3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

139

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

Oor 1

m (O corresponds to “false”
m 7 corresponds to “true”

141

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even";
else
std::cout << "odd";

Behavior depends on the value of a Boolean expression

The Type bool in C++

m represents logical values
m Literals false and true
m Domain {false, true}

bool b = true; // Variable with value true

140

142

Relational Operators

a < b (smaller than)
a >= b (greater than)
a ==Db (equals)

a !=b (notequal)

arithmetic type x arithmetic type — bool

R-value x R-value — R-value

Boolean Functions in Mathematics

m Boolean function

f:{0,1}* = {0,1}

m (corresponds to “false”.
m 1 corresponds to “true”.

Table of Relational Operators

H Symbol ‘ Arity ‘ Precedence | Associativity

smaller < 2 11 left
greater > 2 11 left
smaller equal <= 2 11 left
greater equal >= 2 11 left
equal == 2 10 left
unequal 1= 2 10 left
arithmetic type x arithmetic type — bool
R-value x R-value — R-value
AND(z, y) T
m “logical And” T AND(z
0 0
f:{0,1} = {0,1}
01 0
[| 110 0
= 101 1

146

Logical Operator && OR(z,y)

m “logical Or” x OR(x,y)
a & b (logical and) 00102 s £0.1 010 0
£ {015 = {0,1) PR
bool X bool — bool n 110 1
R-value x R-value — R-value u 11 1
int n = —1;
int p = 3;
bool b = (n < 0) & (0 < p); // b = true
Logical Operator | | NOT(x)
m “logical Not”
. NOT
allb (logical or) f:{0,1} — {0,1} z])
[] 1 0
bool X bool — bool

R-value x R-value — R-value

int n = 1;
int p = 0;
bool b= (n<0) || (0<p); // b= false

149

Logical Operator !

b (logical not)

bool — bool

R-value — R-value

int n = 1;
bool b = I(n < 0); // b = true

Table of Logical Operators

H Symbol

Arity | Precedence | Associativity
Logical and (AND) && 2 6 left
Logical or (OR) Il 2 5 left
Logical not (NOT) ! 1 16 right

Precedences

b & a

0

('b) && a

a& b || c & d

I

(a & b) || (c && d)

all b &&

]

all (b& c) |l d

c |l d

Precedences

The unary logical operator !
binds more strongly than
binary arithmetic operators. These
bind more strongly than
relational operators,
and these bind more strongly than
binary logical operators.

7+x<y&&y!=3*xz || !Db
7+x<y&&y!'!'=3xz]|| (Ib)

Completeness Completeness: XOR(z, y) TPy

x XOR(z,y)
m AND, OR and NOT are the boolean
’ 0|0 0 —
functions available in C++-. .y 1 XOR(z,y) = AND(OR(z,y), NOT(AND(z,))).
m Any other binary boolean function can
be generated from them. 110 1 r®y=(xVy)A(zAy).
1)1 0
Il y) & '(x & y)
Completeness Proof Completeness Proof
m Identify binary boolean functions with their characteristic vector. m Step 1: generate the fundamental functions fooo1, foor0s fo100, f1000
x|y | XOR(x,y) foor = AND(z, y)
0/0 0 characteristic vector: 0110 foor0 = AND(x NOT(y))
0|1 1
110 1 XOR = f0110 fUlOO - AND(NOT(I))
111 0 flOOO = NOT(())

Completeness Proof

m Step 2: generate all functions by applying logical or

Ji101 = OR(f1000, OR(fo100, fooo1))

m Step 3: generate fyooo

foooo = 0.

DeMorgan Rules

m !(a && b)
m!(all b)

(ta || !b)
(la && 'b)

! (rich and beautiful) == (poor or ugly) |

bool vs int: Conversion

bool

int

®m bool can be used whenever int is expected | frue

— and vice versa.

m Many existing programs use int instead of

bool

This is bad style originating from the

language C'.

false

1
0

int

bool

£0
0

N
—
—
—
RN

%

true

false

bool b = 3; // b=true

Application: either ... or (XOR)

x Il y & ' (x && y)

Il y & (Ix || ty)

1 (1x && 'y) && '(x && y)

1(1x && 'y || x && y)

X ory, and not both

x ory, and one of them not

not none and not both

not: both or none

160

162

Short circuit Evaluation

m Logical operators && and | | evaluate the left operand first.
m If the result is then known, the right operand will not be evaluated.

x!1=0&& z/ x>y J

= No division by 0

Sources of Errors

m Errors that the compiler can find:
syntactical and some semantical errors

m Errors that the compiler cannot find:
runtime errors (always semantical)

4. Defensive Programming

Constants and Assertions

The Compiler as Your Friend: Constants

Constants

m are variables with immutable value
const int speed_of_light = 299792458;

m Usage: const before the definition

164

166

The Compiler as Your Friend: Constants

m Compiler checks that the const-promise is kept

const int speed_of_light = 299792458; I

speed_of_light = 300000000;

compiler: error j

m Tool to avoid errors: constants guarantee the promise :“value
does not change”

The const-guideline

const-guideline

For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a
constant.

A program that adheres to this guideline is called const-correct.

169

Constants: Variables behind Glass

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

> It's not a bug, it’s a feature! <«

2. Check at many places in the code if the program is still on track

3. Question the (seemingly) obvious, there could be a typo in the
code

168

170

Against Runtime Errors: Assertions

assert (expr)

m halts the program if the boolean expression expr is false
B requires #include <cassert>
m can be switched off (potential performance gain)

171

Assertions for the gcd(z,)

... and question the obvious! ...

assert(x > 0 && y > 0) ;——NEEelelgR R ReIs e o] [aloNeleyy o i) =tilo]y

. // Compute gcd(x,y), store result in variable a

Properties of the
gcd

173

assert (a >= 1);

assert (x b a==0%& y % a ==20);

for (int i = a+l; i <= x && i <= y; ++i)
assert(!(x % i==0& y % i == 0));

Assertions for the gcd(z,)

Check if the program is on track ...

// Input x and y
std::cout << "x =7 ";
std::cin >> x;
std::cout << "y =7 ";
std::cin >> y;

Input arguments for calcula-
tion

// Check validity of inputs

assert(x > 0 && y > 0); «—NEEEeleilelRIEGIEReTeellloNelolp oIV Eilo]y

. // Compute gcd(x,y), store result in variable a

172

Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

assert(x > 0 && y > 0); // Ignored
.. // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored

174

Fail-Fast with Assertions

m Real software: many C++
files, complex control flow

m Errors surface late(r) —
impedes error localisation

m Assertions: Detect errors

early

Control Flow

m Up to now: linear (from top to bottom)
m Interesting programs require “branches” and “jumps”

0

1

2

3

4

5

6

7

8

[8]
—L

9]

—R

L =07
stop

R >L?
springe
zu 6

L-R
-8

springe
zu0

R—L
=9

springe
zu 0

b

a

175

177

5. Control Structures |

Selection Statements, lteration Statements, Termination, Blocks

Selection Statements

implement branches

m if statement

m if-else statement

176

178

i f-Statement

if (condition)
statement

int a;

std::cin >> a;

if (a % 2 == 0)
std::cout << "even'";

Layout!

int a;
std::cin >> a;
if (a % 2 ==0)
std::cout << "even'";
else
std::cout << "odd";

If condition is true then state-
ment is executed

m statement: arbitrary
statement (body of the
if-Statement)

m condition: convertible to
bool

Indentation

AN

Indentation

if-else-statement

if (condition)
Statement1

else
Statement2

int a;
std::cin >> a;
if (a % 2 == 0)
std::cout << "even'";
else
std: :cout << "odd";

lteration Statements

implement “loops”

m for-statement
B while-statement
B do-statement

If condition is true then state-
ment1 is executed, otherwise
statement?2 is executed.

B condition: convertible to
bool.

m statement1: body of the
if-branch

m statement2: body of the
else-branch

180

182

Compute 1 +2+ ... +n

// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

#include <iostream>

int main()
{
// input
std::cout << "Compute the sum 1+...+n for n =? ";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}“n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i) s += i;

// output
std::cout << "1l+4...4+" << n << " =" << s << " \n";
return O;

f or-Statement: Syntax

for (init statement; condition; expression)
body statement

m /nit statement. expression statement, declaration statement, null
statement

m condition: convertible to bool
B expression: any expression
m body statement: any statement (body of the for-statement)

f or-Statement Example

for (unsigned int i=1; i <= n; ++i)
s += i;

Assumptions:n == 2, s == 0
i
i==1 wahr s ==1
i==2 wahr s == 3
i== falsch

s == 3

f or-Statement: semantics

for (init statement condition ; expression)
Statement

m init-statement is executed
m condition is evaluated

B true: lteration starts
statement is executed
expression is executed

m false: for-statement is ended.

GauB as a Child (1777 - 1855)

m Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100! |

m Gauf finished after one minute.

f or-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += 1i;

Here and in most cases:

m expression changes its value that appears in condition .

m After a finite number of iterations condition becomes false:
Termination

The Solution of GauB3

m The requested number is

I1+2+3+---+98+99 + 100.

m This is half of

1+ 2+ - + 99 + 100
+ 100 + 99 + -+ 2 + 1

= 101 + 101 + --- + 101 + 101

m Answer: 100 - 101/2 = 5050

Infinite Loops

m Infinite loops are easy to generate:

for (; ;) ;

m Die empty condition is true.
m Die empty expression has no effect.
m Die null statement has no effect.
m ... but can in general not be automatically detected.

for (unit; cond; expr) stmt;

190

Halting Problem

Undecidability of the Halting Problem

There is no C++ program that can determine for each
C+-+-Program P and each input I if the program P terminates with
the input 1.

This means that the correctness of programs can in general not be
automatically checked.*

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing

machine.
191

Example: Termination

unsigned int d;
for (d=2; nJ%d '= 0; ++d); // for n >= 2

m Progress: Initial value d=2, then plus 1 in every iteration (++d)

m Exit: n%d '= 0 evaluatesto false as soon as a divisor is found
— at the latest,once d == n

m Progress guarantees that the exit condition will be reached

193

Example: Prime Number Test

Def.: a natural number n > 2 is a prime number, if no
de{2,...,n— 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n¥%d != 0; ++d);

Example: Correctness

unsigned int d;
for (d=2; nJ%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

192

194

Blocks

m Blocks group a number of statements to a new statement
{statementl statement2 ... statementN}

m Example: body of the main function

int main() {

}

m Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += ij;
std::cout << "partial sum is " << s << "\n";

}

195

