Overloading Functions

m Functions can be addressed by name in a scope

17. Classes m It is even possible to declare and to defined several functions
with the same name

Overloading Functions and Operators, Encapsulation, Classes, m the “correct” version is chosen according to the signature of the

Member Functions, Constructors function.
Function Overloading Operator Overloading
B A function is defined by name, types, number and order of arguments
double sq (double x) { ... } // f1
int 8q (int x) { ...} // £2 m Operators are special functions and can be overloaded
int pow (int b, int e) { ... } // £3
int pow (int e) { return pow (2,e); } // f4 m Name of the operator op:
m the compiler automatically chooses the function that fits “best” for a function call OPEEER]Y)
(we do not go into details) m we already know that, for example, operator+ exists for different
std::cout << sq (3); // compiler chooses f2 types
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4

std::cout << pow (3,3); // compiler chooses £f3

539

540

Adding rational Numbers - Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)

{
rational result;
result.n = a.n *x b.d + a.d * b.n;
result.d = a.d * b.d;
return result;
}

const rational t = add (r, s);

541

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator— (rational a, rational b);

// POST: return value is the product of a and b
rational operatorx (rational a, rational b);

// POST: return value is the quotient of a and b

// PRE:b!=0
rational operator/ (rational a, rational b);

543

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d *x b.d;
return result;
}

const rational t = r + s;
4\

infix notation

542

Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is —a
rational operator— (rational a)
{

a.n = —a.n;

return a;

544

Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a ==
bool operator== (rational a, rational b)

{

return a.n * b.d == a.d * b.n;

}

v

2 4
3 0

Operator+= First Trial

rational operator+= (rational a, rational b)

{
a.n = a.n x*x b.d + a.d *x b.n;
a.d *x= b.d;
return a;

}

does not work. Why?

m The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

m Theresultof r += s is, against the convention of C++ no L-value.

547

Arithmetic Assignment

We want to write

rational r;

r.n=1; r.d = 2; // 1/2
rational s;

s.n=1; s.d = 3; // 1/3
r += s;

std::cout << r.n << "/" << r.d; // 5/6
Operator +=

rational& operator+= (rational& a, rational b)

{

a.n = a.n *x b.d + a.d * b.n;

a.d x= b.d;
return a;

}

this works

m The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.

546

548

In/Output Operators

can also be overloaded.

m Before:

std::cout << "Sum is "
<< t.n << ll/ll << t-d << ll\nll;

m After (desired):

std::cout << "Sum is "
<< t << ll\nll;

549

Input

// PRE: in starts with a rational number
// of the form "n/d4d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,
rational& r){
char c; // separating character ’/’
return in >> r.n >> c >> r.d;

reads r from the input stream
and returns the stream as L-value.

551

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,
rational r)
{
return out << r.n << "/" << r.d;

3

writes r to the output stream
and returns the stream as L-value.

Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>cr;

operator >>

std::cout << "Rationa umber s =7 ";

rational s;

std::cin >> s;
operator +

// computation and output J/

std::cout << "Sum is " << r + s << ".\n";

~

operator<<

550

552

A new Type with Functionality... ...Should be in a Library!

struct rational {

int n; rational .h:
int d; // INV: d != 0
}; m Definition of a struct rational

. m Function declarations
// POST: return value is the sum of a and b

rational operator+ (rational a, rational b) rational. Cpp:

{
rational result; m arithmetic operators (operator+, operator+=, ...)
result.n = a.n * b.d + a.d * b.n; : -
result.d = a.d * b.d;] relahonal operators (operator==, operator>, ...)
return result; m in/output (operator >>, operator <<, ...)

}

Thought Experiment The Customer is Happy

...and programs busily using rational.

The three core missions of ETH: 5
m output as double-value (3 — 0.6)

m research
m education // POST: double approximation of r
m technology transfer double to_double (rational r)

{

We f . RAT PACK®!
e found a startup C double result = r.n;

m Selling the rational library to customers
m ongoing development according to customer’s demands }

return result / r.d;

555

The Customer Wants More New Version of RAT PACK®

“Can we have rational numbers with an extended value range?”
m Sure, no problem, e.g.: @ ,
& [t sucks, nothing works any more!
m What is the problem?

struet rational struct rational {
> unsigned int n;
unsigned int d;
bool is_positive;

8
@ —2 is sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to double
is the problem, our library is correct.

.
b @/Q Up to now it worked, therefore the new
version is to blame!
Liability Discussion We are to Blame!!
// POST: double approximation of r
double to_double (rational r){ m Customer sees and uses our representation of rational numbers
double result = r.n; . . . - (initially r.n, r.d)
. r.is_positive and result.is_positive i ,
return result / r.d; o, 5oonear m When we change it (r.n, r.d, r.is_positive), the customer’s
3 programs do not work anymore.
...not correct using m No customer is willing to adapt the programs when the version of

correct using. .. the library changes.

struct rational {

struct ratiomal { . .
unsigned int n;

int n;

int d; unsigned int d; = RAT PACK® is history. ..

bool is_positive;

¥ };

559 560

Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

m = The customer is not provided with representation but with
functionality!

|

str.length(),
v.push_back(1),...

561

Encapsulation: public/private

clm is used instead of struct if anything at all

. shall be “hidden”
int n;

int d; // INV: 4 != 0
};
only difference

®m struct: by default nothing is hidden
m class : by default everything is hidden

563

Classes

m provide the concept for encapsulation in C+-+
m are a variant of structs
m are provided in many object oriented programming languages

Encapsulation: public/private

Good news: r.d = 0 cannot happen

i — .
class rational { any more by accident.

int n;

.)) I=

int d; // INV: d != 0 Bad news: the customer cannot do any-
}; thing any more ...
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

562

564

public area

Member Functions: Declaration

class rational {
public:
f// POST: return value is the numerator of this instance

int numerator () const member function
return nj
< }
// POST: return value is the denominator of this instance
int denominator () const { ;
member functions have ac-
return d; <= .
. cess to private data
| N
private: AN .
int n: N the scope of members in a
’ AN . q
int d; // INV: di= 0 &= class is the whole classl, inde-
}: pendent of the declaration or-
)

der

565

Member Functions: Definition

// POST: returns
int numerator ()

{

return n;

numerator of this instance
const

}

m A member function is called for an expression of the class. in the function, this
is the name of this implicit argument. this itself is a pointer to it.

m const refers to the instance this, i.e., it promises that the value associated with
the implicit argument cannot be changed

m nis the shortcut in the member function for this->n (precise explanation of

“~>” next week)
567

Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational s member access

// Zaehler
// Nenner

int n = r.numerator();
int d

r.denominator();

const and Member Functions

class rational {
public:
int numerator () const
{ return n; }
void set_numerator (int N)
{n-=0N;}

rational x;
x.set_numerator(10); // ok;
const rational y = x;

int n = y.numerator(); // ok;
y.set_numerator(10); // error;

}

The const at a member function is to promise that an instance
cannot be changed via this function.

const items can only call const member functions.

566

568

Comparison Member-Definition: In-Class vs. Out-of-Class

Roughly like this it were without member functions

class rational { class rational {
class ratiomnal { struct bruch { int n; int n;
int n; int n;
. public: public:
public: }; int numerator () comnst int numerator () const;
int numerator () const {
{ int numerator (const bruch& dieser) return n; };
return this->n; { }
} return dieser.n; cee int rational::numerator () const
}; } }; {
) return n;
rational r; bruch r; m No separation between }
o o 4 - declaration and definition (bad
HN <L r. 5 HM << 3 . . .
st cout r.numerator() ; st cout numerator(r for I|brar|es) m This also works.
569
Constructors Initialisation? Constructors!
class rational
. . . {
m are special member functions of a class that are named like the public:
class rational (int num, int den) Initializati f i
. - n (num), d (den) nitialza IOﬂl (0] e
m can _be oyerloaded like functions, i.e. can occur multiple times with . " member variables
varying signature (den 1= 0) tunction bod
. . . . assert en '= 0); <—— function boay.
m are called like a function when a variable is declared. The }
compiler chooses the “closest” matching function.
m if there is no matching constructor, the compiler emits an error g
message. rational r (2,3); // r = 2/3

Constructors: Call

m directly

rational r (1,2); // initialisiert r mit 1/2

m indirectly (copy)

rational r = rational (1,2);

573

User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) <—— rational. values of type int can now

:n (num), d (1) be converted to rational.
{3

rational r = 2; // implizite Konversion

Initialisation “rational = int”?

class rational

{
public:
rational (int num)
: n (num), d (1)
{>} <+—— empty function body
}

// explicit initialization with 2
// implicit conversion

rational r (2);
rational s = 2;

The Default Constructor

class rational

{

public: empty list of arguments

I:él.tional ()/

:n (0), 4 (1)
{3

}
rational r; // =0

= There are no uninitiatlized variables of type rational any more!

576

Alterantively: Deleting a Default Constructor

class rational

{
public:
r.;tional () = delete;
Y
1:.a.tional T; // error: use of deleted function ’rational::rational()

= There are no uninitiatlized variables of type rational any more!

RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)

{
double result = r.numerator();
return result / r.denominator();

}

m We can adapt the member functions together with the
representation v’

The Default Constructor

m is automatically called for declarations of the form
rational r;

m is the unique constructor with empty argmument list (if existing)
m must exist, if rational r; is meantto compile

m if in a struct there are no constructors at all, the default
constructor is automatically generated

RAT PACK® Reloaded ...
class ratiomnal { int numerator () const
o {
5 private: return n;
"'q__) int n; }
O int d;
};
class rational { int numerator () const{
... if (is_positive)
private: return n;
L unsigned int n; else {
g unsigned int d; int result = n;
© bool is_positive; return —result;

}; }
}

580

RAT PACK® Reloaded ?

class rational { int numerator () const

{
private: if (is_positive)
i i return n;
unsigned int n;
i i else {
unsigned int d; i
i it int result = n;
bool is_positive;
return —result;
};
3
X

m value range of nominator and denominator like before
m possible overflow in addition

Fix: “our” type rational: :integer

Customer’s point of view (rational.h):

public:
using integer = long int; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.g:

m implicit conversion int — rational::integer
m function double to_double (rational::integer)

583

Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of xthis
int numerator () const;

private:
// none of my business

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.

RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const rational r)

{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
}

582

584

Separate Declaration and Definition

class rational {

public:
rational (int num, int denum); ‘
using integer = long int; rational.h

integer numerator () const;
private:
};

rational::rational (int num, int den):
n (num), d (demn) {3}

rational::integer rational: :numeratcz () comnst rational. cpp
{ PN
return n; class name :: member name

}

