
22. Subtyping, Inheritance and
Polymorphism

Expression Trees, Separation of Concerns and Modularisation, Type
Hierarchies, Virtual Functions, Dynamic Binding, Code Reuse,
Concepts of Object-Oriented Programming

739

Last Week: Expression Trees

Goal: Represent arithmetic expressions, e.g.
2 + 3 ∗ 2

Arithmetic expressions form a tree structure
+

2 ∗
3 2

Expression trees comprise different nodes: literals (e.g. 2), binary
operators (e.g. +), unary operators (e.g. √ ), function applications
(e.g. cos ), etc.

740

Disadvantages

Implemented via a single node type:

struct tnode {
char op; // Operator (’=’ for literals)
double val; // Literal’s value
tnode∗ left; // Left child (or nullptr)
tnode∗ right; // ...
...

};

+ ?

= 2 ? ? ∗ ?

operator
Value left operand

right operand

?: unused

Observation: tnode is the “sum” of all required nodes (constants,
addition, . . . ) ⇒ memory wastage, inelegant

741

Disadvantages

Observation: tnode is the “sum” of all required nodes – and every
function must “dissect” this “sum”, e.g.:

double eval(const tnode∗ n) {
if (n−>op == ’=’) return n−>val; // n is a constant
double l = 0;
if (n−>left) l = eval(n−>left); // n is not a unary operator
double r = eval(n−>right);
switch(n−>op) {

case ’+’: return l+r; // n is an addition node
case ’∗’: return l∗r; // ...
...

⇒ Complex, and therefore error-prone

742



Disadvantages

struct tnode {
char op;
double val;
tnode∗ left;
tnode∗ right;
...

};

double eval(const tnode∗ n) {
if (n−>op == ’=’) return n−>val;
double l = 0;
if (n−>left) l = eval(n−>left);
double r = eval(n−>right);
switch(n−>op) {

case ’+’: return l+r;
case ’∗’: return l∗r;
...

This code isn’t modular – we’ll change that today!

743

New Concepts Today

1. Subtyping

Type hierarchy: Exp represents
general expressions, Literal etc.
are concrete expression
Every Literal etc. also is an Exp
(subtype relation)

Exp

Literal Addition Times

That’s why a Literal etc. can be used everywhere, where an
Exp is expected:
Exp∗ e = new Literal(132);

744

New Concepts Today

2. Polymorphism and Dynamic Dispatch

A variable of static type Exp can “host” expressions of different
dynamic types:
Exp∗ e = new Literal(2); // e is the literal 2
e = new Addition(e, e); // e is the addition 2 + 2

Executed are the member functions of the dynamic type:
Exp∗ e = new Literal(2);
std::cout << e−>eval(); // 2

e = new Addition(e, e);
std::cout << e−>eval(); // 4

745

New Concepts Today
3. Inheritance

Certain functionality is shared among
type hierarchy members
E.g. computing the size (nesting
depth) of binary expressions
(Addition, Times):
1 + size(left operand) + size(right operand)

⇒ Implement functionality once, and let
subtypes inherit it

Exp

Literal Addition Times

Exp

Literal BinExp

Addition Times
746



Advantages

Subtyping, inheritance and dynamic
binding enable modularisation
through spezialisation
Inheritance enables sharing common
code across modules
⇒ avoid code duplication

Exp

Literal BinExp

Addition Times

Exp∗ e = new Literal(2);
std::cout << e−>eval();

e = new Addition(e, e);
std::cout << e−>eval();

747

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

Note: Today, we focus on the
new concepts (subtyping, . . . )
and ignore the orthogonal as-
pect of encapsulation (class,
private vs. public member
variables)

748

Syntax and Terminology

struct Exp {
...

}

struct BinExp : public Exp {
...

}

struct Times : public BinExp {
...

}

Exp

BinExp

Times

BinExp is a subclass1 of Exp
Exp is the superclass2 of BinExp
BinExp inherits from Exp
BinExp publicly inherits from Exp
(public), that’s why BinExp is a subtype
of Exp
Analogously: Times and BinExp
Subtype relation is transitive: Times is
also a subtype of Exp

1derived class, child class 2base class, parent class

749

Abstract Class Exp and Concrete Class Literal

struct Exp {
virtual int size() const = 0;
virtual double eval() const = 0;

};
Activates dynamic dispatch

Enforces implementation by de-
rived classes . . .

. . . that makes Exp an abstract class

struct Literal : public Exp {
double val;

Literal(double v);
int size() const;
double eval() const;

};

Literal inherits from Exp . . .

. . . but is otherwise just a regular class

750



Literal: Implementation

Literal::Literal(double v): val(v) {}

int Literal::size() const {
return 1;

}

double Literal::eval() const {
return this−>val;

}

751

Subtyping: A Literal is an Expression . . .

A pointer to a subtype can be used everywhere, where a pointer to a
supertype is required:

Literal∗ lit = new Literal(5);
Exp∗ e = lit; // OK: Literal is a subtype of Exp

But not vice versa:
Exp∗ e = ...
Literal∗ lit = e; // ERROR: Exp is not a subtype of Literal

752

Polymorphie: . . . a Literal Behaves Like a Literal

struct Exp {
...
virtual double eval();

};

double Literal::eval() {
return this−>val;

}

Exp∗ e = new Literal(3);
std::cout << e−>eval(); // 3

virtual member function: the
dynamic (here: Literal) type
determines the member function
to be executed
⇒ dynamic binding
Without Virtual the static type
(hier: Exp) determines which
function is executed
We won’t go into further details

753

Further Expressions: Addition and Times

struct Addition : public Exp {
Exp∗ left; // left operand
Exp∗ right; // right operand
...

};

int Addition::size() const {
return 1 + left−>size()

+ right−>size();
}

struct Times : public Exp {
Exp∗ left; // left operand
Exp∗ right; // right operand
...

};

int Times::size() const {
return 1 + left−>size()

+ right−>size();
}

Separation of concerns

Code duplication
754



Extracting Commonalities . . . : BinExp

struct BinExp : public Exp {
Exp∗ left;
Exp∗ right;

BinExp(Exp∗ l, Exp∗ r);
int size() const;

};

BinExp::BinExp(Exp∗ l, Exp∗ r): left(l), right(r) {}

int BinExp::size() const {
return 1 + this−>left−>size() + this−>right−>size();

}

Note: BinExp does not implement eval and is therefore also an abstract class, just like Exp
755

. . . Inheriting Commonalities: Addition

struct Addition : public BinExp {
Addition(Exp∗ l, Exp∗ r);
double eval() const;

};

Addition inherits member vari-
ables (left, right) and func-
tions (size) from BinExp

Addition::Addition(Exp∗ l, Exp∗ r): BinExp(l, r) {}

double Addition::eval() const {
return

this−>left−>eval() +
this−>right−>eval();

}

Calling the super constructor
(constructor of BinExp) initialises
the member variables left and
right

756

. . . Inheriting Commonalities: Times

struct Times : public BinExp {
Times(Exp∗ l, Exp∗ r);
double eval() const;

};

Times::Times(Exp∗ l, Exp∗ r): BinExp(l, r) {}

double Times::eval() const {
return

this−>left−>eval() ∗
this−>right−>eval();

}

Observation: Additon::eval() and Times::eval() are very similar and could also be unified. However, this would require
the concept of functional programming, which is outside the scope of this course.

757

Further Expressions and Operations

Further expressions, as classes derived from Exp, are possible,
e.g. −, /, √ , cos, log
A former bonus exercise (included in today’s lecture examples on
Code Expert) illustrates possibilities: variables, trigonometric
functions, parsing, pretty-printing, numeric simplifications,
symbolic derivations, . . .

758



Mission: Monolithic→ Modular X
struct tnode {

char op;
double val;
tnode∗ left;
tnode∗ right;
...

}

double eval(const tnode∗ n) {
if (n−>op == ’=’) return n−>val;
double l = 0;
if (n−>left != 0) l = eval(n−>left);
double r = eval(n−>right);
switch(n−>op) {

case ’+’: return l + r;
case ’∗’: return l − r;
case ’−’: return l − r;
case ’/’: return l / r;
default:

// unknown operator
assert (false);

}
}

int size (const tnode∗ n) const { ... }

...

struct Literal : public Exp {
double val;
...
double eval() const {

return val;
}

};

struct Addition : public Exp {
...
double eval() const {

return left−>eval() + right−>eval();
}

};

struct Times : public Exp {
...
double eval() const {

return left−>eval() ∗ right−>eval();
}

}

struct Cos : public Exp {
...
double eval() const {

return std::cos(argument−>eval());
}

}

+
759

And there is so much more . . .

Not shown/discussed:

Private inheritance (class B : public A)
Subtyping and polymorphism without pointers
Non-virtuell member functions and static dispatch
(virtual double eval())
Overriding inherited member functions and invoking overridden
implementations
Multiple inheritance
. . .

760

Object-Oriented Programming

In the last 3rd of the course, several concepts of object-oriented
programming were introduced, that are briefly summarised on the
upcoming slides.

Encapsulation (weeks 10-13):

Hide the implementation details of types (private section) from users
Definition of an interface (public area) for accessing values and functionality in
a controlled way
Enables ensuring invariants, and the modification of implementations without
affecting user code

761

Object-Oriented Programming

Subtyping (week 14):

Type hierarchies, with super- and subtypes, can be created to model
relationships between more abstract and more specialised entities
A subtype supports at least the functionality that its supertype supports –
typically more, though, i.e. a subtype extends the interface (public section) of its
supertype
That’s why supertypes can be used anywhere, where subtypes are required . . .
. . . and functions that can operate on more abstract type (supertypes) can also
operate on more specialised types (subtypes)
The streams introduced in week 7 form such a type hierarchy: ostream is the
abstract supertyp, ofstream etc. are specialised subtypes

762



Object-Oriented Programming

Polymorphism and dynamic binding (week 14):

A pointer of static typ T1 can, at runtime, point to objects of (dynamic) type T2, if
T2 is a subtype of T1

When a virtual member function is invoked from such a pointer, the dynamic
type determines which function is invoked
I.e.: despite having the same static type, a different behaviour can be observed
when accessing the common interface (member functions) of such pointers
In combination with subtyping, this enables adding further concrete types
(streams, expressions, . . . ) to an existing system, without having to modify the
latter

763

Object-Oriented Programming

Inheritance (week 14):

Derived classes inherit the functionality, i.e. the implementation of member
functions, of their parent classes
This enables sharing common code and thereby avoids code duplication
An inherited implementation can be overridden, which allows derived classes to
behave differently than their parent classes (not shown in this course)

764

— End of the Course —

765


