
Informatik für Mathematiker und Physiker - AS18

Exercise 14: Inheritance &
Polymorphism
Handout: 18. Dez. 2018 06:00

Due: 3. Jan. 2019 23:59

Task 1: Polymorphic Functions
Open Task (/solve/AZkG2zWs3RYMzEySo)

Default
This task is a text based task. You do not need to write any program/C++ file: the answer

should be written in main.txt (and might include code fragments if questions ask for

them).

Task
Given is the following class hierarchy:

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifmp/AS18/ex14e

1 iš 4 2018-12-18 16:07

#include <iostream>

#include <string>

class A {

public:

std::string name;

 A(std::string _name) : name(_name) {}

virtual void say_hello() { std::cout << "A says hi to " << name <<

void say_bye() { std::cout << "A says bye to " << name << "\n"; }

};

class B : public A {

public:

 B(std::string _name) : A(_name) {}

void say_hello() { std::cout << "B greets " << name << "\n"; }

};

class C : public A {

public:

 C(std::string _name) : A(_name) {}

void say_bye() { std::cout << "C say goodbye to " << name << "\n"; }

};

For each of the following functions, specify for each call whether it is polymorphic, i.e.,

the dynamic type determines the function to be called, or not.

void f() {

A x("Jane");

 x.say_hello(); // call 1

B y("John");

 y.say_hello(); // call 2

 x = y;

 x.say_hello(); // call 3

}

1.

void g() {

 A* x = new A("Jane");

 (*x).say_hello(); // call 1

 B* y = new B("John");

 (*y).say_hello(); // call 2

 x = y;

 (*x).say_hello(); // call 3

}

2.

3.

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifmp/AS18/ex14e

2 iš 4 2018-12-18 16:07

void h() {

 A* x = new A("Jane");

 (*x).say_bye(); // call 1

 C* y = new C("John");

 (*y).say_bye(); // call 2

 x = y;

 (*x).say_bye(); // call 3

}

Task 2: House Painting
Open Task (/solve/iotjcan5DdttkxKQw)

Default

Task
Mr. Brush is hired to paint a house facade. To make an offer, he needs to know the area

that requires painting. He looks at the house facade and sees that it can be

approximated by using different shapes: Triangle (given by width and height), Rectangle

(given by width and height) and Circle (given by radius). Holes in shapes can be

accounted for by subtracting the non-paintable areas, e.g. a door or a window.

Help Mr. Brush by implementing the three required shapes: Rectangle , Triangle ,

and Circle . Each shape is implemented with its own class that inherits from class

Shape and overrides the virtual member function get_area that returns the area

defined by the shape.

Steps:

Complete declarations of class Rectangle , Triangle and Circle in file

house_shapes.h .

1.

Implement their member functions in file house_shapes.cpp .2.

Testing: The test input is a list of shape objects provided in a textual representation. The

template includes a parser for the test input to avoid a lengthy specification. You do not

have to implement it, but you may want to take a look at it to understand how it works.

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifmp/AS18/ex14e

3 iš 4 2018-12-18 16:07

Also you can use it to test your implementation manually.

Example: + rectangle 4 3 - circle 1.5 end is a rectangular facade with a hole.

The following EBNF defines the input:

House facade description EBNF:

 facade = area { area } .

 area = op { triangle | rectangle | circle }

 op = "+" | "-" // add (+) or subtract (-) area

 triangle = "triangle" double double // width height

 rectangle = "rectangle" double double // width height

 circle = "circle" double // radius

 double = C++ double value

Exercise 14: Inheritance & Polymorphism - Print... https://expert.ethz.ch/print/ifmp/AS18/ex14e

4 iš 4 2018-12-18 16:07

