
3. Logical Values

Boolean Functions; the Type bool; logical and relational operators;
shortcut evaluation

139

Our Goal

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Behavior depends on the value of a Boolean expression

140

Boolean Values in Mathematics

Boolean expressions can take on one of two values:

0 or 1

0 corresponds to “false”
1 corresponds to “true”

141

The Type bool in C++

represents logical values
Literals false and true
Domain {false, true}

bool b = true; // Variable with value true

142

Relational Operators

a < b (smaller than)
a >= b (greater than)

a == b (equals)
a != b (not equal)

arithmetic type × arithmetic type→ bool
R-value × R-value→ R-value

143

Table of Relational Operators

Symbol Arity Precedence Associativity

smaller < 2 11 left

greater > 2 11 left

smaller equal <= 2 11 left

greater equal >= 2 11 left

equal == 2 10 left

unequal != 2 10 left

arithmetic type × arithmetic type→ bool
R-value × R-value→ R-value

144

Boolean Functions in Mathematics
Boolean function

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

145

AND(x, y) x ∧ y

“logical And”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y AND(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

146

Logical Operator &&

a && b (logical and)

bool × bool→ bool
R-value × R-value→ R-value

int n = −1;
int p = 3;
bool b = (n < 0) && (0 < p); // b = true

147

OR(x, y) x ∨ y

“logical Or”

f : {0, 1}2 → {0, 1}

0 corresponds to “false”.
1 corresponds to “true”.

x y OR(x, y)

0 0 0

0 1 1

1 0 1

1 1 1

148

Logical Operator ||

a || b (logical or)

bool × bool→ bool
R-value × R-value→ R-value

int n = 1;
int p = 0;
bool b = (n < 0) || (0 < p); // b = false

149

NOT(x) ¬x
“logical Not”

f : {0, 1} → {0, 1}

0 corresponds to “false”.
1corresponds to “true”.

x NOT(x)

0 1

1 0

150

Logical Operator !

!b (logical not)

bool→ bool
R-value→ R-value

int n = 1;
bool b = !(n < 0); // b = true

151

Precedences

!b && a
m

(!b) && a

a && b || c && d
m

(a && b) || (c && d)

a || b && c || d
m

a || (b && c) || d
152

Table of Logical Operators

Symbol Arity Precedence Associativity

Logical and (AND) && 2 6 left

Logical or (OR) || 2 5 left

Logical not (NOT) ! 1 16 right

153

Precedences
The unary logical operator !

binds more strongly than

binary arithmetic operators. These

bind more strongly than

relational operators,

and these bind more strongly than

binary logical operators.

7 + x < y && y != 3 * z || ! b
7 + x < y && y != 3 * z || (!b)

Some parentheses on the previous slides were actually redundant.

154

Completeness

AND, OR and NOT are the boolean
functions available in C++.
Any other binary boolean function can
be generated from them.

x y XOR(x, y)

0 0 0

0 1 1

1 0 1

1 1 0

155

Completeness: XOR(x, y) x⊕ y

XOR(x, y) = AND(OR(x, y),NOT(AND(x, y))).

x⊕ y = (x ∨ y) ∧ ¬(x ∧ y).

(x || y) && !(x && y)

156

Completeness Proof

Identify binary boolean functions with their characteristic vector.

x y XOR(x, y)
0 0 0
0 1 1
1 0 1
1 1 0

characteristic vector: 0110

XOR = f0110

157

Completeness Proof

Step 1: generate the fundamental functions f0001, f0010, f0100, f1000

f0001 = AND(x, y)

f0010 = AND(x,NOT(y))

f0100 = AND(y,NOT(x))

f1000 = NOT(OR(x, y))

158

Completeness Proof

Step 2: generate all functions by applying logical or

f1101 = OR(f1000,OR(f0100, f0001))

Step 3: generate f0000

f0000 = 0.

159

bool vs int: Conversion

bool can be used whenever int is expected
– and vice versa.
Many existing programs use int instead of
bool
This is bad style originating from the
language C .

bool → int

true → 1

false → 0

int → bool

6=0 → true

0 → false

bool b = 3; // b=true

160

DeMorgan Rules

!(a && b) == (!a || !b)
!(a || b) == (!a && !b)

! (rich and beautiful) == (poor or ugly)

161

Application: either ... or (XOR)

(x || y) && !(x && y) x or y, and not both

(x || y) && (!x || !y) x or y, and one of them not

!(!x && !y) && !(x && y) not none and not both

!(!x && !y || x && y) not: both or none

162

Short circuit Evaluation

Logical operators && and || evaluate the left operand first.
If the result is then known, the right operand will not be evaluated.

x != 0 && z / x > y

⇒ No division by 0

163

4. Defensive Programming

Constants and Assertions

164

Sources of Errors

Errors that the compiler can find:
syntactical and some semantical errors
Errors that the compiler cannot find:
runtime errors (always semantical)

165

The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;
Usage: const before the definition

166

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”

167

Constants: Variables behind Glass

168

The const-guideline

const-guideline
For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a
constant.

A program that adheres to this guideline is called const-correct.

169

Avoid Sources of Bugs

1. Exact knowledge of the wanted program behavior

� It’s not a bug, it’s a feature! �
2. Check at many places in the code if the program is still on track
3. Question the (seemingly) obvious, there could be a typo in the

code

170

Against Runtime Errors: Assertions

assert(expr)

halts the program if the boolean expression expr is false
requires #include <cassert>
can be switched off (potential performance gain)

171

Assertions for the gcd(x, y)
Check if the program is on track . . .
// Input x and y
std::cout << "x =? ";
std::cin >> x;
std::cout << "y =? ";
std::cin >> y;

// Check validity of inputs
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

Input arguments for calcula-
tion

Precondition for the ongoing computation

172

Assertions for the gcd(x, y)
... and question the obvious! . . .

...
assert(x > 0 && y > 0);

... // Compute gcd(x,y), store result in variable a

assert (a >= 1);
assert (x % a == 0 && y % a == 0);
for (int i = a+1; i <= x && i <= y; ++i)

assert(!(x % i == 0 && y % i == 0));

Precondition for the ongoing computation

Properties of the
gcd

173

Switch off Assertions

#define NDEBUG // To ignore assertions
#include<cassert>

...
assert(x > 0 && y > 0); // Ignored

... // Compute gcd(x,y), store result in variable a

assert(a >= 1); // Ignored
...

174

Fail-Fast with Assertions

Real software: many C++
files, complex control flow
Errors surface late(r)→
impedes error localisation
Assertions: Detect errors
early

🕱🕱

175

5. Control Structures I

Selection Statements, Iteration Statements, Termination, Blocks

176

Control Flow

Up to now: linear (from top to bottom)
Interesting programs require “branches” and “jumps”

177

Selection Statements

implement branches

if statement

if-else statement

178

if-Statement

if (condition)
statement

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";

If condition is true then state-
ment is executed

statement: arbitrary
statement (body of the
if-Statement)
condition: convertible to
bool

179

if-else-statement
if (condition)

statement1
else

statement2

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

If condition is true then state-
ment1 is executed, otherwise
statement2 is executed.

condition: convertible to
bool.
statement1: body of the
if-branch
statement2: body of the
else-branch

180

Layout!

int a;
std::cin >> a;
if (a % 2 == 0)

std::cout << "even";
else

std::cout << "odd";

Indentation

Indentation

181

Iteration Statements

implement “loops”

for-statement
while-statement
do-statement

182

Compute 1 + 2 + ... + n
// Program: sum_n.cpp
// Compute the sum of the first n natural numbers.

#include <iostream>

int main()
{

// input
std::cout << "Compute the sum 1+...+n for n =? ";
unsigned int n;
std::cin >> n;

// computation of sum_{i=1}^n i
unsigned int s = 0;
for (unsigned int i = 1; i <= n; ++i) s += i;

// output
std::cout << "1+...+" << n << " = " << s << ".\n";
return 0;

}

183

for-Statement Example
for (unsigned int i=1; i <= n ; ++i)

s += i;

Assumptions: n == 2, s == 0

i s
i==1 wahr s == 1
i==2 wahr s == 3
i==3 falsch

s == 3

184

for-Statement: Syntax

for (init statement; condition; expression)
body statement

init statement: expression statement, declaration statement, null
statement
condition: convertible to bool
expression: any expression
body statement: any statement (body of the for-statement)

185

for-Statement: semantics

for (init statement condition ; expression)
statement

init-statement is executed
condition is evaluated

true: Iteration starts
statement is executed
expression is executed

false: for-statement is ended.

186

Gauß as a Child (1777 - 1855)

Math-teacher wanted to keep the pupils busy with the following
task:

Compute the sum of numbers from 1 to 100!

Gauß finished after one minute.

187

The Solution of Gauß

The requested number is

1 + 2 + 3 + · · ·+ 98 + 99 + 100.

This is half of

1 + 2 + · · · + 99 + 100
+ 100 + 99 + · · · + 2 + 1
= 101 + 101 + · · · + 101 + 101

Answer: 100 · 101/2 = 5050
188

for-Statement: Termination

for (unsigned int i = 1; i <= n; ++i)
s += i;

Here and in most cases:

expression changes its value that appears in condition .
After a finite number of iterations condition becomes false:
Termination

189

Infinite Loops

Infinite loops are easy to generate:

for (; ;) ;

Die empty condition is true.
Die empty expression has no effect.
Die null statement has no effect.

... but can in general not be automatically detected.

for (init; cond; expr) stmt;

190

Halting Problem

Undecidability of the Halting Problem
There is no C++ program that can determine for each
C++-Program P and each input I if the program P terminates with
the input I.

This means that the correctness of programs can in general not be
automatically checked.4

4Alan Turing, 1936. Theoretical questions of this kind were the main motivation for Alan Turing to construct a computing
machine.

191

Example: Prime Number Test

Def.: a natural number n ≥ 2 is a prime number, if no
d ∈ {2, . . . , n− 1} divides n .

A loop that can test this:

unsigned int d;
for (d=2; n%d != 0; ++d);

192

Example: Termination

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Progress: Initial value d=2, then plus 1 in every iteration (++d)
Exit: n%d != 0 evaluates to false as soon as a divisor is found
— at the latest, once d == n
Progress guarantees that the exit condition will be reached

193

Example: Correctness

unsigned int d;
for (d=2; n%d != 0; ++d); // for n >= 2

Every potential divisor 2 <= d <= n will be tested. If the loop
terminates with d == n then and only then is n prime.

194

Blocks

Blocks group a number of statements to a new statement
{statement1 statement2 ... statementN}
Example: body of the main function

int main() {
...

}

Example: loop body

for (unsigned int i = 1; i <= n; ++i) {
s += i;
std::cout << "partial sum is " << s << "\n";

}

195

