
Informatik - AS19

Exercise 10: Struct and Operators
Handout: 18. Nov. 2019 06:00

Due: 25. Nov. 2019 18:00

Task 1: Finite Rings
Open Task

Task
Complete type int_7 for computing with integers modulo 7:

struct int_7 {
unsigned int value;

};

Mathematically, this corresponds to the �nite ring of residue classes
modulo . Addition and subtraction operations work according to the following
table which also de�nes subtraction: is the unique number such
that .

+ | 0 1 2 3 4 5 6
--+--------------
0 | 0 1 2 3 4 5 6
1 | 1 2 3 4 5 6 0
2 | 2 3 4 5 6 0 1
3 | 3 4 5 6 0 1 2
4 | 4 5 6 0 1 2 3
5 | 5 6 0 1 2 3 4
6 | 6 0 1 2 3 4 5

Multiplication in works according to the following table:

* | 0 1 2 3 4 5 6
--+--------------
0 | 0 0 0 0 0 0 0
1 | 0 1 2 3 4 5 6
2 | 0 2 4 6 1 3 5

Z7 = Z/7Z
7

x − y z ∈ 0, . . . , 6
x = y + z

Z7

Exercise 10: Struct and Operators - Print View -... https://expert.ethz.ch/print/ifme1/AS19/ZaZue2...

1 iš 3 2019-11-19 16:44

3 | 0 3 6 2 5 1 4
4 | 0 4 1 5 2 6 3
5 | 0 5 3 1 6 4 2
6 | 0 6 5 4 3 2 1

The task consists in �ve parts:

1. Specify the invariant (allowed values) for member variable "value", as a
comment in �le finite_ring.h. Do not change anything but comments in
that �le.

2. Complete operation from_int, which turns an unsigned integer into its
residue class (in �le finite_ring.cpp).

3. Complete the addition operation (in �le finite_ring.cpp).

4. Complete the subtraction operation (in �le finite_ring.cpp).

5. Complete the multiplication operation (in �le finite_ring.cpp).

Task 2a: Complex Numbers
Open Task

Task
Create your own data type for complex numbers that can be used as a drop-in
replacement for double. The de�nition of the data type must be in �le complex.h,
the forward declarations of operators in �le complex.has well, while the
implementation of operators must be in �le complex.cpp.

1. De�ne a struct named Complex that represents a complex number in the
cartesian form. As data type use �oating point numbers with double
precision.

2. Implement input and output (>>, <<) operators for reading and writing of
complex numbers.

A complex number is represented in the format [x,y], where x and
y follows the format of �oating point numbers with double precision.

E.g., represents . Important: No spaces.

You can assume that all input data is correct, and thus the input operation
does not require error handling. (Advanced) If you want you can enable error
handling on stream level by setting the failbit on the input stream in case the
input is not a valid complex number.

(x ± yi)

[−2, 5] (−2 + 5i)

Exercise 10: Struct and Operators - Print View -... https://expert.ethz.ch/print/ifme1/AS19/ZaZue2...

2 iš 3 2019-11-19 16:44

3. Implement arithmetic operators for addition, subtraction, multiplication, and
division (, , ,) of complex numbers. For that task, you may assume that
division will never be called with a complex whose half square modulus is
lower than the smallest positive number representable as �oating-point. In
particular, you do not need to treat the case of division by zero.

4. Implement the negation operator () of complex numbers.

5. Implement comparison operators for equality and inequality (,) of
complex numbers.

Task 2b: Calculator For complex numbers
Open Task

Task:

Extend the calculator presented in the lecture with the ability to process complex
numbers by using your own data type Complex as a drop-in replacement for
double.

In the programming environment, you �nd the C++ source of the calculator for
double values as �le calculator_double.txt. Copy the contents of this �le to
main.cpp, add your datatype Complex from sub task a) in �les complex.{h|cpp},
and modify main.cpp to support complex numbers. Remember, your datatype
Complex is supposed to be a drop-in replacement for double.

The method in which we read doubles has been simpli�ed in order to make the
code easier to adapt to new datatypes.

+ − ∗ /

−

== ! =

Exercise 10: Struct and Operators - Print View -... https://expert.ethz.ch/print/ifme1/AS19/ZaZue2...

3 iš 3 2019-11-19 16:44

