
Computer Science

Course at D-MATH/D-PHYS of ETH Zurich

Malte Schwerhoff, Felix Friedrich

AS 2018

1

Welcome

to the Course Informatik
at the MATH/PHYS departement of ETH Zürich.

Place and time:

Tuesday 13:15 - 15:00, ML D28, ML E12.
Pause 14:00 - 14:15, slight shift possible.

Course web page

http://lec.inf.ethz.ch/ifmp

2

Team
chef assistant Vytautas Astrauskas
back office Inna Grijnevitch

Martin Clochard
Pavol Bielik

assistants Eliza Wszola Moritz Schneider
Alexander Hedges Patrik Hadorn
Viera Klasovita Philippe Schlattner
Max Egli Yannik Ammann
Christopher Lehner Adrian Langenbach
Orhan Saeedi David Baur
Maximillian Holst Corminboeuf Etienne
Benjamin Rothenberger Tobias Klenze
David Sommer Sefidgar Seyed Reza

lecturers Dr. Malte Schwerhoff / Dr. Felix Friedrich

3

Registration for Exercise Sessions

Registration via web page
Registration already open
19 groups in total: 9 Tuesday 3-5pm, 10 Wednesday 10-12am
16 groups in German, 3 groups in English

4

Procedure
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed . . . Tue Wed

VÜ Ü VÜ Ü Ü Ü

Issuance

Preliminary Discussion StudyCenter

Submission

Discussion

Ü

Exercises availabe at lectures
Preliminary discussion in the following exercise session (on the same/next day)
StudyCenter (studycenter.ethz.ch)
Solution must be submitted at latest one day before the next lecture (23:59h)
Discussion of the exercise in the session one week after the submission.
Feedback will be provided in the week after the submission.

5

Exercises
The solution of the weekly exercises is thus voluntary but stronly
recommended.

6

No lacking resources!

For the exercises we use an online development environment that
requires only a browser, internet connection and your ETH login.

If you do not have access to a computer: there are a a lot of computers publicly
accessible at ETH.

7

Online Tutorial

For a smooth course entry we provide an online C++ tutorial

Goal: leveling of the different programming skills.

Written mini test for your self assessment in the second exercise
session.

8

Exams

The exam (in examination period 2018) will cover

Lectures content (lectures, handouts)

Exercise content (exercise sessions, exercises).

Written exam.

We will test your practical skills (programming skills) and theoretical knowledge
(background knowledge, systematics).

9

Offer (VVZ)

During the semester we offer weekly programming exercises that
are graded. Points achieved will be taken as a bonus to the exam.
The bonus is proportional to the score achieved in specially
marked bonus tasks, where a full score equals a bonus of 0.25.
The admission to specially marked bonus depends on the
successful completion of other exercises. The achieved mark
bonus expires as soon as the lecture is given anew.

10

Offer (Concretely)

3 bonus exercises in total; 2/3 of the points suffice for the exam
bonus of 0.25 marks
You can, e.g. fully solve 2 bonus exercises, or solve 3 bonus
exercises to 66% each, or ...
Bonus exercises must be unlocked (→ experience points) by
successfully completing the weekly exercises
It is again not necessary to solve all weekly exercises completely
in order to unlock a bonus exercise
Details: course website, exercise sessions, online exercise
system (Code Expert)

11

Academic integrity

Rule: You submit solutions that you have written yourself and that
you have understood.

We check this (partially automatically) and reserve our rights to
invite you to interviews.

Should you be invited to an interview: don’t panic. Primary we
presume your innocence and want to know if you understood what
you have submitted.

12

Exercise group registration I
Visit http://expert.ethz.ch/enroll/AS18/ifmp
Log in with your nethz account.

13

Exercise group registration II
Register with the subsequent dialog for an exercise group.

14

Overview

15

Programming Exercise

A: compile
B: run
C: test

D: description
E: History

16

Test and Submit

Test

Submission

17

Where is the Save Button?

The file system is transaction based and is saved permanently
(“autosave”). When opening a project it is found in the most recent
observed state.
The current state can be saved as (named) snaphot. It is always
possible to return to saved snapshot.
The current state can be submitted (as snapshot). Additionally,
each saved named snapshot can be submitted.

18

Snapshots

Look at snapshot

Submission

Go Back

19

Literature

The course is designed to be self explanatory.
Skript together with the course Informatik at the D-MATH/D-PHYS department.
Recommended Literature

B. Stroustrup. Einführung in die Programmierung mit C++, Pearson
Studium, 2010.
B. Stroustrup, The C++ Programming Language (4th Edition)
Addison-Wesley, 2013.
A. Koenig, B.E. Moo, Accelerated C++, Adddison Wesley, 2000.
B. Stroustrup, The design and evolution of C++, Addison-Wesley, 1994.

20

Credits

Lecture:

Original version by Prof. B. Gärtner and Dr. F. Friedrich
With changes from Dr. F. Friedrich, Dr. H. Lehner, Dr. M. Schwerhoff

Script: Prof. B. Gärtner
Code Expert: Dr. H. Lehner, David Avanthay and others

A
nd

er
e

Q
ue

lle
n

w
er

de
n

hi
er

am
R

an
d

in
di

es
er

Fo
rm

an
ge

ge
be

n.

21

Computer Science

Course at D-MATH/D-PHYS of ETH Zurich

Malte Schwerhoff, Felix Friedrich

AS 2018

1

1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C++Program and its Syntactic and Semantic Ingredients

22

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

23

Computer Science vs. Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

h
t
t
p
:
/
/
l
a
r
c
.
u
n
t
.
e
d
u
/
i
a
n
/
r
e
s
e
a
r
c
h
/
c
s
e
d
u
c
a
t
i
o
n
/
f
e
l
l
o
w
s
1
9
9
1
.
p
d
f

24

Computer Science vs. Computers

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing
of informations.

25

Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?

26

ETH: pioneer of modern computer science
1950: ETH rents the Z4 from Konrad Zuse, the only working
computer in Europe at that time.

N
eu

e
Zü

rc
he

rZ
ei

tu
ng

,3
0.

A
ug

us
t1

95
0

27

ETH: pioneer of modern computer science

1956:

ht
tp

://
de

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/E

R
M

E
TH

28

ETH: pioneer of modern computer science
1958–1963: Entwicklung von ALGOL 60 (der ersten formal
definierten Programmiersprache), unter anderem durch Heinz
Rutishauer, ETH

1964: Erstmals können ETH-Studierende selbst einen Computer
programmieren (die CDC 1604, gebaut von Seymour Cray).

Vo
rt

ra
g

W
al

te
rG

an
de

r,
50

Ja
hr

e
P

ro
gr

am
m

ie
re

n,
E

TH
Zü

ric
h,

20
14

29

ETH: pioneer of modern computer science

Die Klasse 1964 im Jahr 2015 (mit einigen Gästen)

h
t
t
p
:
/
/
w
w
w
.
i
n
f
.
e
t
h
z
.
c
h
/
n
e
w
s
-
a
n
d
-
e
v
e
n
t
s
/
s
p
o
t
l
i
g
h
t
s
/
1
9
6
4
.
h
t
m
l

30

ETH: pioneer of modern computer science

1968–1990: Niklaus Wirth entwickelt an der ETH die
Programmiersprachen Pascal, Modula-2 und Oberon und 1980 die
Lilith, einen der ersten Computer mit grafischer Benutzeroberfläche.

31

Back from the past: This course

Systematic problem solving with algorithms and the programming
language C++.
Hence:

not only
but also programming course.

32

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation) h
t
t
p
:
/
/
d
e
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
A
l
g
o
r
i
t
h
m
u
s

33

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

a b a b a b a b

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

34

Algorithms: 3 Levels of Abstractions

1. Core idea (abstract):
the essence of any algorithm (“Eureka moment”)

2. Pseudo code (semi-detailed):
made for humans (education, correctness and efficiency
discussions, proofs

3. Implementation (very detailed):
made for humans & computers (read- & executable, specific
programming language, various implementations possible)

Euclid: Core idea and pseudo code shown, implementation yet
missing

35

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.

36

Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing h
t
t
p
:
/
/
e
n
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
A
l
a
n
_
T
u
r
i
n
g

37

Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann h
t
t
p
:
/
/
w
w
w
.
h
s
.
u
n
i
-
h
a
m
b
u
r
g
.
d
e
/
D
E
/
G
N
T
/
h
h
/
b
i
o
g
r
/
z
u
s
e
.
h
t
m

h
t
t
p
:
/
/
c
o
m
m
o
n
s
.
w
i
k
i
m
e
d
i
a
.
o
r
g
/
w
i
k
i
/
F
i
l
e
:
J
o
h
n
_
v
o
n
_
N
e
u
m
a
n
n
.
j
p
g

38

Computer

Ingredients of a Von Neumann Architecture

Memory (RAM) for programs and data

Processor (CPU) to process programs and data

I/O components to communicate with the world

39

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.

40

Processor

The processor (CPU)

executes instructions in machine language

has an own "fast" memory (registers)

can read from and write to main memory

features a set of simplest operations = instructions (e.g. adding
to register values)

41

Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890 h
t
t
p
:
/
/
e
n
.
w
i
k
i
p
e
d
i
a
.
o
r
g
/
w
i
k
i
/
H
a
r
v
a
r
d
_
C
o
m
p
u
t
e
r
s

42

Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 1

1Uniprocessor computer at 1 GHz.
43

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

44

Mathematics used to be the lingua franca of the natural sci-
ences on all universities. Today this is computer science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

((BTW: Lino Guzzella is not a computer scientist, he is a mechanical engineer and prof. for thermotronics)

45

This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Most qualified jobs require at least elementary programming skills
Programming is fun (and is useful)!

46

Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be subdivided into (extremely) many
single steps
The machine language varies between computers.

47

Higher Programming Languages

can be represented as program text that

can be understood by humans
is independent of the computer model
→ Abstraction!

48

Programming langauges – classification

Differentiation into

Compiled vs. interpreted languages

C++, C#, Java, Go, Pascal, Modula
vs.
Python, Javascript, Matlab

Higher programming languages vs. Assembler

Multi-purpose programming languages vs. single purpose
programming languages

Procedural, object oriented, functional and logical languages.

49

Why C++?

Other popular programming languages: Java, C#, Python,
Javascript, Swift, Kotlin, Go,

C++ is practically relevant (widespread) and “runs everywhere”.
For the computational computing (as required in math and
physics), C++ offers a lot of useful concepts.
C++ is standardized i.e. there is an “official” C++.
C++ is one of the “fastest” programming languages
C++ well-suited for systems programming since it
enables/requires careful resource management (memory, ...)

50

Why C++?

C++equips C with the power of the abstraction of a higher
programming language
In this course: C++ introduced as high level language, not as
better C
Approach: traditionally procedural→ object-oriented.

51

Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

52

Deutsch vs. C++

Deutsch
Alleen sind nicht gefährlich, Rasen ist gefährlich!
(Wikipedia: Mehrdeutigkeit)

C++

// computation
int b = a ∗ a; // b = a2

b = b ∗ b; // b = a4

53

C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.

DasAuto fuh r zu sxhnell.

Rot das Auto ist.

Man empfiehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.

Das Fahrrad galoppiert schnell.

Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]

Syntaktisch korrekt, doch semantisch fehlerhaft:
Falscher Artikel. [Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch
fehlerhaft. [Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch
mehrdeutig. [kein Analogon]

54

Syntax and Semantics of C++
Syntax:

When is a text a C++ program?

I.e. is it grammatically correct?

→ Can be checked by a computer

Semantics:

What does a program mean?

Which algorithm does a program implement?

→ Requires human understanding
55

Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011, 2014, ...)

is the “law” of C++
defines the grammar and meaning of C++programs
since 2011, continuously extended with features for advanced
programming

56

Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.

57

Language constructs with an example

Comments/layout
Include directive
the main function
Values effects
Types and functionality
literals
variables

constants
identifiers, names
objects
expressions
L- and R- values
operators
statements

58

The first C++ program Most important ingredients. . .

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Statements: Do something (read in a)!

Expressions: Compute a value (a2)!

59

Behavior of a Program
At compile time:

program accepted by the compiler (syntactically correct)

Compiler error

During runtime:

correct result

incorrect result

program crashes

program does not terminate (endless loop)
60

“Accessories:” Comments

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

comments

61

Comments and Layout
Comments

are contained in every good program.

document what and how a program does something and how it
should be used,

are ignored by the compiler

Syntax: “double slash” // until the line ends.

The compiler ignores additionally

Empty lines, spaces,

Indendations that should reflect the program logic
62

Comments and Layout

The compiler does not care...

#include <iostream>

int main(){std::cout << "Compute a^8 for a =? ";

int a; std::cin >> a; int b = a * a; b = b * b;

std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

63

“Accessories:” Include and Main Function

// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

include directive
declaration of the main function

64

Include Directives

C++ consists of

the core language
standard library

in-/output (header iostream)
mathematical functions (cmath)
...

#include <iostream>

makes in- and output available

65

The main Function

the main-function

is provided in any C++ program

is called by the operating system
like a mathematical function ...

arguments
return value

... but with an additional effect

Read a number and output the 8th power.

66

Statements: Do something!

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

expression statements

return statement

67

Statements

building blocks of a C++ program
are executed (sequentially)
end with a semicolon
Any statement has an effect (potentially)

68

Expression Statements

have the following form:

expr;

where expr is an expression
Effect is the effect of expr, the value of expr is ignored.

Example: b = b*b;

69

Return Statements

do only occur in functions and are of the form

return expr;

where expr is an expression
specify the return value of a function

Example: return 0;

70

Statements – Effects

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

effect: output of the string Compute ...

Effect: input of a number stored in a

Effect: saving the computed value of a*a into b

Effect: saving the computed value of b*b into b

Effect: output of the value of a and the computed value of b*bEffect: return the value 0
71

Values and Effects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
std::cin >> a; means effect "read in a number"

depend on the program state (memory content, inputs)

72

Statements – Variable Definitions

int main() {
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration statement

type
names

73

Declaration Statements

introduce new names in the program,
consist of declaration and semicolon

Example: int a;
can initialize variables

Example: int b = a * a;

74

Types and Functionality

int:

C++ integer type

corresponds to (Z,+,×) in math

In C++ each type has a name and

a domain (e.g. integers)

functionality (e.g. addition/multiplication)

75

Fundamental Types

C++ comprises fundamental types for

integers (int)

natural numbers (unsigned int)

real numbers (float, double)

boolean values (bool)

...

76

Literals

represent constant values
have a fixed type and value
are "syntactical values"

Examples:

0 has type int, value 0.

1.2e5 has type double, value 1.2 · 105.

77

Variables

represent (varying) values
have

name
type
value
address

are "visible" in the program
context

Example
int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler

78

Objects

represent values in main memory
have type, address and value (memory content at the address)
can be named (variable) ...
... but also anonymous.

Remarks
A program has a fixed number of variables. In order to be able to deal with a
variable number of value, it requires "anonymous" addresses that can be address
via temporary names (→ Computer Science 1).

79

Identifiers and Names

(Variable-)names are identifiers

allowed: A,...,Z; a,...,z; 0,...,9;_

First symbol needs to be a character.

There are more names:

std::cin (Qualified identifier)

80

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

81

Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

Two times composed expression

Four times composed expression 82

Expressions

represent computations
are primary or composite (by other expressions and operations)

a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression

can be put into parantheses

a * a is equivalent to (a * a)

83

Expressions

have type, value und effect (potentially).

Example

a * a

type: int (type of the operands)

Value: product of a and a

Effect: none.

Example

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

effect: assignment of the product value
to b

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression

84

L-Values and R-Values

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value

85

L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address

Value is the content at the memory location according to the
type of the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name

86

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value

87

L-Value and R-Value

88

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

left operand (input stream)

right operand (variable name)
input operator

assignment operator

multiplication operator 89

Operators

Operators

combine expressions (operands) into new composed
expressions

specify for the operands and the result the types and if the have
to be L- or R-values.

have an arity

90

Multiplication Operator *

expects two R-values of the same type as operands (arity 2)
"returns the product as R-value of the same type", that means
formally:

The composite expression is an R-value; its value is the product of the
value of the two operands

Examples: a * a and b * b

91

Assignment Operator =

Left operand is L-value,
Right operand is R-value of the same type.
Assigns to the left operand the value of the right operand and
returns the left operand as L-value

Examples: b = b * b and a = b

Attention, Trap!
The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).

92

Input Operator >>

left operand is L-Value (input stream)
right operand is L-Value
assigns to the right operand the next value read from the input
stream, removing it from the input stream and returns the input
stream as L-value

Example std::cin >> a (mostly keyboard input)

Input stream is being changed and must thus be an L-Value.

93

Output Operator <<

left operand is L-Value (output stream)
right operand is R-Value
outputs the value of the right operand, appends it to the output
stream and returns the output stream as L-Value

Example: std::cout << a (mostly console output)

The output stream is being changed and must thus be an L-Value.

94

Output Operator <<

Why returning the output stream?

allows bundling of output

std::cout << a << "^8 = " << b * b << "\n"

is parenthesized as follows

((((std::cout << a) << "^8 = ") << b * b) << "\n")

std::cout << a is the left hand operand of the next << and is
thus an L-Value that is no variable name

95

power8 exact.cpp

Problem with power8.cpp: large input values are not correctly
handled
reason: domain of the type int is limited
solution: use a different type
e.g. ifm::integer

96

power8 exact.cpp
// Program: power8_exact.cpp
// Raise a number to the eighth power,
// using integers of arbitrary size

#include <iostream>
#include <IFMP/integer.h>

int main()
{

// input
std::cout << "Compute a^8 for a =? ";
ifmp::integer a;
std::cin >> a;

// computation
ifmp::integer b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << ".\n";
return 0;

} 97

	lecture0.en.handout.2x2
	lecture1.en.handout.2x2

