before the de�nition
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The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise
:“value does not change”
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Constants: Variables behind Glass
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The const-guideline

const-guideline

For each variable, think about whether it will
change its value in the lifetime of a program. If
not, use the keyword const in order to make
the variable a constant.

A program that adheres to this guideline is called
const-correct.
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Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior
2. Check at many places in the code if the program is still on
track

3. Question the (seemingly) obvious, there could be a typo in
the code

163



Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>
can be switched o� (potential performance gain)
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Assertions for the gcd(x, y)

Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Input arguments for calcu-
lation

Precondition for the ongoing computation
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Assertions for the gcd(x, y)

... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)
assert(!(x % i == 0 && y % i == 0));

Precondition for the ongoing computation

Properties of
the gcd
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Switch o� Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

...
assert(x > 0 && y > 0); // Ignored

... // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
...
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Fail-Fast with Assertions

Real software: many C++
�les, complex control
�ow
Errors surface late(r)→
impedes error
localisation
Assertions: Detect errors
early

🕱🕱
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5. Control Structures I
Selection Statements, Iteration Statements, Termination,
Blocks
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Control Flow

Up to now: linear (from top to bottom)
Interesting programs require “branches” and “jumps”

// Project Hangman
...
while (game_not_over) {
...
if (word.contains(guess)) {
...

} else {
...

}
}
...
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Selection Statements

implement branches
if statement
if-else statement

171



if-Statement

if ( condition )
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then
statement is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool
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if-else-statement

if ( condition )
statement1

else
statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then
statement1 is executed, oth-
erwise statement2 is exe-
cuted.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch
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Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Indentation

Indentation
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Iteration Statements

implement loops

for-statement
while-statement
do-statement
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Compute 1 + 2 + ... + n

// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

#include <iostream>

int main()
{

// input
std::cout << "Compute the sum 1+...+n for n =? ";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i) s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";
return 0;

}
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for-Statement Example
for ( unsigned int i=1; i <= n ; ++i )

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

s == 3
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Gauß as a Child (1777 - 1855)

As you probably know, there exists a more e�cient way to
compute the sum of the �rst n natural numbers. Here’s a
corresponding anecdote:
Math-teacher wanted to keep the pupils busy with the
following task:

Compute the sum of numbers from 1 to 100!
Gauß �nished after one minute.
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The Solution of Gauß
The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of
1 + 2 + · · · + 99 + 100

+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050
179



for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration
statement, null statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)
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for-Statement: semantics

for ( init statement condition ; expression )
statement

init-statement is executed
condition is evaluated

true: Iteration starts
statement is executed
expression is executed

false: for-statement is ended.
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for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:
expression changes its value that appears in condition .
After a �nite number of iterations condition becomes false:
Termination
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In�nite Loops

In�nite loops are easy to generate:
for ( ; ; ) ;

Die empty condition is true.
Die empty expression has no e�ect.
Die null statement has no e�ect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;
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Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each C++-
Program P and each input I if the program P terminates
with the input I .

This means that the correctness of programs can in general
not be automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for
Alan Turing to construct a computing machine.
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Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .
A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);
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Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration
(++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is
found — at the latest, once d == n
Progress guarantees that the exit condition will be reached
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Example: Correctness

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

187



Blocks

Blocks group a number of statements to a new statement
{statement1 statement2 ... statementN}
Example: body of the main function

int main() {
...

}

Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cout << "partial sum is " << s << "\n";

}
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6. Control Statements II
Visibility, Local Variables, While Statement, Do Statement,
Jump Statements
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Visibility

Declaration in a block is not visible outside of the block.

int main()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc
k

m
ai
n
bl
oc
k

„Blickrichtung“
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Control Statement de�nes Block

In this respect, statements behave like blocks.

int main()
{

for (unsigned int i = 0; i < 10; ++i)
s += i;

std::cout << i; // Error: undeclared name
return 0;

}

bl
oc
k
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Scope of a Declaration
Potential scope: from declaration until end of the part that contains the
declaration.

in the block

{
...
int i = 2;
...

}

in function body

int main() {
...
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op
e

sc
op
e
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Scope of a Declaration
Real scope = potential scope minus potential scopes of declarations of
symbols with the same name

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;
return 0;

}

i 2
in
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Automatic Storage Duration

Local Variables (declaration in block)
are (re-)created each time their declaration is reached

memory address is assigned (allocation)
potential initialization is executed

are deallocated at the end of their declarative region
(memory is released, address becomes invalid)

194



Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << --k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic
storage duration.
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while Statement

while (condition)
statement

statement: arbitrary statement, body of the while
statement.
condition: convertible to bool.
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while Statement

while (condition)
statement

is equivalent to

for (; condition; )
statement
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while-Statement: Semantics

while (expression)
statement

condition is evaluated
true: iteration starts

statement is executed
false: while-statement ends.
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while-statement: why?

In a for-statement, the expression often provides the
progress (“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += i;

If the progress is not as simple, while can be more
readable.
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Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

ni−1

2 , if ni−1 even
3ni−1 + 1 , if ni−1 odd

, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)
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The Collatz Sequence in C++
// Program collatz.cpp. Computes the Collatz sequence of a number n.

#include <iostream>

int main() {
// Input
std::cout << "Compute the Collatz sequence for n =? ";
unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {
if (n % 2 == 0) n = n / 2;
else n = 3 * n + 1;
std::cout << n << " ";

}
std::cout << "\n";

return 0;
}
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The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484,
242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,
233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890,
445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283,
850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238,
1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,
6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300,
650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106,
53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1
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The Collatz-Sequence

Does 1 occur for each n?
It is conjectured, but nobody can prove it!
If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for
some n.
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do Statement

do
statement

while (condition);

statement: arbitrary statement, body of the do statement.
condition: convertible to bool.
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do Statement

do
statement

while (condition);

is equivalent to

statement
while (condition)
statement
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do-Statement: Semantics

do
statement

while (condition);

Iteration starts
statement is executed.

condition is evaluated
true: iteration begins
false: do-statement ends.
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do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =? ";
std::cin >> a;
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);
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Conclusion

Selection (conditional branches)
if and if-else-statement

Iteration (conditional jumps)
for-statement
while-statement
do-statement

Blocks and scope of declarations
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Jump Statements

break;
continue;
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break-Statement

break;

Immediately leave the enclosing iteration statement
useful in order to be able to break a loop “in the middle” 5

5and indispensible for switch-statements
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Calculator with break

Sum up integers (if 0 then stop)

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
s += a; /* irrelevant in last iteration */
std::cout << "sum = " << s << "\n";

} while (a != 0);
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Calculator with break

Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)
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Calculator with break

Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // exit loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}
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Calculator without break
Version without break evaluates a != 0 twice (and requires
an additional block).

int a = 1;
int s = 0;
for (; a != 0; ) {

std::cout << "next number =? ";
std::cin >> a;
if (a != 0) {

s += a;
std::cout << "sum = " << s << "\n";

}
}
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continue-Statement

continue;

Jump over the rest of the body of the enclosing iteration
statement
Iteration statement is not left.
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break and continue in practice

Advantage: Can avoid nested if-elseblocks (or complex
disjunctions)
But they result in additional jumps and thus potentially
complicate the control �ow
Their use is thus controversial, and should be carefully
considered
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Calculator with continue

Ignore negative input:

for (;;) {
std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}
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Equivalence of Iteration Statements

We have seen:
while and do can be simulated with for

It even holds:
The three iteration statements provide the same
“expressiveness” (lecture notes)
Not so simple if a continue is used
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Control Flow
Order of the (repeated) execution of statements
generally from top to bottom. . .
. . . except in selection and iteration statements

condition

statement
true

false if ( condition )
statement
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Control Flow if else

condition

statement1

statement2

true

false
if ( condition )

statement1
else

statement2
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Control Flow for

for ( init statement condition ; expression )
statement

init-statement

condition

statement

expression

true

false
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Control Flow break in for

init-statement

condition

statement

expression
break
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Control Flow continue in for

init-statement

condition

statement

expression

continue
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Control Flow while

condition

statement
true

false
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Control Flow do while

condition

statement

false

true
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Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).
Languages based on them:
Machine Language
Assembler (“higher” machine
language)
BASIC, the �rst programming language
for the general public (1964)

if

goto
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BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/C
om

mo
do

re
_6

4
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Spaghetti-Code with goto

Output of of ???????????all prime num-
bers
using the programming language BA-
SIC:

true

true
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The “right” Iteration Statement

Goals: readability, conciseness, in particular
few statements
few lines of code
simple control �ow
simple expressions

Often not all goals can be achieved simultaneously.
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Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 == 0)

continue;
std::cout << i << "\n";

}
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Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i) {
if (i % 2 != 0)

std::cout << i << "\n";
}
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Odd Numbers in {0, . . . , 100}

Less statements, simpler control �ow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement
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Jump Statements

implement unconditional jumps.
are useful, such as while and do but not indispensible
should be used with care: only where the control �ow is
simpli�ed instead of making it more complicated
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Outputting Grades

1. Functional requirement:

6→ "Excellent ... You passed!"
5, 4→ "You passed!"

3→ "Close, but ... You failed!"
2, 1→ "You failed!"

otherwise→ "Error!"

2. Moreover: Avoid duplication of text and code
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Outputting Grades with if Statements

int grade;
...
if (grade == 6) std::cout << "Excellent ... ";
if (4 <= grade && grade <= 6) {

std::cout << "You passed!";
} else if (1 <= grade && grade < 4) {

if (grade == 3) std::cout << "Close, but ... ";
std::cout << "You failed!";

} else std::cout << "Error!";

Disadvantage: Control �ow – and thus program behaviour –
not quite obvious
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Outputting Grades with switch Statement

switch (grade) {
case 6: std::cout << "Excellent ... ";
case 5:
case 4: std::cout << "You passed!";
break;

case 3: std::cout << "Close, but ... ";
case 2:
case 1: std::cout << "You failed!";
break;

default: std::cout << "Error!";
}

Jump to matching case

Fall-through

Exit switch

Fall-through

Exit switch
In all other cases

Advantage: Control �ow clearly recognisable
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The switch-Statement

switch (expression)
statement

expression: Expression, convertible to integral type
statement : arbitrary statemet, in which case and
default-lables are permitted, break has a special meaning.
Use of fall-through property is controversial and should be
carefully considered (corresponding compiler warning can
be enabled)
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Semantics of the switch-statement

switch (expression)
statement

expression is evaluated.
If statement contains a case-label with (constant) value of
condition, then jump there
otherwise jump to the default-lable, if available. If not,
jump over statement.
The break statement ends the switch-statement.

239



Control Flow switch

switch

statement

case

case

default

break

break
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7. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range
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“Proper” Calculation
// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main() {
// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}
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Fixed-point numbers

�xed number of integer places (e.g. 7)
�xed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages
Value range is getting even smaller than for integers.
Representability depends on the position of the decimal
point.

third place truncated
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Floating-point numbers

Observation: same number, di�erent representations with
varying “e�ciency”, e.g.

0.0824 = 0.00824 · 101 = 0.824 · 10−1

= 8.24 · 10−2 = 824 · 10−4

Number of signi�cant digits remains constant

Floating-point number representation thus:
Fixed number of signi�cant places (e.g. 10),
Plus position of the decimal point via exponent
Number is Mantissa× 10Exponent
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Types float and double

are the fundamental C++ types for �oating point numbers
approximate the �eld of real numbers (R,+,×) from
mathematics
have a big value range, su�cient for many applications:

float: approx. 7 digits, exponent up to ±38
double: approx. 15 digits, exponent up to ±308

are fast on most computers (hardware support)
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Arithmetic Operators

Analogous to int, but . . .
Division operator / models a “proper” division (real-valued,
not integer)
No modulo operator, i.e. no %
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Literals
are di�erent from integers by providing

decimal point
1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.
1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent
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Computing with float: Example

Approximating the Euler-Number

e =
∞∑

i=0

1
i! ≈ 2.71828 . . .

using the �rst 10 terms.
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Computing with float: Euler Number
std::cout << "Approximating the Euler number... \n";

// values for i-th iteration, initialized for i = 0
float t = 1.0f; // term 1/i!
float e = 1.0f; // i-th approximation of e

// iteration 1, ..., n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i-1)! -> 1/i!
e += t;
std::cout << "Value after term " << i << ": "

<< e << "\n";
}
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Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828
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Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to �oating
point numbers.

9 * celsius / 5 + 32
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Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference - input difference = "
<< n1 - n2 - d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8 W
ha
ti
s
go
in
g
on

he
re
?
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Value range

Integer Types:
Over- and Under�ow relatively frequent, but ...
the value range is contiguous (no holes): Z is “discrete”.

Floating point types:
Over�ow and Under�ow seldom, but ...
there are holes: R is “continuous”.
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8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of
Floating-point Arithmetics; Floating-point Guidelines;
Harmonic Numbers
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Floating-point Number Systems
A Floating-point number system is de�ned by the four natural
numbers:
β ≥ 2, the base,
p ≥ 1, the precision (number of places),
emin, the smallest possible exponent,
emax, the largest possible exponent.

Notation:
F (β, p, emin, emax)
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Floating-point number Systems
F (β, p, emin, emax) contains the numbers

±
p−1∑
i=0

diβ
−i · βe,

di ∈ {0, . . . , β − 1}, e ∈ {emin, . . . , emax}.

represented in base β:

± d0•d1 . . . dp−1 × βe,
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Floating-point Number Systems

Representations of the decimal number 0.1 (with β = 10):

1.0 · 10−1, 0.1 · 100, 0.01 · 101, . . .

Di�erent representations due to choice of exponent
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Normalized representation

Normalized number:

± d0•d1 . . . dp−1 × βe, d0 6= 0

Remark 1
The normalized representation is unique and therefore pref-
ered.

Remark 2
The number 0, as well as all numbers smaller than βemin ,
have no normalized representation (we will come back to
this later)
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Set of Normalized Numbers

F ∗(β, p, emin, emax)
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Normalized Representation

Example F ∗(2, 3,−2, 2) (only positive numbers)

d0•d1d2 e = −2 e = −1 e = 0 e = 1 e = 2
1.002 0.25 0.5 1 2 4
1.012 0.3125 0.625 1.25 2.5 5
1.102 0.375 0.75 1.5 3 6
1.112 0.4375 0.875 1.75 3.5 7

0 8

1.00 · 2−2 = 1
4 1.11 · 22 = 7
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Binary and Decimal Systems

Internally the computer computes with β = 2
(binary system)
Literals and inputs have β = 10
(decimal system)
Inputs have to be converted!
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Conversion Decimal→ Binary

Assume, 0 < x < 2.
Binary representation:

x =
0∑

i=−∞
bi2i = b0•b−1b−2b−3 . . .

= b0 +
−1∑

i=−∞
bi2i = b0 +

0∑
i=−∞

bi−12i−1

= b0 +
 0∑

i=−∞
bi−12i


︸ ︷︷ ︸
x′=b−1•b−2b−3b−4

/2
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Conversion Decimal→ Binary

Assume 0 < x < 2.
Hence: x′ = b−1•b−2b−3b−4 . . . = 2 · (x− b0)
Step 1 (for x): Compute b0:

b0 =
 1, if x ≥ 1

0, otherwise

Step 2 (for x): Compute b−1, b−2, . . .:
Go to step 1 (for x′ = 2 · (x− b0))
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Binary representation of 1.110

x bi x− bi 2(x− bi)
1.1 b0 = 1 0.1 0.2
0.2 b1 = 0 0.2 0.4
0.4 b2 = 0 0.4 0.8
0.8 b3 = 0 0.8 1.6
1.6 b4 = 1 0.6 1.2
1.2 b5 = 1 0.2 0.4

⇒ 1.00011, periodic, not �nite
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Binary Number Representations of 1.1 and
0.1

are not �nite, hence there are errors when converting into a
(�nite) binary �oating-point system.
1.1f and 0.1f do not equal 1.1 and 0.1, but are slightly
inaccurate approximation of these numbers.
In diff.cpp: 1.1− 1.0 6= 0.1
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Binary Number Representations of 1.1 and
0.1

on my computer:

1.1 = 1.1000000000000000888178 . . .
1.1f = 1.1000000238418 . . .
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Computing with Floating-point Numbers
Example (β = 2, p = 4):

1.111 · 2−2

+ 1.011 · 2−1

= 1.001 · 20

1. adjust exponents by denormalizing one number 2. binary addition
of the signi�cands 3. renormalize 4. round to p signi�cant places, if
necessary
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The IEEE Standard 754
de�nes �oating-point number systems and their rounding
behavior and is used nearly everywhere

Single precision (float) numbers:

F ∗(2, 24,−126, 127) (32 bit) plus 0,∞, . . .

Double precision (double) numbers:

F ∗(2, 53,−1022, 1023) (64 bit) plus 0,∞, . . .

All arithmetic operations round the exact result to the next
representable number

272



The IEEE Standard 754

Why
F ∗(2, 24,−126, 127)?

1 sign bit
23 bit for the signi�cand (leading bit is 1 and is not stored)
8 bit for the exponent (256 possible values)(254 possible
exponents, 2 special values: 0,∞,. . . )

⇒ 32 bit in total.
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The IEEE Standard 754

Why
F ∗(2, 53,−1022, 1023)?

1 sign bit
52 bit for the signi�cand (leading bit is 1 and is not stored)
11 bit for the exponent (2046 possible exponents, 2 special
values: 0,∞,. . . )

⇒ 64 bit in total.
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Example: 32-bit Representation of a Floating Point
Number

31 30 29 28 27 26 25 24 23 012345678910111213141516171819202122

± Exponent Mantisse

2−126, . . . , 2127
±

0,∞, . . .
1.00000000000000000000000. . .
1.11111111111111111111111
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Floating-point Rules Rule 1

Rule 1
Do not test rounded �oating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
std::cout << i << "\n";

endless loop because i never becomes exactly 1
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Floating-point Rules Rule 2

Rule 2
Do not add two numbers of very di�erent orders of magni-
tude!

1.000 · 25

+1.000 · 20

= 1.00001 · 25

“=” 1.000 · 25 (Rounding on 4 places)

Addition of 1 does not have any e�ect!
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Harmonic Numbers Rule 2

The n-the harmonic number is

Hn =
n∑

i=1

1
i
≈ lnn.

This sum can be computed in forward or backward
direction, which is mathematically clearly equivalent
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Harmonic Numbers Rule 2
// Program: harmonic.cpp
// Compute the n-th harmonic number in two ways.

#include <iostream>

int main()
{

// Input
std::cout << "Compute H_n for n =? ";
unsigned int n;
std::cin >> n;

// Forward sum
float fs = 0;
for (unsigned int i = 1; i <= n; ++i)

fs += 1.0f / i;

// Backward sum
float bs = 0;
for (unsigned int i = n; i >= 1; --i)

bs += 1.0f / i;

// Output
std::cout << "Forward sum = " << fs << "\n"

<< "Backward sum = " << bs << "\n";
return 0;

}
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Harmonic Numbers Rule 2

Results:

Compute H_n for n =? 10000000
Forward sum = 15.4037
Backward sum = 16.686

Compute H_n for n =? 100000000
Forward sum = 15.4037
Backward sum = 18.8079
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Harmonic Numbers Rule 2

Observation:
The forward sum stops growing at some point and is “really”
wrong.
The backward sum approximates Hn well.

Explanation:
For 1 + 1/2 + 1/3 + · · · , later terms are too small to actually
contribute
Problem similar to 25 + 1 “=” 25
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Floating-point Guidelines Rule 3

Rule 4
Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.
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9. Functions I
De�ning and Calling Functions, Evaluation of Function Calls,
the Type void
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Functions

encapsulate functionality that is frequently used (e.g.
computing powers) and make it easily accessible
structure a program: partitioning into small sub-tasks, each
of which is implemented as a function
⇒ Procedural programming; procedure: a di�erent word for function.
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Example: Computing Powers
double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) { // a^n = (1/a)^(-n)
a = 1.0/a;
n = -n;

}
for (int i = 0; i < n; ++i)
result *= a;

std::cout << a << "^" << n << " = " << result << ".\n";

"Funktion pow"
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Function to Compute Powers
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(-e)

b = 1.0/b;
e = -e;

}
for (int i = 0; i < e; ++i)

result *= b;
return result;

}
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Function to Compute Powers
// Prog: callpow.cpp
// Define and call a function for computing powers.
#include <iostream>

double pow(double b, int e){...}

int main()
{
std::cout << pow( 2.0, -2) << "\n"; // outputs 0.25
std::cout << pow( 1.5, 2) << "\n"; // outputs 2.25
std::cout << pow(-2.0, 9) << "\n"; // outputs -512

return 0;
} 289



Function De�nitions

T fname (T1 pname1, T2 pname2, . . . ,TN pnameN )
block

function name

return type

formal arguments

argument types

body
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De�ning Functions
may not occur locally, i.e. not in blocks, not in other
functions and not within control statements
can be written consecutively without separator in a program

double pow (double b, int e)
{

...
}

int main ()
{

...
} 291



Example: Xor

// post: returns l XOR r
bool Xor(bool l, bool r)
{

return l && !r || !l && r;
}
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Example: Harmonic

// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{

float res = 0;
for (unsigned int i = n; i >= 1; --i)

res += 1.0f / i;
return res;

}
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Example: min

// POST: returns the minimum of a and b
int min(int a, int b)
{

if (a<b)
return a;

else
return b;

}
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Function Calls

fname ( expression1, expression2, . . . , expressionN )

All call arguments must be convertible to the respective
formal argument types.
The function call is an expression of the return type of
the function. Value and e�ect as given in the
postcondition of the function fname.

Example: pow(a,n): Expression of type double
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Function Calls

For the types we know up to this point it holds that:
Call arguments are R-values
↪→ call-by-value (also pass-by-value), more on this soon
The function call is an R-value.

fname: R-value × R-value × · · ·× R-value −→ R-value
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Evaluation of a Function Call

Evaluation of the call arguments
Initialization of the formal arguments with the resulting
values
Execution of the function body: formal arguments behave
laike local variables
Execution ends with
return expression;

Return value yiels the value of the function call.
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Example: Evaluation Function Call
double pow(double b, int e){

assert (e >= 0 || b != 0);
double result = 1.0;
if (e<0) {

// b^e = (1/b)^(-e)
b = 1.0/b;
e = -e;

}
for (int i = 0; i < e ; ++i)

result * = b;
return result;

}

...
pow (2.0, -2)

Ca
ll
of
po
w

Re
tur
n
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sometimes em formal arguments

Declarative region: function de�nition
are invisible outside the function de�nition
are allocated for each call of the function (automatic
storage duration)
modi�cations of their value do not have an e�ect to the
values of the call arguments (call arguments are R-values)
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Scope of Formal Arguments

double pow(double b, int e){
double r = 1.0;
if (e<0) {

b = 1.0/b;
e = -e;

}
for (int i = 0; i < e ; ++i)

r * = b;
return r;

}

int main(){
double b = 2.0;
int e = -2;
double z = pow(b, e);

std::cout << z; // 0.25
std::cout << b; // 2
std::cout << e; // -2
return 0;

}

Not the formal arguments b and e of pow but the vari-
ables de�ned here locally in the body of main
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The type void

// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {

std::cout << "(" << i << ", " << j << ")\n";
}

int main() {
print_pair(3,4); // outputs (3, 4)
return 0;

}
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The type void

Fundamental type with empty value range
Usage as a return type for functions that do only provide an
e�ect
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void-Functions

do not require return.
execution ends when the end of the function body is
reached or if
return; is reached
or
return expression; is reached.

Expression with type void (e.g. a call
of a function with return type void
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Functions and return

The behavior of a function with non-void return type is
unde�ned if the end of the function body is reached without
a return statement.
Wrong:
bool compare(float x, float y) {
float delta = x - y;
if (delta*delta < 0.001f) return true;

}

Here the value of compare(10,20) is unde�ned.
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Functions and return

The behavior of a function with non-void return type is
unde�ned if the end of the function body is reached without
a return statement.
Better:
bool compare(float x, float y) {

float delta = x - y;
if (delta*delta < 0.001f)
return true;
else
return false;

}

All execution paths reach a return
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Functions and return

The behavior of a function with non-void return type is
unde�ned if the end of the function body is reached without
a return statement.
Even better and simpler
bool compare(float x, float y) {

float delta = x - y;
return delta*delta < 0.001f;

}
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10. Functions II
Pre- and Postconditions Stepwise Re�nement, Scope,
Libraries and Standard Functions
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Pre- and Postconditions

characterize (as complete as possible) what a function does
document the function for users and programmers (we or
other people)
make programs more readable: we do not have to
understand how the function works
are ignored by the compiler
Pre and postconditions render statements about the
correctness of a program possible – provided they are
correct.
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Preconditions

precondition:
what is required to hold when the function is called?
de�nes the domain of the function

0e is unde�ned for e < 0

// PRE: e >= 0 || b != 0.0
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Postconditions

postcondition:
What is guaranteed to hold after the function call?
Speci�es value and e�ect of the function call.

Here only value, no e�ect.
// POST: return value is b^e
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Pre- and Postconditions

should be correct:
if the precondition holds when the function is called then
also the postcondition holds after the call.

Funktion pow: works for all numbers b 6= 0
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Pre- and Postconditions

We do not make a statement about what happens if the
precondition does not hold.
C++-standard-slang: “Unde�ned behavior”.

Function pow: division by 0
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Pre- and Postconditions

pre-condition should be as weak as possible (largest
possible domain)
post-condition should be as strong as possible (most
detailed information)
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White Lies. . .

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

is formally incorrect:
Over�ow if e or b are too large
be potentially not representable as a double (holes in the
value range!)
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White Lies are Allowed

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e

The exact pre- and postconditions are platform-dependent and often
complicated. We abstract away and provide the mathematical conditions.
⇒ compromise between formal correctness and lax practice.
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Checking Preconditions. . .

Preconditions are only comments.
How can we ensure that they hold when the function is
called?
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. . .with assertions

#include <cassert>
...
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e) {

assert (e >= 0 || b != 0);
double result = 1.0;
...

}
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Postconditions with Asserts
The result of “complex” computations is often easy to check.
Then the use of asserts for the postcondition is worthwhile.

// PRE: the discriminant p*p/4 - q is nonnegative
// POST: returns larger root of the polynomial x^2 + p x + q
double root(double p, double q)
{

assert(p*p/4 >= q); // precondition
double x1 = - p/2 + sqrt(p*p/4 - q);
assert(equals(x1*x1+p*x1+q,0)); // postcondition
return x1;

}
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Exceptions

Assertions are a rough tool; if an assertions fails, the
program is halted in a unrecoverable way.
C++provides more elegant means (exceptions) in order to
deal with such failures depending on the situation and
potentially without halting the program
Failsafe programs should only halt in emergency situations
and therefore should work with exceptions. For this course,
however, this goes too far.
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Stepwise Re�nement
A simple technique to solve
complex problems

Niklaus Wirth. Program development by
stepwise re�nement. Commun. ACM 14,
4, 1971 321



Stepwise Re�nement

Solve the problem step by step. Start with a coarse solution on a high
level of abstraction (only comments and abstract function calls)

At each step, comments are replaced by program text, and functions are
implemented (using the same principle again)

The re�nement also refers to the development of data representation
(more about this later).

If the re�nement is realized as far as possible by functions, then partial
solutions emerge that might be used for other problems.

Stepwise re�nement supports (but does not replace) the structural
understanding of a problem.
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Example Problem

Find out if two rectangles intersect!
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Coarse Solution

(include directives omitted)
int main()
{

// input rectangles

// intersection?

// output solution

return 0;
}
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Re�nement 1: Input Rectangles

(x1, y1, w1, h1)

(x2, y2, w2, h2)
(x1, y1) w1

h1

(x2, y2) w2

h2

x

y
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Re�nement 1: Input Rectangles

Width w and height h may be negative.

(x, y, w, h)

(x, y)w < 0

h ≥ 0
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Re�nement 1: Input Rectangles

int main()
{

std::cout << "Enter two rectangles [x y w h each] \n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;

// intersection?

// output solution

return 0;
} 329



Re�nement 2: Intersection? and Output

int main()
{

input rectangles X

bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);

if (clash)
std::cout << "intersection!\n";

else
std::cout << "no intersection!\n";

return 0;
} 330



Re�nement 3: Intersection Function. . .

bool rectangles_intersect(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)

{
return false; // todo

}

int main() {

input rectangles X

intersection? X

output solution X

return 0;
}
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Re�nement 3: Intersection Function. . .

bool rectangles_intersect(int x1, int y1, int w1, int h1,
int x2, int y2, int w2, int h2)

{
return false; // todo

}

Function main X

332



Re�nement 3: . . .with PRE and POST

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles,
// where w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1) and
// (x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return false; // todo
}
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Re�nement 4: Interval Intersection

Two rectangles intersect if and only if their x and y-intervals
intersect.

(x1, y1) w1

h1

(x2, y2) w2

h2

[x1, x1 + w1]
[x2, x2 + w2]

[y1, y1 + h1]

[y2, y2 + h2]
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Re�nement 4: Interval Intersections

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2); X

}
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Re�nement 4: Interval Intersections

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return false; // todo
}

Function rectangles_intersect X

Function main X
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Re�nement 5: Min and Max

// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return max(a1, b1) >= min(a2, b2)
&& min(a1, b1) <= max(a2, b2); X

}
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Re�nement 5: Min and Max

// POST: the maximum of x and y is returned
int max(int x, int y){

if (x>y) return x; else return y;
}

// POST: the minimum of x and y is returned
int min(int x, int y){

if (x<y) return x; else return y;
}

Function intervals_intersect X

Function rectangles_intersect X

Function main X

already exists in the standard library
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Back to Intervals

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{

return std::max(a1, b1) >= std::min(a2, b2)
&& std::min(a1, b1) <= std::max(a2, b2); X

}
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Look what we have achieved step by step!

#include <iostream>
#include <algorithm>

// PRE: [a1, b1], [a2, h2] are (generalized) intervals,
// with [a,b] := [b,a] if a>b
// POST: returns true if [a1, b1],[a2, b2] intersect
bool intervals_intersect(int a1, int b1, int a2, int b2)
{
return std::max(a1, b1) >= std::min(a2, b2)

&& std::min(a1, b1) <= std::max(a2, b2);
}

// PRE: (x1, y1, w1, h1), (x2, y2, w2, h2) are rectangles, where
// w1, h1, w2, h2 may be negative.
// POST: returns true if (x1, y1, w1, h1),(x2, y2, w2, h2) intersect
bool rectangles_intersect(int x1, int y1, int w1, int h1,

int x2, int y2, int w2, int h2)
{

return intervals_intersect(x1, x1 + w1, x2, x2 + w2)
&& intervals_intersect(y1, y1 + h1, y2, y2 + h2);

}

int main ()
{
std::cout << "Enter two rectangles [x y w h each]\n";
int x1, y1, w1, h1;
std::cin >> x1 >> y1 >> w1 >> h1;
int x2, y2, w2, h2;
std::cin >> x2 >> y2 >> w2 >> h2;
bool clash = rectangles_intersect(x1,y1,w1,h1,x2,y2,w2,h2);
if (clash)
std::cout << "intersection!\n";

else
std::cout << "no intersection!\n";

return 0;
}
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Result

Clean solution of the problem
Useful functions have been implemented
intervals_intersect
rectangles_intersect

Intersection
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Where can a Function be Used?
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}

Gü
lti
gk
ei
tf

342



Scope of a Function

is the part of the program where a function can be called
is de�ned as the union of all scopes of its declarations
(there can be more than one)

declaration of a function: like the de�nition but without
{...}.

double pow(double b, int e);
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This does not work. . .
#include <iostream>

int main()
{

std::cout << f(1); // Error: f undeclared
return 0;

}

int f(int i) // Scope of f starts here
{

return i;
}

Gü
lti
gk
ei
tf
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. . . but this works!
#include <iostream>
int f(int i); // Gueltigkeitsbereich von f ab hier

int main()
{

std::cout << f(1);
return 0;

}

int f(int i)
{

return i;
}
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Forward Declarations, why?
Functions that mutually call each other:

int g(...); // forward declaration

int f(...) // f valid from here
{

g(...) // ok
}

int g(...)
{

f(...) // ok
}

Gü
lti
gk
ei
tf
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Reusability

Functions such as rectangles_intersect and pow are
useful in many programs.
“Solution”: copy-and-paste the source code
Main disadvantage: when the function de�nition needs to
be adapted, we have to change all programs that make use
of the function
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Level 1: Outsource the Function
// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{

double result = 1.0;
if (e < 0) { // b^e = (1/b)^(-e)

b = 1.0/b;
e = -e;

}
for (int i = 0; i < e; ++i)

result *= b;
return result;

}
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Level 1: Include the Function
// Prog: callpow2.cpp
// Call a function for computing powers.

#include <iostream>
#include "mymath.cpp"

int main()
{
std::cout << pow( 2.0, -2) << "\n";
std::cout << pow( 1.5, 2) << "\n";
std::cout << pow( 5.0, 1) << "\n";
std::cout << pow(-2.0, 9) << "\n";

return 0;
}

�le in working directory
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Disadvantage of Including

#include copies the �le (mymath.cpp) into the main
program (callpow2.cpp).
The compiler has to (re)compile the function de�nition for
each program
This can take long for many and large functions.
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Level 2: Separate Compilation

of mymath.cpp independent of the main program:

double pow(double b,
int e)

{
...

}

mymath.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion powg++ -c mymath.cpp

351



Level 2: Separate Compilation

Declaration of all used symbols in so-called header �le.

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e);

mymath.h
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Level 2: Separate Compilation
of the main program, independent of mymath.cpp, if a
declaration from mymath is included.

#include <iostream>
#include "mymath.h"
int main()
{
std::cout << pow(2,-2) << "\n";
return 0;

}

callpow3.cpp

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!
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The linker unites...

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!
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... what belongs together

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010

mymath.o

Funktion pow
+

001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

callpow3.o

Funktion main

rufe pow auf!

=

001110101100101010
000101110101000111
000101000010111111
111100001101010001
111111101000111010
010101101011010001
100101111100101010
001110101100101010
000101110101000111
000101000010111111
111100001101010001
010101101011010001
100101111100101010
111111101000111010

Funktion pow

Funktion main

rufe addr auf!

Executable callpow3 355



Availability of Source Code?

Observation

mymath.cpp (source code) is not required any more when
the mymath.o (object code) is available.

Many vendors of libraries do not provide source code.
Header �les then provide the only readable informations.
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Open-Source Software

Source code is generally available.

Only this allows the continued development of code by users and
dedicated “hackers”.

Even in commercial domains, open-source software gains ground.

Certain licenses force naming sources and open development. Example
GPL (GNU Genereal Public License)

Known open-source software: Linux (operating system), Firefox
(browser), Thunderbird (email program)...
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Libraries

Logical grouping of similar functions
pow

exp

log

sin

cmath
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Name Spaces. . .

// cmath
namespace std {

double pow(double b, int e);

....
double exp(double x);
...

}
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. . . Avoid Name Con�icts

#include <cmath>
#include "mymath.h"

int main()
{

double x = std::pow(2.0, -2); // <cmath>
double y = pow(2.0, -2); // mymath.h

}
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Name Spaces / Compilation Units

In C++ the concept of separate compilation is independent of
the concept of name spaces
In some other languages,e.g. Modula / Oberon (partially also
for Java) the compilation unit can de�ne a name space.
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Functions from the Standard Library

help to avoid re-inventing the wheel (such as with
std::pow);
lead to interesting and e�cient programs in a simple way;
guarantee a quality standard that cannot easily be achieved
with code written from scratch.
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Example: Prime Number Test with sqrt

n ≥ 2 is a prime number if and only if there is no d in
{2, . . . , n− 1} dividing n .

unsigned int d;
for (d=2; n % d != 0; ++d);
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Prime Number test with sqrt

n ≥ 2 is a prime number if and only if there is no d in
{2, . . . , b

√
nc} dividing n .

unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

This works because std::sqrt rounds to the next
representable double number (IEEE Standard 754).
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Prime Number test with sqrt

// Test if a given natural number is prime.
#include <iostream>
#include <cassert>
#include <cmath>

int main ()
{
// Input
unsigned int n;
std::cout << "Test if n>1 is prime for n =? ";
std::cin >> n;
assert (n > 1);

// Computation: test possible divisors d up to sqrt(n)
unsigned int bound = std::sqrt(n);
unsigned int d;
for (d = 2; d <= bound && n % d != 0; ++d);

// Output
if (d <= bound)
// d is a divisor of n in {2,...,[sqrt(n)]}
std::cout << n << " = " << d << " * " << n / d << ".\n";

else
// no proper divisor found
std::cout << n << " is prime.\n";

return 0;
}
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Functions Should be More Capable! Swap ?

void swap(int x, int y) {
int t = x;
x = y;
y = t;
}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // fail!

}

367



Functions Should be More Capable! Swap ?

// POST: values of x and y are exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;
}
int main(){

int a = 2;
int b = 1;
swap(a, b);
assert(a==1 && b==2); // ok!

}
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Sneak Preview: Reference Types

We can enable functions to change the value of call
arguments.
Not a new concept speci�c to functions, but rather a new
class of types

Reference types (e.g. int&)
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11. Reference Types

Reference Types: De�nition and Initialization, Pass By Value,
Pass by Reference, Temporary Objects, Const-References
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Swap!
// POST: values of x and y have been exchanged
void swap(int& x, int& y) {
int t = x;
x = y;
y = t;
}

int main() {
int a = 2;
int b = 1;
swap(a, b);
assert(a == 1 && b == 2); // ok!

}
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Reference Types

We can make functions change the values of the call
arguments
not a function-speci�c concept, but a new class of types:
reference types
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Reference Types: De�nition

T&

underlying type

read as “T-reference”

T& has the same range of values and functionality as T . . .
. . . but initialization and assignment work di�erently
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Anakin Skywalker alias Darth Vader
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Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // Alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalkeranakin_skywalker darth_vaderdarth_vader

assignment to the L-value behind the alias
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Reference Types: Intialization and
Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // effect: anakin_skywalker = 22

A variable of reference type (a reference) must be initialized
with an L-Value
The variable becomes an alias of the L-value (a di�erent
name for the referenced object)
Assignment to the reference updates the object behind the
alias
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Reference Types: Implementation

Internally, a value of type T& is represented by the address of
an object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: literal 5 has no address
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Pass by Reference
Reference types make it possible that functions modify the value of their call arguments

void increment (int& i) {
++i;

}
...
int j = 5;
increment (j);
std::cout << j; // 6

6

j i

initialization of the formal arguments: i
becomes an alias of call argument j
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Pass by Reference

Formal argument is of reference type:
⇒ Pass by Reference

Formal argument is (internally) initialized with the address
of the call argument (L-value) and thus becomes an alias.
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Pass by Value

Formal argument is not of reference type:
⇒ Pass by Value

Formal argument is initialized with the value of the actual
parameter (R-Value) and thus becomes a copy.
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References in the Context of
intervals_intersect
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect(int& l, int& h,

int a1, int b1, int a2, int b2) {
sort(a1, b1);
sort(a2, b2);

a1 b1

a2 b2l = std::max(a1, a2); // Assignments
h = std::min(b1, b2); // via references
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect(lo, hi, 0, 2, 1, 3)) // Initialization

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
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References in the Context of
intervals_intersect
// POST: a <= b
void sort(int& a, int& b) {

if (a > b)
std::swap(a, b); // Initialization ("passing through" a, b

}

bool intervals_intersect(int& l, int& h,
int a1, int b1, int a2, int b2) {

sort(a1, b1); // Initialization
sort(a2, b2); // Initialization
l = std::max(a1, a2);
h = std::min(b1, b2);
return l <= h;

} 382



Return by Reference

Even the return type of a function can be a reference type:
Return by Reference

int& inc(int& i) {
return ++i;

}

call inc(x), for some int variable x, has exactly the
semantics of the pre-increment ++x
Function call itself now is an L-value
Thus possible: inc(inc(x)) or ++(inc(x))
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Temporary Objects
What is wrong here?

int& foo(int i) {
return i;

}

Return value of type int& be-
comes an alias of the formal
argument (local variable i),
whose memory lifetime ends
after the call

// main()

3 // foo(k)imemory re-
leased

j

value of the actual parameter is
pushed onto the call stacki is returned as reference. . . and disappears from the stackj becomes alias to released mem-
ory
Accessing j is unde�ned be-
haviour!

int k = 3;
int& j = foo(k); // j is an alias of a zombie
std::cout << j; // undefined behavior
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The Reference Guidline

Reference Guideline
When a reference is created, the object referred to must
“stay alive” at least as long as the reference.
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Const-References

have type const T &
type can be interpreted as “(const T) &”
can be initialized with R-Values (compiler generates a
temporary object with su�cient lifetime)

const T& r = lvalue;

r is initialized with the address of lvalue (e�cient)
const T& r = rvalue;

r is initialized with the address of a temporary object with the
value of the rvalue (pragmatic)
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What exactly does Constant Mean?

Consider L-value of type const T. Case: 1 T is no reference type.
⇒ Then the L-value is a constant

const int n = 5;
int& a = n; // Compiler error: const-qualification discarded
a = 6;

The compiler detects our cheating attempt
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What exactly does Constant Mean?

Consider L-value of type const T. Case 2: T is reference type.
⇒ Then the L-value is a read-only alias which cannot be used
to change the underlying L-value.

int n = 5;

const int& r = n; // r is read-only alias of n
r = 6; // Compiler error: read-only reference

int& rw = n; // rw is read-write alias
rw = 6; // OK
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When to use const T&?

void f_1(T& arg); void f_2(const T& arg);

Argument types are references; call arguments are thus not
copied, which is e�cient
But only f_2 “promises” to not modify the argument

Rule
If possible, declare function argument types as const T&
(pass by read-only reference) : e�cient and safe.

Typically doesn’t pay o� for fundamental types (int, double, . . . ). Types with a larger
memory footprint will be introduced later in this course.
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12. Vectors I
Vector Types, Sieve of Erathostenes, Memory Layout, Iteration
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Vectors: Motivation

Now we can iterate over numbers
for (int i=0; i<n ; ++i) {...}

Often we have to iterate over data. (Example: �nd a cinema
in Zurich that shows “C++ Runner 2049” today)
Vectors allow to store homogeneous data (example:
schedules of all cinemas in Zurich)
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Vectors: a �rst Application

The Sieve of Erathostenes
computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 226 9 12 15 18 212 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers
remain.
Question: how do we cross out numbers?
Answer: with a vector.
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Sieve of Erathostenes with Vectors
#include <iostream>
#include <vector> // standard containers with vector functionality
int main() {
// input
std::cout << "Compute prime numbers in {2,...,n-1} for n =? ";
unsigned int n; std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n-1], initialized to false
std::vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n-1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)
if (!crossed_out[i]) { // i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2*i; m < n; m += i) crossed_out[m] = true;

}
std::cout << "\n";
return 0;

}
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Memory Layout of a Vector
A vector occupies a contiguous memory area

Example: a vector with 3 elements of type T

Memory segments for a value of type T each
(T occupies e.g. 4 bytes)
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Random Access

Given
vector vec with T elements
int expression exp with value i ≥ 0

Then the expression

vec [ exp ]
is an L-value of type T
that refers to the ith element vec (counting from 0!)

vec[0]vec[1]vec[2]vec[3]
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Random Access

vec [ exp ]

The value i of exp is called index
[ ] is the index operator (also subscript operator)
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Random Access
Random access is very e�cient:

s: memory consumption
of T
(in cells)

p: address of vec p+ s · i: address of vec[i]

vec[i]
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Vector Initialization

std::vector<int> vec(5);
The �ve elements of vec are intialized with zeros)
std::vector<int> vec(5, 2);
the 5 elements of vec are initialized with 2
std::vector<int> vec{4, 3, 5, 2, 1};
the vector is initialized with an initialization list
std::vector<int> vec;
An initially empty vector is initialized
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Attention

Accessing elements outside the valid bounds of a vector leads
to unde�ned behavior

std::vector vec(10);
for (unsigned int i = 0; i <= 10; ++i)
vec[i] = 30; // Runtime error: accessing vec[10]
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Attention

Bound Checks
When using a subscript operator on a vector, it is the sole
responsibility of the programmer to check the validity of el-
ement accesses.
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Vectors O�er Great Functionality
Here a few example functions, additional follow later in the
course.

std::vector<int> v(10);
std::cout << v.at(10);
// Access with index check → runtime error
// Ideal for homework

v.push_back(-1); // -1 is appended (added at end)
std::cout << v.size(); // outputs 11
std::cout << v.at(10); // outputs -1
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13. Characters and Texts I
Characters and Texts, ASCII, UTF-8, Caesar Code
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Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes!

Character: Value of the fundamental type char
Text: std::string ≈ vector of char elements
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The type char (“character”)

Represents printable characters (e.g. ’a’) and control
characters (e.g. ’\n’)

char c = ’a’;

Declares and ini-
tialises variable c of
type char with value
’a’

literal of type char
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The type char (“character”)

Is formally an integer type
values convertible to int / unsigned int
all arithmetic operators are available (with dubious use:
what is ’a’/’b’ ?)
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}
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The ASCII-Code
De�nes concrete conversion rules char −→
(unsigned) int

Zeichen −→ {0, . . . , 127}

’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57
Is supported on all common computer systems
Enables arithmetic over characters

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; // abcdefghijklmnopqrstuvwxyz 410



Extension of ASCII: Unicode, UTF-8

Internationalization of Software⇒ large character sets
required. Thus common today:

Character set Unicode: 150 scripts, ca. 137,000 characters
encoding standard UTF-8: mapping characters↔ numbers

UTF-8 is a variable-width encoding: Commonly used
characters (e.g. Latin alphabet) require only one byte, other
characters up to four
Length of a character’s byte sequence is encoded via bit
patterns

Useable Bits Bit patterns
7 0xxxxxxx
11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
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Some Unicode characters in UTF-8
Symbol Codierung (jeweils 16 Bit)

11101111 10101111 10111001

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10011000 10011001

A 01000001

ht
tp
://
t-a
-w
.b
lo
gs
po
t.c
h/
20
08
/1
2/
fu
nn
y-
ch
ar
ac
te
rs
-in
-u
ni
co
de
.h
tm
l

P.S.: Search for apple "unicode of death" P.S.: Unicode & UTF-8 are not relevant for the exam 412



Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)
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Caesar-Code: shift-Function
// PRE: divisor > 0
// POST: return the remainder of dividend / divisor
// with 0 <= result < divisor
int mod(int dividend, int divisor);

// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
char shift(char c, int s) {

if (c >= 32 && c <= 126) { // c is printable
c = 32 + mod(c - 32 + s,95);

}

return c;
}

"- 32" transforms interval [32, 126] to
[0, 94]
"mod(x, 95)" computes x mod 95 in

[0, 94]
"32 +" transforms [0, 94] back to

[32, 126]
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Caesar-Code: caesar-Function

// POST: Each character read from std::cin was shifted cyclically
// by s characters and afterwards written to std::cout
void caesar(int s) {
std::cin >> std::noskipws; // #include <ios>

char next;
while (std::cin >> next) {
std::cout << shift(next, s);

}
}

Spaces and newline characters
shall not be ignored
Conversion to bool: returns false if
and only if the input is empty

Shift printable characters by s
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Caesar-Code: Main Program

int main() {
int s;
std::cin >> s;

// Shift input by s
caesar(s);

return 0;
}

Encode: shift by n (here: 3)

Encode: shift by −n (here: -3)
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Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {
std::cout << shift(next, s);

}
}

Currently only from
std::cin to std::cout

Better: from arbitrary
character source (console,
�le, ...) to arbitrary character
sink (console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY
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14. Characters and Texts II
Caesar Code with Streams, Text as Strings, String Operations
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Caesar-Code: Generalisation

void caesar(int s) {
std::cin >> std::noskipws;

char next;
while (std::cin >> next) {
std::cout << shift(next, s);

}
}

Currently only from
std::cin to std::cout

Better: from arbitrary
character source (console,
�le, ...) to arbitrary character
sink (console, ...)

. . .
Icons: flaticon.com; authors Smashicons, Kirill Kazachek; CC 3.0 BY
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Interlude: Abstract vs. Concrete Types
DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

void move_house(DestroyBox& db) {
// any destroy box will do
db.dispose(old_ikea_couch);
db.dispose(cheap_wine);
...

}

FireBox fb(5000◦C);
move_house(fb);

ShredBox sb;
move_house(sb);

Icons on current and next slide taken from flaticon.com. Authors are: DinosoftLabs, Freepik, Kirill Kazachek, Smashicons,
Vectors Market, xnimrodx. 420



Abstract and Concrete Character Streams
DestroyBox

ShredBox FireBox

..
.

(
abstract,
generic

)

(is a)

(
concrete,
speci�c

)

std::ostream

std::ofstream std::cout

..
.
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Caesar-Code: Generalisation

void caesar(std::istream& in,
std::ostream& out,
int s) {

in >> std::noskipws;

char next;
while (in >> next) {
out << shift(next, s);

}
}

std::istream/std::ostream
is an abstract input/output
stream of chars

Function is called with
concrete streams, e.g.:

Console: std::cin/cout
Files: std::ifstream/
ofstream
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Caesar-Code: Generalisation, Example 1

#include <iostream>
...

// in void main():
caesar(std::cin, std::cout, s);

Calling the generalised caesar function: from std::cin to
std::cout
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Caesar-Code: Generalisation, Example 2

#include <iostream>
#include <fstream>
...

// in void main():
std::string to_file_name = ...; // Name of file to write to
std::ofstream to(to_file_name); // Output file stream

caesar(std::cin, to, s);

Calling the generalised caesar function: from std::cin to �le
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Caesar-Code: Generalisation, Example 3

#include <iostream>
#include <fstream>
...

// in void main():
std::string from_file_name = ...; // Name of file to read from
std::string to_file_name = ...; // Name of file to write to
std::ifstream from(from_file_name); // Input file stream
std::ofstream to(to_file_name); // Output file stream

caesar(from, to, s);

Calling the generalised caesar function: from �le to �le
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Caesar-Code: Generalisation, Example 4

#include <iostream>
#include <sstream>
...

// in void main():
std::string plaintext = "My password is 1234";
std::istringstream from(plaintext);

caesar(from, std::cout, s);

Calling the generalised caesar function: from a string to
std::cout
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Streams: Final Words

Note: You only need to be able to use streams

User knowledge, on the level of the previous slides, su�ces
for exercises and exam
I.e. you do not need to know how streams work internally
At the end of this course, you’ll hear how you can de�ne
abstract, and corresponding concrete, types yourself
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Texts

Text “to be or not to be” could be represented as
vector<char>
Texts are ubiquitous, however, and thus have their own typ
in the standard library: std::string
Requires #include <string>
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Using std::string

Declaration, and initialisation with a literal:
std::string text = "Essen ist fertig!"

Initialise with variable length:
std::string text(n, ’a’)

text is �lled with n ’a’s

Comparing texts:
if (text1 == text2) ...

true if character-wise equal
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Using std::string

Querying size:
for (unsigned int i = 0; i < text.size(); ++i) ...

Size not equal to text length if multi-byte encoding is used, e.g. UTF-8

Reading single characters:
if (text[0] == ’a’) ... // or text.at(0)

text[0] does not check index bounds, whereas text.at(0) does

Writing single characters:
text[0] = ’b’; // or text.at(0)
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Using std::string

Concatenate strings:
text = ":-";
text += ")";
assert(text == ":-)");

Many more operations; if interested, see
https://en.cppreference.com/w/cpp/string
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15. Vectors II
Multidimensional Vector/Vectors of Vectors, Shortest Paths,
Vectors as Function Arguments
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Multidimensional Vectors

For storing multidimensional structures such as tables,
matrices, . . .
. . .vectors of vectors can be used:

std::vector<std::vector<int>> m; // An empty matrix
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Multidimensional Vectors

In memory: �at
m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2]

m[0] m[1]

in our head: matrix columns

rows

0 1 2

0 m[0][0] m[0][1] m[0][2]

1 m[1][0] m[1][1] m[1][2]
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Multidimensional Vectors: Initialisation

Using initialisation lists:

// A 3-by-5 matrix
std::vector<std::vector<std::string>> m = {
{"ZH", "BE", "LU", "BS", "GE"},
{"FR", "VD", "VS", "NE", "JU"},
{"AR", "AI", "OW", "IW", "ZG"}

};

assert(m[1][2] == "VS");
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Multidimensional Vectors: Initialisation

Fill to speci�c size:

unsigned int a = ...;
unsigned int b = ...;

// An a-by-b matrix with all ones
std::vector<std::vector<int>>
m(a, std::vector<int>(b, 1));

m (type std::vector<std::vector<int>>) is a vector of length a, whose elements (type
std::vector<int>) are vectors of length b, whose Elements (type int) are all ones

(Many further ways of initialising a vector exist) 436



Multidimensional Vectors and Type Aliases

Also possible: vectors of vectors of vectors of ...:
std::vector<std::vector<std::vector<...>>>
Type names can obviously become looooooong
The declaration of a type alias helps here:

using Name = Typ;

Name that can now be used to
access the type

existing type
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Type Aliases: Example

#include <iostream>
#include <vector>
using imatrix = std::vector<std::vector<int>>;

// POST: Matrix ’m’ was output to stream ’out’
void print(const imatrix& m, std::ostream& out);

int main() {
imatrix m = ...;
print(m, std::cout);

}

Recall: const reference for en�ciency (no copy) and safety (immutable)
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Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: �nd the shortest
path of the robot from S to
T via free cells. 439



Application: shortest paths
Solution

S

T
440



This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T;
follow a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18
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This problem appears to be di�erent

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22
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Preparation: Input Format

8 12
------X-----
-XXX--X-----
--SX--------
---X---XXX--
---X---X----
---X---X----
---X---X-T--
-------X----

⇒ S

T

rows columns

start position target position

obstacle

free cell
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Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.
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Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start
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The Shortest Path Program

Read in dimensions and provide a two dimensional array
for the path lengths
#include<iostream>
#include<vector>

int main()
{

// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns

// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int» floor (n+2, std::vector<int>(m+2));

Sentinel
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The Shortest Path Program

Input the assignment of the hall and intialize the lengths
int tr = 0;
int tc = 0;
for (int r=1; r<n+1; ++r)
for (int c=1; c<m+1; ++c) {
char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;
else if (entry == ’-’) floor[r][c] = -1;

}
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Das Kürzeste-Wege-Programm

Add the surrounding walls
for (int r=0; r<n+2; ++r)

floor[r][0] = floor[r][m+1] = -2;

for (int c=0; c<m+2; ++c)
floor[0][c] = floor[n+1][c] = -2;

448



Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2
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Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != -1) continue;
if (floor[r-1][c] == i-1 || floor[r+1][c] == i-1 ||

floor[r][c-1] == i-1 || floor[r][c+1] == i-1 ) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
} 450



The Shortest Paths Program

Mark the shortest path by walking backwards from target to
start.

2int r = tr; int c = tc;2
3while (floor[r][c] > 0)3 {
4const int d = floor[r][c] - 1;4
5floor[r][c] = -3;5
6if (floor[r-1][c] == d) --r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c-1] == d) --c;
else ++c; // (floor[r][c+1] == d)

6}
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Finish

-3 -3 -3 -3 -3 -3 15 16 17 18 19

-3 9 -3 14 15 16 17 18

-3 -3 0 10 -3 -3 -3 -3 -3 -3 17

3 2 1 11 12 13 -3 18

4 3 2 10 11 12 20 -3 -3 19

5 4 3 9 10 11 21 -3 19 20

6 5 4 8 9 10 22 -3 20 21

7 6 5 6 7 8 9 23 22 21 22
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The Shortest Path Program: output

Output
for (int r=1; r<n+1; ++r) {

for (int c=1; c<m+1; ++c)
if (floor[r][c] == 0)

std::cout << ’S’;
else if (r == tr && c == tc)

std::cout << ’T’;
else if (floor[r][c] == -3)

std::cout << ’o’;
else if (floor[r][c] == -2)

std::cout << ’X’;
else

std::cout << ’-’;
std::cout << "\n";

}

⇒
ooooooX-----
oXXX-oX-----
ooSX-oooooo-
---X---XXXo-
---X---X-oo-
---X---X-o--
---X---X-T--
-------X----
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The Shortest Paths Program

Algorithm: Breadth-First Search (Breadth-�rst vs. depth-�rst
search is typically discussed in lectures on algorithms)
The program can become pretty slow because for each i all
cells are traversed
Improvement: for marking with i, traverse only the
neighbours of the cells marked with i− 1.
Improvement: stop once the goal has been reached
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16. Recursion 1
Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration, n-Queen Problem, Lindenmayer
Systems
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Mathematical Recursion

Many mathematical functions can be naturally de�ned
recursively
This means, the function appears in its own de�nition

n! =

1, if n ≤ 1
n · (n− 1)!, otherwise
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Recursion in C++: In the same Way!

n! =
1, if n ≤ 1
n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac(unsigned int n) {
if (n <= 1)

return 1;
else
return n * fac(n-1);

} 457



In�nite Recursion
is as bad as an in�nite loop . . .
. . . but even worse: it burns time and memory

void f() {
f() // f() → f() → ... → stack overflow

}

Ein Euro ist ein Euro.
Wim Duisenberg, erster Präsident der EZB
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Recursive Functions: Termination
As with loops we need guaranteed progress towards an exit
condition (≈ base case)

Example fac(n):
Recursion ends if n ≤ 1
Recursive call with new
argument < n

Exit condition will thus be
reached eventually

unsigned int fac(
unsigned int n) {

if (n <= 1)
return 1;

else
return n * fac(n-1);

}

459



Recursive Functions: Evaluation

int fac(int n) {
if (n <= 1)
return 1;

else
return n * fac(n-1);

}

...
std::cout << fac(4);

fac(4) int n = 4

↪→ fac(n - 1) int n = 3
...

Every call of fac operates on its
own n
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The Call Stack

For each function call:
push value of the call argument
onto the stack
always work with the top value
at the end of the call the top value
is removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24
fac(4)

fac(3)

fac(2)

fac(1) 1

2

6

24
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Euclidean Algorithm

�nds the greatest common divisor gcd(a, b) of two natural
numbers a and b
is based on the following mathematical recursion (proof in
the lecture notes):

gcd(a, b) =

a, if b = 0
gcd(b, a mod b), otherwise
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Euclidean Algorithm in C++

gcd(a, b) =

a, if b = 0
gcd(b, a mod b), otherwise

unsigned int gcd(unsigned int a, unsigned int b) {
if (b == 0)

return a;
else
return gcd(b, a % b);

}

Termination: a mod b < b, b thus
gets smaller in each recursive call
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Fibonacci Numbers

Fn :=



0, if n = 0
1, if n = 1
Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .
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Fibonacci Numbers in C++

Laufzeit
fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13
times,
F43 21 times . . .F1 ca. 109 times (!)

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;
return fib(n-1) + fib(n-2); // n > 1

}
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Fast Fibonacci Numbers

Idea:
Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn

Memorize the most recent two Fibonacci numbers
(variables a and b)
Compute the next number as a sum of a and b

Can be implemented recursively and iteratively, the latter is easier/more
direct
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Fast Fibonacci Numbers in C++

unsigned int fib(unsigned int n) {
if (n == 0) return 0;
if (n == 1) return 1;

unsigned int a = 0; // F_0
unsigned int b = 1; // F_1

for (unsigned int i = 2; i <= n; ++i) {
unsigned int a_old = a; // Fi−2
a = b; // a becomes Fi−1
b += a_old; // b becomes Fi−1 + Fi−2, i.e. Fi

}

return b;
}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)
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Recursion and Iteration

Recursion can always be simulated by
Iteration (loops)
explicit “call stack” (e.g. via a vector)

Often recursive formulations are simpler, but sometimes also
less e�cient.
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The Power of Recursion

Some problems appear to be hard to solve without
recursion. With recursion they become signi�cantly simpler.
Examples: The n-Queens-Problem, The towers of Hanoi,
Sudoku-Solver, Expression Parsers, Reversing In- or Output,
Searching in Trees, Divide-And-Conquer (e.g. sorting) , . . .
. . . and the 2. bonus exercise: Nonograms
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The n-Queens Problem

Provided is a n timesn
chessboard
For example n = 6
Question: is it possiblt to
position n queens such that
no two queens threaten
each other?
If yes, how many solutions
are there?
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Solution?

Try all possible placements?(
n2

n

)
possibilities. Too many!

Only ne queen per row: nn possibilities. Better – but still
too many.
Idea: don’t proceed with futile attempts, retract incorrect
moves instead⇒ Backtracking
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Solution with Backtracking

x x Second Queen in
next row (no colli-
sion)

queens

0

2

0

0
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Solution with Backtracking

x x

x x x x

All squares in
next row for-
biden. Track back
!

queens

0

2

4

0
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Solution with Backtracking

x x x Move queen one
step further and
try again

queens

0

3

0

0

473



Search Strategy Visualized as a Tree

x

x x x

x x
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Check Queen
using Queens = std::vector<unsigned int>;

// post: returns if queen in the given row is valid, i.e.
// does not share a common row, column or diagonal
// with any of the queens on rows 0 to row-1
bool valid(const Queens& queens, unsigned int row) {
unsigned int col = queens[row];
for (unsigned int r = 0; r != row; ++r) {
unsigned int c = queens[r];
if (col == c || col - row == c - r || col + row == c + r)
return false; // same column or diagonal

}
return true; // no shared column or diagonal

}
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Recursion: Find a Solution
// pre: all queens from row 0 to row-1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns if there is a valid position for queens on
// row .. queens.size(). if true is returned then the
// queens vector contains a valid configuration.
bool solve(Queens& queens, unsigned int row) {
if (row == queens.size())
return true;

for (unsigned int col = 0; col != queens.size(); ++col) {
queens[row] = col;
if (valid(queens, row) && solve(queens,row+1))

return true; // (else check next position)
}
return false; // no valid configuration found

}
476



Recursion: Count all Solutions
// pre: all queens from row 0 to row-1 are valid,
// i.e. do not share any common row, column or diagonal
// post: returns the number of valid configurations of the
// remaining queens on rows row ... queens.size()
int nSolutions(Queens& queens, unsigned int row) {
if (row == queens.size())
return 1;

int count = 0;
for (unsigned int col = 0; col != queens.size(); ++col) {
queens[row] = col;
if (valid(queens, row))
count += nSolutions(queens,row+1);

}
return count;

}
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Main Program
// pre: positions of the queens in vector queens
// post: output of the positions of the queens in a graphical way
void print(const Queens& queens);

int main() {
int n;
std::cin >> n;
Queens queens(n);
if (solve(queens,0)) {
print(queens);
std::cout << "# solutions:" << nSolutions(queens,0) << std::endl;

} else
std::cout << "no solution" << std::endl;

return 0;
}
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Lindenmayer-Systems (L-Systems)
Fractals from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid Lindenmayer
(1925–1989) to model the growth of plants.
Recursion is of course relevant for the exam, but L-Systems themselves are not
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De�nition and Example

alphabet Σ
Σ∗: �nite words over Σ
production P : Σ→ Σ∗

initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

De�nition
The triple L = (Σ, P, s0) is an L-System.
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The Language Described
Wörter w0, w1, w2, . . . ∈ Σ∗: P ( F ) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...
De�nition
P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P ( F ) P ( F )

+ +

P ( + ) P ( + )
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Turtle Graphics
Turtle with position and direction

Turtle understands 3 commands:
F : move one
step forwards X

+ : rotate by 90
degrees X

− : rotate by −90
degrees X

trace
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Draw Words!

w1 = F + F +X
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lindenmayer: Main Program
word w0 ∈ Σ∗:

int main() {
std::cout << "Maximal Recursion Depth =? ";
unsigned int n;
std::cin >> n;

std::string w = "F"; // w_0
produce(w,n);

return 0;
}

w = w0 = F
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lindenmayer: production

// POST: recursively iterate over the production of the characters
// of a word.
// When recursion limit is reached, the word is "drawn"
void produce(std::string word, int depth) {
if (depth > 0) {
for (unsigned int k = 0; k < word.length(); ++k)
produce(replace(word[k]), depth-1);

} else {
draw_word(word);

}
}

w = wi → w = wi+1

draw w = wn
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lindenmayer: replace

// POST: returns the production of c
std::string replace(const char c) {
switch (c) {
case ’F’:
return "F+F+";

default:
return std::string (1, c); // trivial production c -> c

}
}
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lindenmayer: draw

// POST: draws the turtle graphic interpretation of word
void draw_word(const std::string& word) {
for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:
turtle::forward(); // move one step forward
break;

case ’+’:
turtle::left(90); // turn counterclockwise by 90 degrees
break;

case ’-’:
turtle::right(90); // turn clockwise by 90 degrees

}
}
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The Recursion
F

F + F +

F + F + + F + F + +

produce("F+F+")

produce("F+F+")

produce("+")

produce("F+F+")

produce("+")

(Implementation above proceeds depth-�rst)
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L-Systeme: Erweiterungen

arbitrary symbols without graphical interpetation
arbitrary angles (snow�ake)
saving and restoring the state of the turtle→ plants (bush)
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17. Recursion 2
Building a Calculator, Formal Grammars, Extended Backus
Naur Form (EBNF), Parsing Expressions
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Motivation: Calculator
Goal: we build a command line calculator
Input: 3 + 5
Output: 8
Input: 3 / 5
Output: 0.6
Input: 3 + 5 * 20
Output: 103
Input: (3 + 5) * 20
Output: 160
Input: -(3 + 5) + 20
Output: 12

binary Operators +, -, *, / and numbers
�oating point arithmetic
precedences and associativities like in C++
parentheses
unary operator - 492



Naive Attempt (without Parentheses)
double lval;
std::cin >> lval;

char op;
while (std::cin >> op && op != ’=’) {

double rval;
std::cin >> rval;

if (op == ’+’)
lval += rval;

else if (op == ’*’)
lval *= rval;

else ...
}
std::cout << "Ergebnis " << lval << "\n";

Input 2 + 3 * 3 =
Result 15
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Analyzing the Problem

Input:

13 + 4 ∗ (15− 7∗ 3) =

Needs to be stored such
that evaluation can be per-
formed

This lecture is pretty much recursive.
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Analyzing the Problem

13 + 4 ∗ (15− 7 ∗ 3)

“Understanding an expression requires lookahead to
upcoming symbols!
We will store symbols elegantly using recursion.
We need a new formal tool (that is independent of C++).
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Formal Grammars

Alphabet: �nite set of symbols
Strings: �nite sequences of symbols

A formal grammar de�nes which strings are valid.

To describe the formal grammar, we use:

Extended Backus Naur Form (EBNF)
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Number
An integer is a sequence of digits. A sequence of digits ist
a digit or
a digit followed by a sequence of digits

2
2 0 1 9

unsigned_integer = digits.
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit | digit digits. alternative

terminal symbol
non-terminal symbol
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Number (non-recursive)
An integer is a sequence of digits. A sequence of digits ist
a digit, or
a digit followed by an arbitrary number of digits

2
2 0 1 9

unsigned_integer = digits.
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
digits = digit { digit }.

optional repetition 499



Number, extended

A �oating point number is
a sequence of digits, or
a sequence of digits followed by . followed by digits

Float = Digits | Digits "." Digits.
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Expressions

-(3-(4-5))*(3+4*5)/6
What do we need in a grammar?
Number , ( Expression )

-Number, -( Expression )
Factor * Factor, Factor
Factor / Factor , ...
Term + Term, Term
Term - Term, ...

Factor

Term

Expression
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The EBNF for Expressions
A factor is
a number,
an expression in parentheses or
a negated factor.

factor = unsigned_number
| "(" expression ")"
| "-" factor.

alternative
terminal symbol

non-terminal symbol
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The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "-" factor.

Implication: a factor starts with
a digit, or
with “(” , or
with "-"”. 503



The EBNF for Expressions

A term is
factor,
factor * factor, factor / factor,
factor * factor * factor, factor / factor * factor, ...
...

term = factor { "*" factor | "/" factor }.

optional repetition
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The EBNF for Expressions

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.
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Parsing

Parsing: Check if a string is valid according to the EBNF.
Parser: A program for parsing.
Useful: From the EBNF we can automatically generate a
parser:

Rules become functions
Alternatives and options become if–statements.
Nonterminial symbols on the right hand side become function
calls
Optional repetitions become while–statements
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Rules

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.
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Functions (Parser)
Expression is read from an input stream.

// POST: returns true if and only if in_stream = factor ...
// and in this case extracts factor from in_stream
bool factor (std::istream& in_stream);

// POST: returns true if and only if in_stream = term ...,
// and in this case extracts all factors from in_stream
bool term (std::istream& in_stream);

// POST: returns true if and only if in_stream = expression ...,
// and in this case extracts all terms from in_stream
bool expression (std::istream& in_stream);
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Functions (Parser with Evaluation)
Expression is read from an input stream.

// POST: extracts a factor from in_stream
// and returns its value
double factor (std::istream& in_stream);

// POST: extracts a term from in_stream
// and returns its value
double term (std::istream& in_stream);

// POST: extracts an expression from in_stream
// and returns its value
double expression (std::istream& in_stream);
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One Character Lookahead. . .
. . . to �nd the right alternative.
// POST: the next character at the stream is returned
// without being consumed. returns 0 if stream ends.
char peek (std::istream& input){
if (input.eof()) return 0; // end of stream
return input.peek(); // next character in input

}

// POST: leading whitespace characters are extracted from input
// and the first non-whitespace character on input returned
char lookahead (std::istream& input) {
input >> std::ws; // skip whitespaces
return peek(input);

} 511



Parse numbers
bool isDigit(char ch){
return ch >= ’0’ && ch <= ’9’;

}
// POST: returns an unsigned integer consumed from the stream
// number = digit {digit}.
unsigned int unsigned_number (std::istream& input){
char ch = lookahead(input);
assert(isDigit(ch));
unsigned int num = 0;
while(isDigit(ch) && input >> ch){ // read remaining digits
num = num * 10 + ch - ’0’;
ch = peek(input);

}
return num;

}

unsigned_number =digit { digit }.
digit = ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’.
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Cherry-Picking

. . . to extract the desired character.
// POST: if expected matches the next lookahead then consume it
// and return true; return false otherwise
bool consume (std::istream& in_stream, char expected)
{

if (lookahead(in_stream) == expected){
in_stream >> expected; // consume one character
return true;

}
return false;

}
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Evaluating Factors
double factor (std::istream& in_stream)
{
double value;
if (consume(in_stream, ’(’)) {
value = expression (in_stream);
consume(in_stream, ’)’);

} else if (consume(in_stream, ’-’)) {
value = -factor (in_stream);

} else {
value = unsigned_number(in_stream);

}
return value;

}

factor = "(" expression ")"
| "-" factor
| unsigned_number.
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Evaluating Terms
double term (std::istream& in_stream)
{
double value = factor (in_stream);
while(true){
if (consume(in_stream, ’*’))
value *= factor(in_stream);

else if (consume(in_stream, ’/’))
value /= factor(in_stream)

else
return value;

}
}

term = factor { "*" factor | "/" factor }.
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Evaluating Expressions
double expression (std::istream& in_stream)
{
double value = term(in_stream);
while(true){
if (consume(in_stream, ’+’))
value += term (in_stream);

else if (consume(in_stream, ’-’))
value -= term(in_stream)

else
return value;

}
}

expression = term { "+" term |"-" term }.
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Recursion!

Factor

Term

Expression
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EBNF — and it works!
EBNF (calculator.cpp, Evaluation from left to right):

factor = unsigned_number
| "(" expression ")"
| "-" factor.

term = factor { "*" factor | "/" factor }.

expression = term { "+" term |"-" term }.

std::stringstream input ("1-2-3");
std::cout << expression (input) << "\n"; // -4
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18. Structs
Rational Numbers, Struct De�nition
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Calculating with Rational Numbers

Rational numbers (Q) are of the form n

d
with n and d in Z

C++does not provide a built-in type for rational numbers

Goal

We build a C++-type for rational numbers ourselves!

521



Vision

How it could (will) look like
// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;
std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";
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A First Struct

struct rational {
int n;
int d; // INV: d != 0

};

member variable (numerator)

member variable (denominator)

Invariant: speci�es valid
value combinations (infor-
mal).

struct de�nes a new type
formal range of values: cartesian product of the value
ranges of existing types
real range of values: rational ( int× int.
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Accessing Member Variables

struct rational {
int n;
int d; // INV: d != 0

};

rational add (rational a, rational b){
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

rn

rd
:= an

ad
+ bn

bd
= an · bd + ad · bn

ad · bd 524



A First Struct: Functionality

// new type rational
struct rational {

int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}

Meaning: every object of the new type is
represented by two objects of type int the
objects are called n and d .

A struct de�nes a new type, not a variable!

member access to the int objects of a. 525



Input

// Input r
rational r;
std::cout << "Rational number r:\n";
std::cout << " numerator =? ";
std::cin >> r.n;
std::cout << " denominator =? ";
std::cin >> r.d;

// Input s the same way
rational s;
...
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Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";
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Struct De�nitions

struct T {
T1 name1 ;
T2 name2 ;
... ...
Tn namen ;
};

name of the new type (identi�er)

names of the un-
derlying types

names of themem-
ber variables

Range of Values of T: T1 × T2 × ...× Tn
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Struct De�ntions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user de�ned
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Struct De�nitions: Examples

struct extended_int {
// represents value if is_positive==true
// and -value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be di�erent
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Structs: Accessing Members

expr.namek

expression of struct-type T name of a member-variable of type T.

member access operator .

expression of type Tk ; value is
the value of the object desig-
nated by namek
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Structs: Initialization and Assignment

Default Initialization:
rational t;

Member variables of t are default-initialized
for member variables of fundamental types nothing
happens (values remain unde�ned)
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Structs: Initialization and Assignment

Initialization:
rational t = \{5, 1\};

Member variables of t are initialized with the values of the
list, according to the declaration order.
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Structs: Initialization and Assignment

Assignment:
rational s;
...
rational t = s;

The values of the member variables of s are assigned to the
member variables of t.
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Structs: Initialization and Assignment

Initialization:
rational t = add (r, s);

t.n
t.d

= add (r, s)
.n
.d ;

t is initialized with the values of add(r, s)
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Structs: Initialization and Assignment

Assignment:
rational t;
t = add (r, s);

t is default-initialized
The value of add (r, s) is assigned to t
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Structs: Initialization and Assignment

rational s;

rational t = {1,5};

rational u = t;

t = u;

rational v = add (u,t);

member variables are uninitialized

member-wise initialization:
t.n = 1, t.d = 5

member-wise copy

member-wise copy

member-wise copy
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Comparing Structs?

For each fundamental type (int, double,...) there are
comparison operators == and != , not so for structs! Why?

member-wise comparison does not make sense in general...

...otherwise we had, for example, 2
3 6=

4
6
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Structs as Function Arguments

void increment(rational dest, const rational src)
{

dest = add (dest, src); // modifies local copy only
}

Call by Value !
rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a); // no effect!
std::cout << b.n << "/" << b.d; // 1 / 2
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Structs as Function Arguments

void increment(rational & dest, const rational src)
{

dest = add (dest, src);
}

Call by Reference
rational a;
rational b;
a.d = 1; a.n = 2;
b = a;
increment (b, a);
std::cout << b.n << "/" << b.d; // 2 / 2
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User De�ned Operators

Instead of
rational t = add(r, s);

we would rather like to write
rational t = r + s;

This can be done with Operator Overloading (→ next week).
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19. Classes
Overloading Functions and Operators, Encapsulation, Classes,
Member Functions, Constructors
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Overloading Functions

Functions can be addressed by name in a scope
It is even possible to declare and to de�ned several
functions with the same name
the “correct” version is chosen according to the signature
of the function.
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Function Overloading
A function is de�ned by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // f2
int pow (int b, int e) { ... } // f3
int pow (int e) { return pow (2,e); } // f4

the compiler automatically chooses the function that �ts “best” for a
function call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4
std::cout << pow (3,3); // compiler chooses f3 544



Operator Overloading

Operators are special functions and can be overloaded
Name of the operator op:
operatorop

we already know that, for example, operator+ exists for
di�erent types
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Adding rational Numbers – Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...
const rational t = add (r, s);
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Adding rational Numbers – After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
...
const rational t = r + s;

in�x notation
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Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator- (rational a, rational b);

// POST: return value is the product of a and b
rational operator* (rational a, rational b);

// POST: return value is the quotient of a and b
// PRE: b != 0
rational operator/ (rational a, rational b);
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Unary Minus

has the same symbol as the binary minus but only one
argument:

// POST: return value is -a
rational operator- (rational a)
{

a.n = -a.n;
return a;

}
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Comparison Operators

are not built in for structs, but can be de�ned

// POST: returns true iff a == b
bool operator== (rational a, rational b)
{

return a.n * b.d == a.d * b.n;
}

2
3

= 4
6
X
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Arithmetic Assignment

We want to write
rational r;
r.n = 1; r.d = 2; // 1/2

rational s;
s.n = 1; s.d = 3; // 1/3

r += s;
std::cout << r.n << "/" << r.d; // 5/6
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Operator+= First Trial

rational operator+= (rational a, rational b)
{

a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

does not work. Why?

The expression r += s has the desired value, but because the
arguments are R-values (call by value!) it does not have the desired
e�ect of modifying r.

The result of r += s is, against the convention of C++ no L-value.
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Operator +=

rational& operator+= (rational& a, rational b)
{

a.n = a.n * b.d + a.d * b.n;
a.d *= b.d;
return a;

}

this works

The L-value a is increased by the value of b and returned as
L-value
r += s; now has the desired e�ect.
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In/Output Operators

can also be overloaded.
Before:

std::cout << "Sum is " << t.n << "/" << t.d << "\n";

After (desired):

std::cout << "Sum is " << t << "\n";
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In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out, rational r)
{

return out << r.n << "/" << r.d;
}

writes r to the output stream
and returns the stream as L-value.
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Input

// PRE: in starts with a rational number of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in, rational& r){

char c; // separating character ’/’
return in >> r.n >> c >> r.d;

}

reads r from the input stream
and returns the stream as L-value.
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Goal Attained!

// input
std::cout << "Rational number r =? ";
rational r;
std::cin >> r;

std::cout << "Rational number s =? ";
rational s;
std::cin >> s;

// computation and output
std::cout << "Sum is " << r + s << ".\n";

operator >>

operator +

operator<<
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A new Type with Functionality. . .

struct rational {
int n;
int d; // INV: d != 0

};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

}
... 558



. . . should be in a Library!

rational.h
De�nition of a struct rational
Function declarations

rational.cpp

arithmetic operators (operator+, operator+=, ...)
relational operators (operator==, operator>, ...)
in/output (operator >>, operator <<, ...)
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Thought Experiment

The three core missions of ETH:
research
education
technology transfer

We found a startup: RAT PACKr!
Selling the rational library to customers
ongoing development according to customer’s demands
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The Customer is Happy
. . . and programs busily using rational.
output as double-value (35 → 0.6)

// POST: double approximation of r
double to_double (rational r)
{
double result = r.n;
return result / r.d;

}
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The Customer Wants More
“Can we have rational numbers with an extended value
range?”
Sure, no problem, e.g.:

struct rational {
int n;
int d;

};
⇒

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};
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New Version of RAT PACKr

It sucks, nothing works any more!
What is the problem?

−3
5 is sometimes 0.6, this cannot be true!

That is your fault. Your conversion to
double is the problem, our library is
correct.

Up to now it worked, therefore the new
version is to blame!
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Liability Discussion

// POST: double approximation of r
double to_double (rational r){
double result = r.n;
return result / r.d;

}

correct using. . .

struct rational {
int n;
int d;

};

. . . not correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

r.is_positive and result.is_positive
do not appear.
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We are to Blame!!

Customer sees and uses our representation of rational
numbers (initially r.n, r.d)
When we change it (r.n, r.d, r.is_positive), the
customer’s programs do not work anymore.
No customer is willing to adapt the programs when the
version of the library changes.

⇒ RAT PACKr is history. . .
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Idea of Encapsulation (Information Hiding)

A type is uniquely de�ned by its value range and its
functionality
The representation should not be visible.
⇒ The customer is not provided with representation but
with functionality!

str.length(),
v.push_back(1),. . .
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Classes

provide the concept for encapsulation in C++
are a variant of structs
are provided in many object oriented programming
languages
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Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

only di�erence
struct: by default nothing is hidden
class : by default everything is hidden

is used instead of struct if anything at all
shall be “hidden”
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Encapsulation: public / private

class rational {
int n;
int d; // INV: d != 0

};

Application Code
rational r;
r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

Good news: r.d = 0 cannot happen
any more by accident.

Bad news: the customer cannot do
anything any more . . .

. . . and we can’t, either.
(no operator+,. . . )
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Member Functions: Declaration
class rational {
public:

// POST: return value is the numerator of this instance
int numerator () const {
return n;

}
// POST: return value is the denominator of this instance
int denominator () const {
return d;

}
private:

int n;
int d; // INV: d!= 0

};

pu
bl
ic
ar
ea

member function

member functions have ac-
cess to private data

the scope of members in a
class is the whole class, inde-
pendent of the declaration or-
der 570



Member Functions: Call

// Definition des Typs
class rational {

...
};
...
// Variable des Typs
rational r;

int n = r.numerator(); // Zaehler
int d = r.denominator(); // Nenner

member access
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Member Functions: De�nition

// POST: returns numerator of this instance
int numerator () const
{

return n;
}

A member function is called for an expression of the class. in the
function, this is the name of this implicit argument. this itself is a
pointer to it.

const refers to the instance this, i.e., it promises that the value
associated with the implicit argument cannot be changed

n is the shortcut in the member function for this->n (precise
explanation of “->” next week) 572



const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)
{ n = N;}

...
}

rational x;
x.set_numerator(10); // ok;
const rational y = x;
int n = y.numerator(); // ok;
y.set_numerator(10); // error;

The const at a member function is to promise that an
instance cannot be changed via this function.
const items can only call const member functions.
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Comparison
Roughly like this it were ...
class rational {

int n;
...

public:
int numerator () const
{

return this->n;
}

};

rational r;
...
std::cout << r.numerator();

... without member functions
struct bruch {

int n;
...

};

int numerator (const bruch& dieser)
{

return dieser.n;
}

bruch r;
..
std::cout << numerator(r);
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Member-De�nition: In-Class vs. Out-of-
Class
class rational {

int n;
...

public:
int numerator () const
{

return n;
}
....

};

No separation between
declaration and de�nition
(bad for libraries)

class rational {
int n;
...

public:
int numerator () const;
...

};

int rational::numerator () const
{
return n;

}

This also works.
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Constructors

are special member functions of a class that are named like
the class
can be overloaded like functions, i.e. can occur multiple
times with varying signature
are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.
if there is no matching constructor, the compiler emits an
error message.
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Initialisation? Constructors!

class rational
{
public:

rational (int num, int den)
: n (num), d (den)

{
assert (den != 0);

}
...
};
...
rational r (2,3); // r = 2/3

Initialization of the
member variables

function body.
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Constructors: Call

directly
rational r (1,2); \small // initialisiert r mit 1/2

indirectly (copy)
rational r = rational (1,2);
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Initialisation “rational = int”?

class rational
{
public:

rational (int num)
: n (num), d (1)

{}
...
};
...
rational r (2); // explicit initialization with 2
rational s = 2; // implicit conversion

empty function body
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The Default Constructor

class rational
{
public:

...
rational ()

: n (0), d (1)
{}

...
};
...
rational r; // r = 0

empty list of arguments

⇒ There are no uninitiatlized variables of type rational any
more! 580



Alterantively: Deleting a Default
Constructor
class rational
{
public:

...
rational () = delete;

...
};
...
rational r; // error: use of deleted function ’rational::rational()

⇒ There are no uninitiatlized variables of type rational any
more!
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User De�ned Conversions

are de�ned via constructors with exactly one argument

rational (int num)
: n (num), d (1)

{}

rational r = 2; // implizite Konversion

User de�ned conversion from int to
rational. values of type int can now
be converted to rational.
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The Default Constructor

is automatically called for declarations of the form
rational r;
is the unique constructor with empty argmument list (if
existing)
must exist, if rational r; is meant to compile
if in a struct there are no constructors at all, the default
constructor is automatically generated
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RAT PACKr Reloaded . . .

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)
{
double result = r.numerator();
return result / r.denominator();

}

We can adapt the member functions together with the
representation X
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RAT PACKr Reloaded . . .
be
fo
re

class rational {
...
private:
int n;
int d;

};

int numerator () const
{
return n;

}

af
te
r

class rational {
...
private:
unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const{
if (is_positive)
return n;

else {
int result = n;
return -result;

}
}
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RAT PACKr Reloaded ?

class rational {
...
private:
unsigned int n;
unsigned int d;
bool is_positive;

};

int numerator () const
{
if (is_positive)
return n;

else {
int result = n;
return -result;

}
}

value range of nominator and denominator like before
possible over�ow in addition
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Encapsulation still Incompleete
Customer’s point of view (rational.h):

class rational {
public:

// POST: returns numerator of *this
int numerator () const;
...

private:
// none of my business

};

We determined denominator and nominator type to be int
Solution: encapsulate not only data but alsoe types.
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Fix: “our” type rational::integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of *this
integer numerator () const;

We provide an additional type!
Determine only Functionality, e.g:

implicit conversion int→ rational::integer
function double to_double (rational::integer)
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RAT PACKr Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)
{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);

}
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Separate Declaration and De�nition
class rational {
public:

rational (int num, int denum);
using integer = long int;
integer numerator () const;
...

private:
...

};
rational::rational (int num, int den):

n (num), d (den) {}
rational::integer rational::numerator () const
{

return n;
}

rational.h

rational.cpp
class name :: member name
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20. Dynamic Data Structures I

Dynamic Memory, Addresses and Pointers, Const-Pointer
Arrays, Array-based Vectors
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Recap: vector<T>

Can be initialised with arbitrary size n
Supports various operations:
e = v[i]; // Get element
v[i] = e; // Set element
l = v.size (); // Get size
v.push_front(e); // Prepend element
v.push_back(e); // Append element
...

A vector is a dynamic data structure, whose size may
change at runtime
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Our Own Vector!

Today, we’ll implement our own vector: vec
Step 1: vec<int> (today)
Step 2: vec<T> (later, only super�cially)
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Vectors in Memory

Already known: A vector has a contiguous memory layout

Question: How to allocate a chunk of memory of arbitrary size
during runtime, i.e. dynamically?
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new for Arrays

new
T[expr]

underlying type

new-Operatortype int, value n

E�ect: new contiguous chunk of memory n elements of
type T is allocated

This chunk of memory is called an array (of length n)
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new for Arrays

p = new
T[expr]

underlying type

new-Operatortype int, value n

Value: the starting address of the memory chunk
p

Type: A pointer T* (more soon)
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Outlook: new and delete

new
T[expr]

So far: memory (local variables, function arguments) “lives”
only inside a function call
But now: memory chunk inside vector must not “die” before
the vector itself
Memory allocated with new is not automatically deallocated
(= released)
Every new must have a matching delete that releases the
memory explicitly→ in two weeks 597



new (Without Arrays)

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*
Also true here: object “lives” until deleted explicitly
(usefulness will become clearer later)
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Pointer Types

T* Pointer type for base type T

An expression of type T* is called pointer (to T)

int* p; // Pointer to an int
std::string* q; // Pointer to a std::string
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Pointer Types

T* Pointer type for base type T

A T* must actually point to a T

int* p = ...;
std::string* q = p; // compiler error!
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Pointer Types

Value of a pointer to T is the address of an object of type T

int* p = ...;
std::cout << p; // e.g. 0x7ffd89d5f7cc

int (e.g. 5) addr
addr

(e.g. 0x7ffd89d5f7cc)
p
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Address Operator

Question: How to obtain an object’s address?

1. Directly, when creating a new object via new

2. For existing objects: via the address operator &

&expr expr: l-value of type T

Value of the expression: the address of object (l-value) expr
Type of the expression: A pointer T* (of type T )
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Address Operator

int i = 5; // i initialised with 5
int* p = &i; // p initialised with address of i

5

addr
i

&i = addr

p

Next question: How to “follow” a pointer?
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Dereference Operator

Answer: by using the dereference operator *

*expr expr: r-value of type T *

Value of the expression: the value of the object located at
the address denoted by expr
Type of the expression: T
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Dereference Operator

int i = 5;
int* p = &i; // p = address of i
int j = *p; // j = 5

5

addr
i

&i = addr

p

*p = 5

j
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Address and Dereference Operator

pointer (R-value)

object (L-value)

& *
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Mnenmonic Trick

The declaration
T* p; // p is of the type “pointer to T”

can be read as
T *p; // *p is of type T

Although this is legal, we
do not write it like this!
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Null-Pointer

Special pointer value that signals that no object is pointed
to
represented b the literal nullptr (convertible to T*)

int* p = nullptr;

Cannot be dereferenced (runtime error)
Exists to avoid unde�ned behaviour
int* p; // Accessing p is undefined behaviour
int* q = nullptr; // q explicitly points nowhere
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Pointer Arithmetic: Pointer plus int

T* p = new T[n]; // p points to first array element

p p+3 p+n

Question: How to point to rear elements?→ via Pointer
arithmetic:
p yields the value of the �rst array element, *p its value
*(p + i) yields the value of the ith array element, for
0 ≤ i < n
*p is equivalent to *(p + 0)
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Pointer Arithmetic: Pointer plus int

int* p0 = new int[7]{1,2,3,4,5,6,7}; // p0 points to 1st element
int* p3 = p0 + 3; // p3 points to 4th element
*(p3 + 2) = 600; // set value of 6th element to 600
std::cout << *(p0 + 5); // output 6th element’s value (i.e. 600)

1 2 3 4 5 6 7

p0

p3

600

+ 2

+ 5
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Pointer Arithmetic: Pointer minus int

If ptr is a pointer to the element with index k in an array a
with length n
and the value of expr is an integer i, 0 ≤ k − i ≤ n,

then the expression

ptr - expr
provides a pointer to an element of a with index k − i.

a (a[n])ptr

k

i

ptr-expr
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Pointer Subtraction

If p1 and p2 point to elements of the same array a with
length n
and 0 ≤ k1, k2 ≤ n are the indices corresponding to p1 and
p2, then

p1 - p2 has value k1 - k2

Only valid if p1 and p2 point into the same array.

The pointer di�erence describes how far apart the
elements are from each other in memory
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Pointer Operators

Description Op Arity Precedence Associativity Assignment

Subscript [] 2 17 left R-value→ L-
value

Dereference * 1 16 right R-Wert→ L-
Wert

Address & 1 16 rechts L-value →
R-value

Precedences and associativities of +, -, ++ (etc.) as in Chapter 2
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Pointers are not Integers!

Addresses can be interpreted as house numbers of the memory, that is,
integers

But integer and pointer arithmetic behave di�erently.

ptr + 1 is not the next house number but the s-next, where s is the
memory requirement of an object of the type behind the pointer ptr.

Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to int*
int a = ptr; // error: invalid conversion from int* to int
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Sequential Pointer Iteration
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

p + 3

ititit ititit ititit itit

for (char* it = p;
it != p + 3;
++it) {

std::cout << *it << ’ ’; // x y z
}

it points to �rst element

Abort if end reached

Output current element: ’x’

Advance pointer element-wise
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Random Access to Arrays
char* p = new char[3]{’x’, ’y’, ’z’};

x y z

The expression *(p + i)
can also be written as p[i]
E.g. p[1] == *(p + 1) == ’y’
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Random Access to Arrays

iteration over an array via indices and random access:
char* p = new char[3]{’x’, ’y’, ’z’};

for (int i = 0; i < 3; ++i)
std::cout << p[i] << ’ ’;

But: this is less e�cient than the previously shown sequential
access via pointer iteration
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Random Access to Arrays

T* p = new T[n];

size s
of a T

Access p[i], i.e. *(p + i), “costs” computation p+ i · s
Iteration via random access (p[0], p[1], . . . ) costs one
addition and one multiplication per access
Iteration via sequentiall access (++p, ++p, . . . ) costs only one
addition per access
Sequential access is thus to be preferred for iterations
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Reading a book . . .with random access
. . .with sequential access
Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

619



Static Arrays

int* p = new int[expr] creates a dynamic array of size
expr
C++has inherited static arrays from its predecessor
language C: int a[cexpr]
Static arrays have, among others, the disadvantage that
their size cexpr must be a constant. I.e. cexpr can, e.g. be 5
or 4*3+2, but kein von der Tastatur eingelesener Wert n.
A static array variable a can be used just like a pointer
Rule of thumb: Vectors are better than dynamic arrays,
which are better than static arrays
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Arrays in Functions
C++covention: arrays (or a segment of it) are passed using
two pointers

begin end

begin: Pointer to the �rst element
end: Pointer past the last element
[begin, end) Designates the elements of the segment of
the array
[begin, end) is empty if begin == end
[begin, end) must be a valid range, i.e. a (pot. empty)
array segment
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Arrays in (mutating) Functions: fill

// PRE: [begin, end) is a valid range
// POST: Every element within [begin, end) was set to value
void fill(int* begin, int* end, int value) {
for (int* p = begin; p != end; ++p)
*p = value;

}

int* p = new int[5];
fill(p, p+5, 1); // Array at p becomes {1, 1, 1, 1, 1}
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Functions with/without E�ect

Pointers can (like references) be used for functions with
e�ect. Example: fill
But many functions don’t have an e�ect, they only read the
data
⇒ Use of const
So far, for example:
const int zero = 0;
const int& nil = zero;
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Positioning of Const

Where does the const-modi�er belong to?
const T is equivalent to T const (and can be written like this):

const int zero = ... ⇐⇒ int const zero = ...
const int& nil = ... ⇐⇒ int const& nil = ...

Both keyword orders are used in praxis
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Const and Pointers

Read the declaration from right to left

int const p1; p1 is a constant integer

int const* p2; p2 is a pointer to a constant integer

int* const p3; p3 is a constant pointer to an integer

int const* const p4; p4 is a constant pointer to a constant inte-
ger
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Non-mutating Functions: print
There are also non-mutating functions that access elements of an array
only in a read-only fashion
// PRE: [begin, end) is a valid range
// POST: The values in [begin, end) were printed
void print(

int const* const begin,
const int* const end) {

for (int const* p = begin; p != end; ++p)
std::cout << *p << ’ ’;

}

Const pointer to const int

Likewise (but di�erent keyword order)

Pointer, not const, to const int

Pointer p may itself not be const since it is mutated (++p)
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const is not absolute
The value at an address can change even if a
const-pointer stores this address.

Beispiel

int a[5];
const int* begin1 = a;
int* begin2 = a;
*begin1 = 1; // error *begin1 is const
*begin2 = 1; // ok, although *begin will be modified

const is a promise from the point of view of the
const-pointer, not an absolute guarantee

627



Wow – Palindromes!
// PRE: [begin end) is a valid range of characters
// POST: returns true if the range forms a palindrome
bool is_palindrome (const char* begin, const char* end) {
while (begin < end)
if (*(begin++) != *(--end)) return false;

return true;
}

R O T O R

begin end
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Arrays, new, Pointer: Conclusion
Arrays are contiguous chunks of memory of statically unknown size
new T[n] allocates a T -array of size n
T* p = new T[n]: pointer p points to the �rst array element
Pointer arithmetic enables accessing rear array elements
Sequentially iterating over arrays via pointers is more e�cient than
random access
new T allocates memory for (and initialises) a single T -object, and
yields a pointer to it
Pointers can point to something (not) const, and they can be (not)
const themselves
Memory allocated by new is not automatically released (more on this
soon)
Pointers and references are related, both “link” to objects in memory.
See also additional the slides pointers.pdf)
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Array-based Vector

Vectors . . . that somehow rings a
bell
Now we know how to allocate
memory chunks of arbitrary size
. . .
. . . we can implement a vector,
based on such a chunk of memory
avec – an array-based vector of
int elements
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Array-based Vector avec: Class Signature

class avec {
// Private (internal) state:
int* elements; // Pointer to first element
unsigned int count; // Number of elements

public: // Public interface:
avec(unsigned int size); // Constructor
unsigned int size() const; // Size of vector
int& operator[](int i); // Access an element
void print(std::ostream& sink) const; // Output elems.

}
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Constructor avec::avec()

avec::avec(unsigned int size)
: count(size) {

elements = new int[size];
}

Save size

Allocate memory

Side remark: vector is not initialised with a default value
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Excursion: Accessing Member Variables
avec::avec(unsigned int size): count(size) {
this->elements = new int[size];

}

elements is a member variable of our avec instance
That instance can be accessed via the pointer this
elements is a shorthand for (*this).elements
Dereferencing a pointer (*this) followed by a member
access (.elements) is such a common operation that it can
be written more concisely as this->elements
Mnemonic trick: “Follow the pointer to the member
variable”
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Function avec::size()

int avec::size() const {
return this->count;

}

Doesn’t modify the vector

Return size

Usage example:
avec v = avec(7);
assert(v.size() == 7); // ok
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Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}
Return ith element

Element access with index check:
int& avec::at(int i) const {
assert(0 <= i && i < this->count);

return this->elements[i];
}
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Function avec::operator[]

int& avec::operator[](int i) {
return this->elements[i];

}

Usage example:
avec v = avec(7);
std::cout << v[6]; // Outputs a "random" value
v[6] = 0;
std::cout << v[6]; // Outputs 0
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Function avec::operator[] is needed
twice
int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

The �rst member function is not const and returns a
non-const reference
avec v = ...; // A non-const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Modifying elements is allowed

It is called on non-const vectors
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Function avec::operator[] is needed
twice
int& avec::operator[](int i) { return elements[i]; }
const int& avec::operator[](int i) const { return elements[i]; }

The second member function is const and returns a const
reference
const avec v = ...; // A const vector
std::cout << v.get[0]; // Reading elements is allowed
v.get[0] = 123; // Compiler error: modifications are not allowed

It is called on const vectors
Also see the example attached to this
PDF
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#include <iostream>



// A simple cell class, basically a degenerated vector with just one element,

// is used to demonstrate how const and non-const getter functions can (or

// cannot) be used with const and non-const cell instances.



// Class cell, version 1

class cell_v1 {

  int value; // Private state

public:

   // A simple constructor.

  cell_v1(int v): value(v) {}

  

  // A getter (not const whatsoever).

  // For a vector, the getter would be operator[](unsigned int i).

  int& get() { return value; }

};





// // Class cell, version 2: This class is *rejected* by the compiler since its

// // getter, if accepted, would allow modifying a const cell.

// class cell_v2 {

//   int value;

// public:

//   cell_v2(int v): value(v) {}

 

//   // This getter is marked as const, and as such could be called on const cells.

//   // However, the getter returns a non-const reference, through which the

//   // const cell could be modified. To prevent this, the compiler rejects this

//   // getter.

//   int& get() const { return value; } // COMPILER ERROR

// };





// Class cell, version 3

class cell_v3 {

  int value;

public:

  cell_v3(int v): value(v) {}

  

  int& get() { return value; } // Non-const getter

  const int& get() const { return value; } // Const getter

};





int main() {

  // Using cell version 1

  cell_v1 c1{1};

  std::cout << c1.get() << '\n'; // OK: reading from the cell

  c1.get()++; // OK: modifying the non-const cell

  std::cout << c1.get() << '\n'; // OK: reading



  const cell_v1 cc1{1};

  // std::cout << cc1.get() << '\n'; // COMPILER ERROR (although only reading)

        // cc1 is const and the compiler therefore tries to find a const getter.

        // However, cell_v1 does not declare a const getter.





  // const cell_v2 cc2{1}; // const cell

  // c2.get()++; // Would modify the const cell





  // Using cell version 3

  cell_v3 c3{1};

  std::cout << c3.get() << '\n'; // OK: reading

  c3.get()++; // OK: modifying

  std::cout << c3.get() << '\n'; // OK: reading



  const cell_v3 cc3{1};

  std::cout << cc3.get() << '\n'; // OK: reading

  // cc3.get()++; // COMPILER ERROR: would modify the const cell 



  return 0;

}





Function avec::print()

Output elements using sequential access:
void avec::print(std::ostream& sink) const {
for (int* p = this->elements;

p != this->elements + this->count;
++p)

{
sink << *p << ’ ’;

}
}

Pointer to �rst element

Advance pointer element-wiseAbort iteration if
past last element

Output current element
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Function avec::print()

Finally: overload output operator:
operator<<( sink,

vec) {
vec.print(sink);
return ;

}

std::ostream& operator<<(std::ostream& sink,
const avec& vec) {

vec.print(sink);
return sink;

}

Observations:
Constant reference to vec, since unchanged
But not to sink: Outputing elements equals change
sink is returned to enable output chaining, e.g.
std::cout << v << ’\n’
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Further Functions?

class avec {
...
void push_front(int e) // Prepend e to vector
void push_back(int e) // Append e to vector
void remove(unsigned int i) // Cut out ith element
...

}

Commonalities: such operations need to change the vector’s
size
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Resizing arrays

An allocated block of memory (e.g. new int[3]) cannot be
resized later on

2 1 7

first last
Possibility:
Allocate more memory than initially necessary
Fill from inside out, with pointers to �rst and last element
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Resizing arrays

3 0 3 2 1 7 4 9 9 8

first last

But eventually, all slots will be in use
Then unavoidable: Allocate larger memory block and copy
data over
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Resizing arrays

3 0 3 2 1 7 9 9 84

first last

Deleting elements requires shifting (by copying) all preceding
or following elements

3 0 3 2 1 7 9 9 8

first last

Similar: inserting at arbitrary position
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21. Dynamic Data Structures II

Linked Lists, Vectors as Linked Lists
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Di�erent Memory Layout: Linked List

No contiguous area of memory and no random
access
Each element points to its successor
Insertion and deletion of arbitrary elements is
simple

1 5 6 3 8 8 9
pointer

⇒ Our vector can be implemented as a linked list
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Linked List: Zoom

1 5 6

element (type struct llnode)

value (type int) next (type llnode*)

struct llnode {
int value;
llnode* next;

llnode(int v, llnode* n): value(v), next(n) {} // Constructor
};
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Vector = Pointer to the First Element

1 5 6

element (type struct llnode)

value (type int) next (type llnode*)

class llvec {
llnode* head;

public: // Public interface identical to avec’s
llvec(unsigned int size);
unsigned int size() const;
...

};
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Function llvec::print()
struct llnode {
int value;
llnode* next;
...

};

void llvec::print(std::ostream& sink) const {
for (llnode* n = this->head;

n != nullptr;
n = n->next)

{
sink << n->value << ’ ’;

}
}

Pointer to �rst element
Abort if end reached
Advance pointer element-wise

Output current element
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Function llvec::print()

void llvec::print(std::ostream& sink) const {
for (llnode* n = this->head;

n != nullptr;
n = n->next)

{
sink << n->value << ’ ’; // 1 5 6

}
}

this->head n

1 5 6
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Function llvec::operator[]

Accessing ith Element is implemented similarly to print():

int& llvec::operator[](unsigned int i) {
llnode* n = this->head;

for (; 0 < i; --i)
n = n->next;

return n->value;
}

Pointer to �rst element

Step to ith element

Return ith element
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Function llvec::push_front()

Advantage llvec: Prepending elements is very easy:

void llvec::push_front(int e) {
this->head =
new llnode{e, this->head};

}

this->head

1 5 64

Attention: If the new llnode weren’t allocated dynamically, then it would
be deleted (= memory deallocated) as soon as push_front terminates
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Function llvec::llvec()

Constructor can be implemented using push_front():

llvec::llvec(unsigned int size) {
this->head = nullptr;

for (; 0 < size; --size)
this->push_front(0);

}

head initially points to nowhere

Prepend 0 size times

Use case:
llvec v = llvec(3);
std::cout << v; // 0 0 0
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Function llvec::push_back()

Simple, but ine�cient: traverse linked list to its end and
append new element
void llvec::push_back(int e) {
llnode* n = this->head;

for (; n->next != nullptr; n = n->next);

n->next =
new llnode{e, nullptr};

}

Start at �rst element ...... and go to the last
element

Append new element to
currently last
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Function llvec::push_back()

More e�cient, but also slightly more complex:
1. Second pointer, pointing to the last element: this->tail
2. Using this pointer, it is possible to append to the end directly

1 5 6 4

this->head this->tail

But: Several corner cases, e.g. vector still empty, must be
accounted for
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Function llvec::size()

Simple, but ine�cient: compute size by counting
unsigned int llvec::size() const {
unsigned int c = 0;

for (llnode* n = this->head;
n != nullptr;
n = n->next)

++c;

return c;
}

Count initially 0

Count linked-list length

Return count
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Function llvec::size()

More e�cient, but also slightly more complex: maintain size
as member variable
1. Add member variable unsigned int count to class llvec
2. this->count must now be updated each time an
operation (such as push_front) a�ects the vector’s size
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E�ciency: Arrays vs. Linked Lists
Memory: our avec requires roughly n ints (vector size n),
our llvec roughly 3n ints (a pointer typically requires 8
byte)

Runtime (with avec = std::vector, llvec = std::list):
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22. Containers, Iterators and
Algorithms

Containers, Sets, Iterators, const-Iterators, Algorithms,
Templates
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Vectors are Containers

Viewed abstractly, a vector is
1. A collection of elements
2. Plus operations on this collection

In C++, vector<T> and similar data structures are called
container
Called collections in some other languages, e.g. Java
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Container properties

Each container has certain characteristic properties
For an array-based vector, these include:

E�cient index-based access (v[i])
E�cient use of memory: Only the elements themselves require
space (plus element count)
Inserting at/removing from arbitrary index is potentially ine�cient
Looking for a speci�c element is potentially ine�cient
Can contain the same element more than once
Elements are in insertion order (ordered but not sorted)
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Containers in C++

Nearly every application requires maintaining and
manipulating arbitrarily many data records
But with di�erent requirements (e.g. only append elements,
hardly ever remove, often search elements, . . .)
That’s why C++’s standard library includes several
containers with di�erent properties, see
https://en.cppreference.com/w/cpp/container
Many more are available from 3rd-party libraries, e.g.
https://www.boost.org/doc/libs/1_68_0/doc/html/
container.html, https://github.com/abseil/abseil-cpp
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Example Container:
std::unordered_set<T>
A mathematical set is an unordered, duplicate-free
collection of elements:
{1, 2, 1} = {1, 2} = {2, 1}

In C++: std::unordered_set<T>
Properties:

Cannot contain the same element twice
Elements are not in any particular order
Does not provide index-based access (s[i] unde�ned)
E�cient “element contained?” check
E�cient insertion and removal of elements

Side remark: implemented as a hash table
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Use Case std::unordered_set<T>
Problem:
given a sequence of pairs (name, percentage) of Code
Expert submissions . . .

// Input: file submissions.txt
Friedrich 90
Schwerhoff 10
Lehner 20
Schwerhoff 11

. . . determine the submitters that achieved at least 50%
// Output
Friedrich
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Use Case std::unordered_set<T>
std::ifstream in("submissions.txt");
std::unordered_set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)
names.insert(name);

}

std::cout << "Unique submitters: "
<< names << ’\n’;

Open submissions.txt

Set of names, initially empty

Pair (name, score)

Input next pair
Record name if score suf-
�ces

Output recorded names
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Example Container: std::set<T>

Nearly equivalent to std::unordered_set<T>, but the
elements are ordered
{1, 2, 1} = {1, 2} 6= {2, 1}

Element look-up, insertion and removal are still e�cient
(better than for std::vector<T>), but less e�cient than for
std::unordered_set<T>
That’s because maintaining the order does not come for
free
Side remark: implemented as a red-black tree
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Use Case std::set<T>
std::ifstream in("submissions.txt");
std::set<std::string> names;

std::string name;
unsigned int score;

while (in >> name >> score) {
if (50 <= score)
names.insert(name);

}

std::cout << "Unique submitters: "
<< names << ’\n’;

set instead of unsorted_set . . .

. . . and the output is in
alphabetical order
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Printing Containers

Recall: avec::print() and llvec::print()
What about printing set, unordered_set, . . .?
Commonality: iterate over container elements and print
them
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Similar Functions

Lots of other useful operations can be implemented by
iterating over a container:
contains(c, e): true i� container c contains element e
min/max(c): Returns the smallest/largest element
sort(c): Sorts c’s elements
replace(c, e1, e2): Replaces each e1 in c with e2
sample(c, n): Randomly chooses n elements from c
. . .
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Recall: Iterating With Pointers
Iteration over an array:

Point to start element: p = this->arr
Access current element: *p
Check if end reached:
p == this->arr + size
Advance pointer: p = p + 1

Iteration over a linked list:
Point to start element: p = this->head
Access current element: p->value
Check if end reached: p == nullptr
Advance pointer: p = p->next
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Iterators

Iteration requires only the previously shown four operations
But their implementation depends on the container
⇒ Each C++container implements their own Iterator
Given a container c:

it = c.begin(): Iterator pointing to the �rst element
it = c.end(): Iterator pointing behind the last element
*it: Access current element
++it: Advance iterator by one element

Iterators are essentially pimped pointers
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Iterators

Iterators allow accessing di�erent containers in a uniform way:
*it, ++it, etc.
Users remain independent of the container implementation
Iterator knows how to iterate over the elements of “its” container
Users don’t need to and also shouldn’t know internal details
⇒

it
container container

it

? ? ? ? ? ? ? ? ?

container
it
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Example: Iterate over std::vector

std::vector<int> v = {1, 2, 3};

for (std::vector<int>::iterator it = v.begin();
it != v.end();
++it) {

*it = -*it;
}

std::cout << v; // -1 -2 -3

it is an iterator speci�c to std::vector<int>

it initially points to the �rst element

Abort if it reached the end
Advance it element-wise

Negate current element (e→ −e)
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Example: Iterate over std::vector

Recall: type aliases can be used to shorten often-used type
names
using ivit = std::vector<int>::iterator; // int-vector iterator

for (ivit it = v.begin();
...
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Negate as a Function

As before: passing a range (interval) to work on
void neg(std::vector<int>::iterator begin;

std::vector<int>::iterator end) {

for (std::vector<int>::iterator it = begin;
it != end;
++it) {

*it = -*it;
}

}

Negate elements in
interval [begin, end)
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Negate as a Function

As before: passing a range (interval) to work on
void neg(std::vector<int>::iterator begin;

std::vector<int>::iterator end);

// in main():
std::vector<int> v = {1, 2, 3};
neg(v.begin(), v.begin() + (v.size() / 2)); Negate �rst half
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Algorithms Library in C++
The C++standard library includes lots of useful algorithms
(functions) that work on iterator-de�ned intervals [begin,
end)
For example find, fill and sort; see also
https://en.cppreference.com/w/cpp/algorithm
Thanks to iterators, these ≥ 100 (!) algorithms can be
applied to any∗ container: the 17 (!) C++standard container,
our avec and llvec (discussed next), etc.
Without this uniform access to container elements, we
would have to duplicate lots of code

Not every algorithm can be applied to every container. It is, e.g. Not possible to sort a std::set.
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An iterator for llvec

We need:
1. An llvec-speci�c iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

2. Member functions begin() and end() for llvec to get an
iterator to the beginning and past the end, respectively
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Iterator llvec::iterator (Step 1/2)
class llvec {
...

public:
class iterator {
...

};

...
}

The iterator belongs to our vector, that’s why iterator is a
public inner class of llvec
Instances of our iterator are of type llvec::iterator
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Iterator llvec::iterator (Step 1/2)

class iterator {
llnode* node;

public:
iterator(llnode* n);
iterator& operator++();
int& operator*() const;
bool operator!=(const iterator& other) const;

};

Pointer to current vector element

Create iterator to speci�c element
Advance iterator by one element

Access current element

Compare with other iterator
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Iterator llvec::iterator (Step 1/2)
// Constructor
llvec::iterator::iterator(llnode* n): node(n) {}

// Pre-increment
llvec::iterator& llvec::iterator::operator++() {
assert(this->node != nullptr);

this->node = this->node->next;

return *this;
}

Let iterator point to n initially

Advance iterator by one element

Return reference to advanced iterator
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Iterator llvec::iterator (Step 1/2)
// Element access
int& llvec::iterator::operator*() const {
return this->node->value;

}

// Comparison: when are two iterators not equal?
bool llvec::iterator::operator!=(

const llvec::iterator& other) const
{
return this->node != other.node;

}

Access current element

this iterator di�erent from other if they
point to di�erent element
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An iterator for llvec (Repetition)

We need:
1. An llvec-speci�c iterator with at least the following
functionality:

Access current element: operator*
Advance iterator: operator++
End-reached check: operator!= (or operator==)

3
2. Member functions begin() and end() for llvec to get an
iterator to the beginning and past the end, respectively
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Iterator llvec::iterator (Step 2/2)
class llvec {
...

public:
class iterator {...};

iterator begin();
iterator end();

...
}

llvec needs member functions to issue iterators pointing to
the beginning and past the end, respectively, of the vector
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Iterator llvec::iterator (Step 2/2)

llvec::iterator llvec::begin() {
return llvec::iterator(this->head);

}

llvec::iterator llvec::end() {
return llvec::iterator(nullptr);

}

Iterator to �rst vector element

Iterator past last vector element
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Const-Iterators
In addition to iterator, every container should also
provide a const-iterator const_iterator
Const-iterators grant only read access to the underlying
Container
For example for llvec:
llvec::const_iterator llvec::cbegin() const;
llvec::const_iterator llvec::cend() const;

const int& llvec::const_iterator::operator*() const;
...

Therefore not possible (compiler error):
*(v.cbegin()) = 0 689



Const-Iterators

Const-Iterator can be used to allow only reading:
llvec v = ...;
for (llvec::const_iterator it = v.cbegin(); ...)
std::cout << *it;

It would also possible to use the non-const iterator here
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Const-Iterators

Const-Iterator must be used if the vector is const:
const llvec v = ...;
for (llvec::const_iterator it = v.cbegin(); ...)
std::cout << *it;

It is not possible to use iterator here (compiler error)
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Range-based for Loop
Sequential iteration over an llvec, using an iterator (const-iterator
possible, as are other containers):
llvec v(3); // v == {0, 0, 0}
for (llvec::iterator it = v.begin(); it != v.end(); ++it)
std::cout << *it; // 000

Can alternatively be written as follows:
for (int i : v) std::cout << i; // 000

Is then translated to an iterator-based loop.
Mutating access is possible as well:
for (int& i : v) i += 3;
for (int i : v) std::cout << i; // 369
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Type-generic Container

Type-speci�c containers Type-generic container

https://upload.wikimedia.org/wikipedia/commons/d/df/Container_01_KMJ.jpg (CC BY-SA 3.0)
P.S.: Templates are not relevant for the exam

(Type-generic containers (templates in general) aren’t relevant for the exam)
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Type-generic Container

Class cell: a simple, single-element container for int

class cell {
int element;

public:
cell(int e);
int& value();

};

cell::cell(int e)
: element(e) {}

int& cell::value() {
return this->element;

}container’s
element

Constructor stores e
in container

Access the element

Better: generic cell<E> for every element type E (analogous
to std::vector<E>)

694



Type-generic Container with Templates
Templates enable type-generic functions and classes:

template<typename E>
class cell {
E element;

public:
cell(E e);
E& value();

};

Let E an arbitrary type . . .

. . . then cell manages an ele-
ment of type E

Types can be used as parameters
Type parameters are valid in the “templated” scope 695



Type-generic Container with Templates
Signatures and implementations must be “templated”
For separately provided implementations, the class pre�x
must be written in generic form

template<typename E>
class cell {
E element;

public:
cell(E e);
E& value();

};

template<typename E>
cell<E>::cell(E e)

: element(e) {}

template<typename E>
E& cell<E>::value() {
return this->element;

}
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Type-generic Container with Templates

cell<int> c1(313);
cell<std::string> c2("terrific!")

For declarations, e.g. cell<int>, type parameters must be
provided explicitly . . .
. . . but they are inferred by the compiler everywhere else, e.g.
for c1(313), i.e. when invoking the generic constructor
cell(E e) (where type parameter E is instantiated by the
compiler with int )
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More Templates: Generic Output Operator

Goal: A generic output operator << for iterable Containers:
llvec, avec, std::vector, std::set, . . .
I.e. std::cout << c << ’\n’ should work for any such
container c
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More Templates: Generic Output Operator

Generic output operator with two type parameters
template <typename S, typename C>
S& operator<<(S& sink, const C& container);

Intuition: operator works for every out-
put stream sink of type S and every con-
tainer container of type C
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More Templates: Generic Output Operator

Generic output operator with two type parameters
template <typename S, typename C>
S& operator<<(S& sink, const C& container);

The compiler infers suitable types from the call arguments
std::set<int> s = ...;
std::cout << s << ’\n’; S = std::ostream, C = std::set<int>
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More Templates: Generic Output Operator

Implementation of << constrains S and C (Compiler errors if
not satis�ed):
template <typename S, typename C>
S& operator<<(S& sink, const C& container) {
for (typename C::const_iterator it = container.begin();

it != container.end();
++it) {

sink << *it << ’ ’;
}

return sink;
}

C must appropriate itera-
tors – with appropriate
functions
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More Templates: Generic Output Operator

Implementation of << constrains S and C (Compiler errors if
not satis�ed):
template <typename S, typename C>
S& operator<<(S& sink, const C& container) {
for (typename C::const_iterator it = container.begin();

it != container.end();
++it) {

sink << *it << ’ ’;
}

return sink;
}

S must support outputting elements
(*it) and characters (’ ’)
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Templates: Conclusion
Templates realise static code generation/static
metaprogramming in C++
Template code is copied per type instantiation. When using
cell<int> and cell<std::string>, the compiler creates
two instantiated copies of cell’s code: conceptually, the
two (no longer generic) classes cell_int and
cell_stdstring.
Templates reduce code duplication and facilitate code
reuse
Compiler errors that refer to templates are unfortunately
often even more complex than C++ errors usually already
are 703



23. Dynamic Datatypes and Memory
Management
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Problem

Last week: dynamic data type
Have allocated dynamic memory, but not released it again. In
particular: no functions to remove elements from llvec.
Today: correct memory management!
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Goal: class stack with memory
management
class stack{
public:
// post: Push an element onto the stack
void push(int value);
// pre: non-empty stack
// post: Delete top most element from the stack
void pop();
// pre: non-empty stack
// post: return value of top most element
int top() const;
// post: return if stack is empty
bool empty() const;
// post: print out the stack
void print(std::ostream& out) const;
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Recall the Linked List

1 5 6

element (type llnode)

value (type int) next (type llnode*)

struct llnode {
int value;
llnode* next;
// constructor
llnode (int v, llnode* n) : value (v), next (n) {}

};
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Stack = Pointer to the Top Element

1 5 6

element (type llnode)

value (type int) next (type llnode*)

class stack {
public:
void push (int value);
...

private:
llnode* topn;

};
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Recall the new Expression

new T(...)

underlying type

new-Operator constructor arguments

E�ect: memory for a new object of type T is allocated . . .
. . . and initialized by means of the matching constructor
Value: address of the new T object, Type: Pointer T*!
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The new Expression push(4)

E�ect: new object of type T is allocated in memory . . .
. . . and intialized by means of the matching constructor
Value: address of the new object

void stack::push(int value) {
topn = new llnode(value, topn);

}

topn

1 5 64
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The delete Expression

Objects generated with new have dynamic storage duration:
they “live” until they are explicitly deleted

delete expr
delete-Operator pointer of type T*, pointing to an ob-

ject that had been created with new.

type void

E�ect: object is deconstructed (explanation below)
... and memory is released.
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delete for Arrays

delete[] expr

delete-Operator

pointer of type T*, that
points to an array that pre-
viously had been allocated
using new

type void

E�ect: array is deleted and memory is released

712



Who is born must die. . .

Guideline “Dynamic Memory”

For each new there is a matching delete!

Non-compliance leads to memory leaks
old objects that occupy memory. . .
. . . until it is full (heap over�ow)
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Careful with new and delete!

rational* t = new rational;
rational* s = t;
delete s;
int nominator = (*t).denominator();

memory for t is allocated
other pointers may point to the same object

... and used for releaseing the object
error: memory released!

Dereferencing of „dangling pointers”
Pointer to released objects: dangling pointers
Releasing an object more than once using delete is a
similar severe error
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Stack Continued: pop()

void stack::pop(){
assert (!empty());
llnode* p = topn;
topn = topn->next;
delete p;

}

topn
p

1 5 6

reminder: shortcut for (*topn).next
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Print the Stack print()

void stack::print (std::ostream& out) const {
for(const llnode* p = topn; p != nullptr; p = p->next)
out << p->value << " "; // 1 5 6

}

topn p

1 5 6
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Output Stack: operator«

class stack {
public:

void push (int value);
void pop();
void print (std::ostream& o) const;
...

private:
llnode* topn;

};

// POST: s is written to o
std::ostream& operator<< (std::ostream& o, const stack& s){

s.print (o);
return o;

} 717



empty(), top()

bool stack::empty() const {
return top == nullptr;

}

int stack::top() const {
assert(!empty());
return topn->value;

}
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Empty Stack
class stack{
public:
stack() : topn (nullptr) {} // default constructor

void push(int value);
void pop();
void print(std::ostream& out) const;
int top() const;
bool empty() const;

private:
llnode* topn;

} 719



Zombie Elements

{
stack s1; // local variable
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

}
// s1 has died (become invalid)...

. . . but the three elements of the stack s1 continue to live
(memory leak)!
They should be released together with s1.
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The Destructor

The Destructor of class T is the unique member function
with declaration

~T ( );
is automatically called when the memory duration of a class
object ends – i.e. when delete is called on an object of type
T* or when the enclosing scope of an object of type T ends.
If no destructor is declared, it is automatically generated
and calls the destructors for the member variables
(pointers topn, no e�ect – reason for zombie elements
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Using a Destructor, it Works
// POST: the dynamic memory of *this is deleted
stack::~stack(){
while (topn != nullptr){
llnode* t = topn;
topn = t->next;
delete t;

}
}

automatically deletes all stack elements when the stack is
being released
Now our stack class seems to follow the guideline “dynamic
memory” (?)
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Stack Done? Obviously not. . .
stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!
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What has gone wrong?
s1

2 3 1

s2
Pointer to “zombie”!

...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // Oops, crash!

member-wise initialization: copies
the topn pointer only.
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The actual problem

Already this goes wrong:
{
stack s1;
s1.push(1);
stack s2 = s1;

}

When leaving the scope, both stacks are deconstructed. But
both stacks try to delete the same data, because both stacks
have access to the same pointer.
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Possible solutions

Smart-Pointers (we will not go into details here):
Count the number of pointers referring to the same objects
and delete only when that number goes down to 0
std::shared_pointer
Make sure that not more than one pointer can point to an
object: std::unique_pointer.

or:
We make a real copy of all data – as discussed below.
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We make a real copy
s1 2 3 1

s2 2 3 1
...
stack s2 = s1;
std::cout << s2 << "\n"; // 2 3 1

s1.pop ();
std::cout << s1 << "\n"; // 3 1

s2.pop (); // ok
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The Copy Constructor

The copy constructor of a class T is the unique constructor
with declaration

T ( const T& x );
is automatically called when values of type T are initialized
with values of type T

T x = t; (t of type T)
T x (t);

If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise – reason for the
problem above
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It works with a Copy Constructor

// POST: *this is initialized with a copy of s
stack::stack (const stack& s) : topn (nullptr) {
if (s.topn == nullptr) return;
topn = new llnode(s.topn->value, nullptr);
llnode* prev = topn;
for(llnode* n = s.topn->next; n != nullptr; n = n->next){
llnode* copy = new llnode(n->value, nullptr);
prev->next = copy;
prev = copy;

}
}

s.topn 2 3 1

prev

this->topn 2 3 1
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Aside: copy recursively

llnode* copy (node* that){
if (that == nullptr) return nullptr;
return new llnode(that->value, copy(that->next));

}

Elegant, isn’t it? Why did we not do it like this?
Reason: linked lists can become very long. copy could then
lead to stack over�ow6. Stack memory is usually smaller than
heap memory.

6not an over�ow of the stack that we are implementing but the call stack
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Initialization 6= Assignment!

stack s1;
s1.push (1);
s1.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = s1; // Zuweisung

s1.pop ();
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!
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The Assignment Operator

Overloading operator= as a member function
Like the copy-constructor without initializer, but
additionally

Releasing memory for the “old” value
Check for self-assignment (s1=s1) that should not have an e�ect

If there is no assignment operator declared it is
automatically generated (and assigns member-wise –
reason for the problem above
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It works with an Assignment Operator!

// POST: *this (left operand) becomes a
// copy of s (right operand)
stack& stack::operator= (const stack& s){
if (topn != s.topn){ // no self-assignment
stack copy = s; // Copy Construction
std::swap(topn, copy.topn); // now copy has the garbage!

} // copy is cleaned up -> deconstruction
return *this; // return as L-Value (convention)

}

Cooool trick!
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Done
class stack{
public:
stack(); // constructor
~stack(); // destructor
stack(const stack& s); // copy constructor
stack& operator=(const stack& s); // assignment operator

void push(int value);
void pop();
int top() const;
bool empty() const;
void print(std::ostream& out) const;

private:
llnode* topn;

} 734



Dynamic Datatype

Type that manages dynamic memory (e.g. our class for a
stack)
Minimal Functionality:

Constructors
Destructor
Copy Constructor
Assignment Operator

Rule of Three: if a class de�nes at
least one of them, it must de�ne
all three
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Trees

Trees are
Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is
a fully connected, directed, acyclic graph.
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Trees
Use
Decision trees: hierarchic representation
of decision rules
Code tress: representation of a code, e.g.
morse alphabet, hu�man code
Search trees: allow e�cient searching for
an element by value
syntax trees: parsing and traversing of
expressions, e.g. in a compiler

Trees are treated in more detail in other courses (Datastructures and Algorithms (CSE),
Algorithms and Complexity (Math Bachelor)) 737



(Expression) Trees

-(3-(4-5))*(3+4*5)/6

/

∗

−

−

3 −

4 5

+

3 ∗

4 5

6

leaf

fork

fork

bend

root

parent node (w.r.t. 3∗, ∗)

child node (w.r.t. +)

child node (w.r.t. ∗)
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Nodes: Forks, Bends or Leaves
/

∗ 6
node

node

/ ?

* ? = 6 ? ?

tnode

operatorValue left operand
right operand

?: unused
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Nodes (struct tnode)

op val left righttnode

struct tnode {
char op; // leaf node: op is ’=’

// internal node: op is ’+’, ’-’, ’*’ or ’/’
double val;
tnode* left; // == nullptr for unary minus
tnode* right;

tnode(char o, double v, tnode* l, tnode* r)
: op(o), val(v), left(l), right(r) {}

};
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Size = Count Nodes in Subtrees

∗

−

−

3 4

+

3 ∗

4 5
Size of a leave: 1
Size of other nodes: 1 + sum of child nodes’ size
E.g. size of the "+"-node is 5
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Count Nodes in Subtrees

// POST: returns the size (number of nodes) of
// the subtree with root n
int size (const tnode* n) {
if (n){ // shortcut for n != nullptr
return size(n->left) + size(n->right) + 1;

}
return 0;

}

op val left right
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Evaluate Subtrees
// POST: evaluates the subtree with root n
double eval(const tnode* n){
assert(n);
if (n->op == ’=’) return n->val;
double l = 0;
if (n->left) l = eval(n->left);
double r = eval(n->right);
switch(n->op){
case ’+’: return l+r;
case ’-’: return l-r;
case ’*’: return l*r;
case ’/’: return l/r;
default: return 0;

}
}

op unary, or left branch

leaf. . .
. . . or fork:

right branch

op val left right
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Cloning Subtrees

// POST: a copy of the subtree with root n is made
// and a pointer to its root node is returned
tnode* copy (const tnode* n) {
if (n == nullptr)
return nullptr;

return new tnode (n->op, n->val, copy(n->left), copy(n->right));
}

op val left right
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Felling Subtrees

// POST: all nodes in the subtree with root n are deleted
void clear(tnode* n) {
if(n){
clear(n->left);
clear(n->right);
delete n;

}
}

∗

−

−

3 −

4 5

+

3 ∗

4 5
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Using Expression Subtrees
// Construct a tree for 1 - (-(3 + 7))
tnode* n1 = new tnode(’=’, 3, nullptr, nullptr);
tnode* n2 = new tnode(’=’, 7, nullptr, nullptr);
tnode* n3 = new tnode(’+’, 0, n1, n2);
tnode* n4 = new tnode(’-’, 0, nullptr, n3);
tnode* n5 = new tnode(’=’, 1, nullptr, nullptr);
tnode* root = new tnode(’-’, 0, n5, n4);

// Evaluate the overall tree
std::cout << "1 - (-(3 + 7)) = " << eval(root) << ’\n’;

// Evaluate a subtree
std::cout << "3 + 7 = " << eval(n3) << ’\n’;

clear(root); // free memory 746



Planting Trees

class texpression {
public:

texpression (double d)
: root (new tnode (’=’, d, 0, 0)) {}

...
private:

tnode* root;
};

creates a tree
with one leaf
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Letting Trees Grow
texpression& texpression::operator-= (const texpression& e)
{
assert (e.root);
root = new tnode (’-’, 0, root, copy(e.root));
return *this;

}

*this

root

e

e.root

−

e’

copy(e.root)

root

*this
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Raising Trees

texpression operator- (const texpression& l,
const texpression& r){

texpression result = l;
return result -= r;

}

texpression a = 3;
texpression b = 4;
texpression c = 5;
texpression d = a-b-c;

−

−

3 4

5
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Rule of three: Clone, reproduce and cut trees

texpression::~texpression(){
clear(root);

}

texpresssion::texpression (const texpression& e)
: root(copy(e.root)) { }

texpression& texpression::operator=(const texpression& e){
if (root != e.root){
texpression cp = e;
std::swap(cp.root, root);

}
return *this;

}
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Concluded
class texpression{
public:
texpression (double d); // constructor
~texpression(); // destructor
texpression (const texpression& e); // copy constructor
texpression& operator=(const texpression& e); // assignment op
texpression operator-();
texpression& operator-=(const texpression& e);
texpression& operator+=(const texpression& e);
texpression& operator*=(const texpression& e);
texpression& operator/=(const texpression& e);
double evaluate();

private:
tnode* root;
}; 751



From values to trees!

using number_type = texpression ;

// term = factor { "*" factor | "/" factor }
number_type term (std::istream& is){
number_type value = factor (is);
while (true) {
if (consume (is, ’*’))
value *= factor (is);

else if (consume (is, ’/’))
value /= factor (is);

else
return value;

}
}

double_calculator.cpp
(expression value)
→
texpression_calculator.cpp
(expression tree) 752



Concluding Remark

In this lecture, we have intentionally refrained from
implementing member functions in the node classes of the
list or tree.7

When there is inheritace and polymorphism used, the
implementation of the functionality such as evaluate, print,
clear (etc:.) is better implemented in member functions.
In any case it is not a good idea to implement the memory
management of the composite data strcuture list or tree
within the nodes.
7Parts of the implementations are even simpler (because the case n==nullptr can be

caught more easily
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24. Subtyping, Inheritance and
Polymorphism

Expression Trees, Separation of Concerns and Modularisation,
Type Hierarchies, Virtual Functions, Dynamic Binding, Code
Reuse, Concepts of Object-Oriented Programming
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Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 * 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise di�erent nodes: literals (e.g. 2),
binary operators (e.g. +), unary operators (e.g. √ ), function
applications (e.g. cos ), etc.
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Disadvantages

Implemented via a single node type:

struct tnode {
char op; // Operator (’=’ for literals)
double val; // Literal’s value
tnode* left; // Left child (or nullptr)
tnode* right; // ...
...

};

+ ?

= 2 ? ? ∗ ?

operatorValue left operand
right operand

?: unused

Observation: tnode is the “sum” of all required nodes
(constants, addition, . . . ) ⇒ memory wastage, inelegant
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Disadvantages

Observation: tnode is the “sum” of all required nodes – and
every function must “dissect” this “sum”, e.g.:
double eval(const tnode* n) {
if (n->op == ’=’) return n->val; // n is a constant
double l = 0;
if (n->left) l = eval(n->left); // n is not a unary operator
double r = eval(n->right);
switch(n->op) {
case ’+’: return l+r; // n is an addition node
case ’*’: return l*r; // ...
...

⇒ Complex, and therefore error-prone
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Disadvantages

struct tnode {
char op;
double val;
tnode* left;
tnode* right;
...

};

double eval(const tnode* n) {
if (n->op == ’=’) return n->val;
double l = 0;
if (n->left) l = eval(n->left);
double r = eval(n->right);
switch(n->op) {
case ’+’: return l+r;
case ’*’: return l*r;
...

This code isn’t modular – we’ll change that today!
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New Concepts Today
1. Subtyping

Type hierarchy: Exp represents
general expressions, Literal etc.
are concrete expression
Every Literal etc. also is an Exp
(subtype relation)

Exp

Literal Addition Times

That’s why a Literal etc. can be used everywhere, where
an Exp is expected:
Exp* e = new Literal(132);
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New Concepts Today

2. Polymorphism and Dynamic Dispatch
A variable of static type Exp can “host” expressions of
di�erent dynamic types:
Exp* e = new Literal(2); // e is the literal 2
e = new Addition(e, e); // e is the addition 2 + 2

Executed are the member functions of the dynamic type:
Exp* e = new Literal(2);
std::cout << e->eval(); // 2

e = new Addition(e, e);
std::cout << e->eval(); // 4
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New Concepts Today
3. Inheritance

Certain functionality is shared
among type hierarchy members
E.g. computing the size (nesting
depth) of binary expressions
(Addition, Times):

1 + size(left operand) + size(right operand)
⇒ Implement functionality once,

and let subtypes inherit it

Exp

Literal Addition Times

Exp

Literal BinExp

Addition Times
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Advantages

Subtyping, inheritance and
dynamic binding enable
modularisation through
spezialisation
Inheritance enables sharing
common code across modules
⇒ avoid code duplication

Exp

Literal BinExp

Addition Times

Exp* e = new Literal(2);
std::cout << e->eval();

e = new Addition(e, e);
std::cout << e->eval(); 762



Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

Note: Today, we focus on
the new concepts (subtyp-
ing, . . . ) and ignore the or-
thogonal aspect of encap-
sulation (class, private vs.
public member variables)
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Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a
subtype of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times
is also a subtype of Exp

1derived class, child class 2base class, parent class
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Abstract Class Exp and Concrete Class
Literal
struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};
Activates dynamic dispatch Enforces implementation by

derived classes . . .

. . . that makes Exp an abstract class

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

Literal inherits from Exp . . .

. . . but is otherwise just a regular class
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Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this->val;

}
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Subtyping: A Literal is an Expression

A pointer to a subtype can be used everywhere, where a
pointer to a supertype is required:
Literal* lit = new Literal(5);
Exp* e = lit; // OK: Literal is a subtype of Exp

But not vice versa:
Exp* e = ...
Literal* lit = e; // ERROR: Exp is not a subtype of Literal
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Polymorphie: a Literal Behaves Like a
Literal
struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this->val;

}

Exp* e = new Literal(3);
std::cout << e->eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member
function to be executed
⇒ dynamic binding
Without Virtual the static
type (hier: Exp) determines
which function is executed
We won’t go into further
details
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Further Expressions: Addition and Times

struct Addition : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Addition::size() const {
return 1 + left->size()

+ right->size();
}

struct Times : public Exp {
Exp* left; // left operand
Exp* right; // right operand
...

};

int Times::size() const {
return 1 + left->size()

+ right->size();
}

Separation of concerns
Code duplication 769



Extracting Commonalities . . . : BinExp

struct BinExp : public Exp {
Exp* left;
Exp* right;

BinExp(Exp* l, Exp* r);
int size() const;

};

BinExp::BinExp(Exp* l, Exp* r): left(l), right(r) {}

int BinExp::size() const {
return 1 + this->left->size() + this->right->size();

}

Note: BinExp does not implement eval and is therefore also an abstract class, just like Exp 770



. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp* l, Exp* r);
double eval() const;

};

Addition inherits member vari-
ables (left, right) and func-
tions (size) from BinExp

Addition::Addition(Exp* l, Exp* r): BinExp(l, r) {}

double Addition::eval() const {
return
this->left->eval() +
this->right->eval();

}

Calling the super constructor
(constructor of BinExp) ini-
tialises the member variables
left and right
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. . . Inheriting Commonalities: Times

struct Times : public BinExp {
Times(Exp* l, Exp* r);
double eval() const;

};

Times::Times(Exp* l, Exp* r): BinExp(l, r) {}

double Times::eval() const {
return
this->left->eval() *
this->right->eval();

}

Observation: Additon::eval() and Times::eval() are very similar and could also be uni�ed. However, this
would require the concept of functional programming, which is outside the scope of this course.
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Further Expressions and Operations

Further expressions, as classes derived from Exp, are
possible, e.g. −, /, √ , cos, log
A former bonus exercise (included in today’s lecture
examples on Code Expert) illustrates possibilities: variables,
trigonometric functions, parsing, pretty-printing, numeric
simpli�cations, symbolic derivations, . . .
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Mission: Monolithic→ Modular X
struct tnode {
char op;
double val;
tnode* left;
tnode* right;
...

}

double eval(const tnode* n) {
if (n->op == ’=’) return n->val;
double l = 0;
if (n->left != 0) l = eval(n->left);
double r = eval(n->right);
switch(n->op) {
case ’+’: return l + r;
case ’*’: return l - r;
case ’-’: return l - r;
case ’/’: return l / r;
default:
// unknown operator
assert (false);

}
}

int size (const tnode* n) const { ... }

...

struct Literal : public Exp {
double val;
...
double eval() const {
return val;

}
};

struct Addition : public Exp {
...
double eval() const {
return left->eval() + right->eval();

}
};

struct Times : public Exp {
...
double eval() const {
return left->eval() * right->eval();

}
}

struct Cos : public Exp {
...
double eval() const {
return std::cos(argument->eval());

}
}

+
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And there is so much more . . .

Not shown/discussed:
Private inheritance (class B : public A)
Subtyping and polymorphism without pointers
Non-virtuell member functions and static dispatch
(virtual double eval())
Overriding inherited member functions and invoking
overridden implementations
Multiple inheritance
. . .
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Object-Oriented Programming

In the last 3rd of the course, several concepts of
object-oriented programming were introduced, that are brie�y
summarised on the upcoming slides.

Encapsulation (weeks 10-13):
Hide the implementation details of types (private section) from users
De�nition of an interface (public area) for accessing values and
functionality in a controlled way
Enables ensuring invariants, and the modi�cation of implementations
without a�ecting user code
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Object-Oriented Programming
Subtyping (week 14):
Type hierarchies, with super- and subtypes, can be created to model
relationships between more abstract and more specialised entities
A subtype supports at least the functionality that its supertype
supports – typically more, though, i.e. a subtype extends the interface
(public section) of its supertype
That’s why supertypes can be used anywhere, where subtypes are
required . . .
. . . and functions that can operate on more abstract type (supertypes)
can also operate on more specialised types (subtypes)
The streams introduced in week 7 form such a type hierarchy: ostream
is the abstract supertyp, ofstream etc. are specialised subtypes
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Object-Oriented Programming

Polymorphism and dynamic binding (week 14):
A pointer of static typ T1 can, at runtime, point to objects of (dynamic)
type T2, if T2 is a subtype of T1

When a virtual member function is invoked from such a pointer, the
dynamic type determines which function is invoked
I.e.: despite having the same static type, a di�erent behaviour can be
observed when accessing the common interface (member functions) of
such pointers
In combination with subtyping, this enables adding further concrete
types (streams, expressions, . . . ) to an existing system, without having to
modify the latter
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Object-Oriented Programming

Inheritance (week 14):
Derived classes inherit the functionality, i.e. the implementation of
member functions, of their parent classes
This enables sharing common code and thereby avoids code
duplication
An inherited implementation can be overridden, which allows derived
classes to behave di�erently than their parent classes (not shown in
this course)
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25. Conclusion
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Purpose and Format

Name the most important key words to each chapter.
Checklist: “does every notion make some sense for me?”
M motivating example for each chapter
C concepts that do not depend from the implementation
(language)

L language (C++): all that depends on the chosen language
E examples from the lectures
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Kapitelüberblick
1. Introduction
2. Integers
3. Booleans
4. Defensive Programming
5./6. Control Statements
7./8. Floating Point Numbers
9./10. Functions
11. Reference Types
12./13. Vectors and Strings
14./15. Recursion
16. Structs and Overloading
17. Classes
18./19. Dynamic Datastructures
20. Containers, Iterators and Algorithms
21. Dynamic Datatypes and Memory Management
22. Subtyping, Polymorphism and Inheritance 782



1. Introduction

M Euclidean algorithm
C algorithm, Turing machine, programming languages, compilation,

syntax and semantics
values and e�ects, fundamental types, literals, variables

L include directive #include <iostream>
main function int main(){...}
comments, layout // Kommentar
types, variables, L-value a , R-value a+b
expression statement b=b*b; , declaration statement int a;, return
statement return 0;
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2. Integers
M Celsius to Fahrenheit
C associativity and precedence, arity

expression trees, evaluation order
arithmetic operators
binary representation, hexadecimal numbers
signed numbers, twos complement

L arithmetic operators 9 * celsius / 5 + 32
increment / decrement expr++
arithmetic assignment expr1 += expr2
conversion int↔ unsigned int

E Celsius to Fahrenheit, equivalent resistance
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3. Booleans

C Boolean functions, completeness
DeMorgan rules

L the type bool
logical operators a && !b
relational operators x < y
precedences 7 + x < y && y != 3 * z
short circuit evaluation x != 0 && z / x > y
the assert-statement, #include <cassert>

E Div-Mod identity.
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4. De�nsive Programming

C Assertions and Constants
L The assert-statement, #include <cassert>

const int speed_of_light=2999792458

E Assertions for the GCD
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5./6. Control Statements
M linear control �ow vs. interesting programs
C selection statements, iteration statements

(avoiding) endless loops, halting problem
Visibility and scopes, automatic memory
equivalence of iteration statement

L if statements if (a % 2 == 0) {..}
for statements for (unsigned int i = 1; i <= n; ++i) ...
while and do-statements while (n > 1) {...}
blocks and branches if (a < 0) continue;
Switch statement switch(grade) {case 6: }

E sum computation (Gauss), prime number tests, Collatz sequence,
Fibonacci numbers, calculator, output grades

787



7./8. Floating Point Numbers

M correct computation: Celsius / Fahrenheit
C �xpoint vs. �oating point

holes in the value range
compute using �oating point numbers
�oating point number systems, normalisation, IEEE standard 754
guidelines for computing with �oating point numbers

L types float, double
�oating point literals 1.23e-7f

E Celsius/Fahrenheit, Euler, Harmonic Numbers
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9./10. Functions
M Computation of Powers
C Encapsulation of Functionality

functions, formal arguments, arguments
scope, forward declarations
procedural programming, modularization, separate compilation
Stepwise Re�nement

L declaration and de�nition of functions
double pow(double b, int e){ ... }
function call pow (2.0, -2)
the type void

E powers, perfect numbers, minimum, calendar
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11. Reference Types

M Swap
C value- / reference- semantics, pass by value, pass by reference,

return by reference
lifetime of objects / temporary objects
constants

L reference type int& a
call by reference, return by reference int& increment (int& i)
const guideline, const references, reference guideline

E swap, increment
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12./13. Vectors and Strings
M Iterate over data: sieve of erathosthenes
C vectors, memory layout, random access

(missing) bound checks
vectors
characters: ASCII, UTF8, texts, strings

L vector types std::vector<int> a {4,3,5,2,1};
characters and texts, the type char char c = ’a’;, Konversion nach
int
vectors of vectors
Streams std::istream, std::ostream

E sieve of Erathosthenes, Caesar-code, shortest paths
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14./15. Recursion

M recursive math. functions, the n-Queen problem, Lindenmayer
systems, a command line calculator

C recursion
call stack, memory of recursion
correctness, termination,
recursion vs. iteration
Backtracking, EBNF, formal grammars, parsing

E factorial, GCD, sudoku-solver, command line calcoulator
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16. Structs and Overloading

M build your own rational number
C heterogeneous data types

function and operator overloading
encapsulation of data

L struct de�nition struct rational {int n; int d;};
member access result.n = a.n * b.d + a.d * b.n;
initialization and assignment,
function overloading pow(2) vs. pow(3,3);, operator overloading

E rational numbers, complex numbers
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17. Classes

M rational numbers with encapsulation
C Encapsulation, Construction, Member Functions
L classes class rational { ... };

access control public: / private:
member functions int rational::denominator () const
The implicit argument of the member functions

E �nite rings, complex numbers
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18./19. Dynamic Datastructures

M Our own vector
C linked list, allocation, deallocation, dynamic data type
L The new statement

pointer int* x;, Null-pointer nullptr.
address and derference operator int *ip = &i; int j = *ip;
pointer and const const int *a;

E linked list, stack
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20. Containers, Iterators and Algorithms

M vectors are containers
C iteration with pointers

containers and iterators
algorithms

L Iterators std::vector<int>::iterator
Algorithms of the standard library std::fill (a, a+5, 1);
implement an iterator
iterators and const

E output a vector, a set
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21. Dynamic Datatypes and Memory Management

M Stack
Expression Tree

C Guideline ”dynamic memory“
Pointer sharing
Dynamic Datatype
Tree-Structure

L new and delete
Destructor stack::~stack()
Copy-Constructor stack::stack(const stack& s)
Assignment operator
stack& stack::operator=(const stack& s)
Rule of Three

E Binary Search Tree 797



22. Subtyping, Polymorphism and
Inheritance
M extend and generalize expression trees
C Subtyping

polymorphism and dynamic binding
Inheritance

L base class struct Exp{}
derived class struct BinExp: public Exp{}
abstract class struct Exp{virtual int size() const = 0...}
polymorphie virtual double eval()

E expression node and extensions

798



The End

End of the Course
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