
Informatik für Mathematiker und Physiker - AS18

Exercise 13: Memory
Management with Classes
Handout: 11. Dez. 2018 06:00

Due: 17. Dez. 2018 23:59

Task 1: operator delete
Open Task (/solve/sZ6pigkCQGJSf3s7s)

This task is a text based task. You do not need to write any program/C++ file: the answer

should be written in main.txt (and might include code fragments if questions ask for

them).

Task
All the following code fragments use operator delete and delete[] to deallocate

memory, but not appropriately. This can either lead to an error or to a memory leak. Find

the mistake in each code fragment, which of the two cases may occur, and in the case of

an error, the location at which it occurs.

class A {

public:

 A(unsigned int sz) {

 ptr = new int[sz];

 }

 ~A() {

delete ptr;

 }

/* copy constructor, assigmnent operator, public methods. */

 ...

private:

int* ptr;

};

1.

2.

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifmp/AS18/ex13e

1 iš 5 2018-12-11 15:20

struct llnode {

int value;

 llnode* next;

};

void recursive_delete_linked_list(llnode* n) {

if (n != nullptr) {

delete n;

 recursive_delete_linked_list(n->next);

 }

}

class A {

public:

 A() {

 c = new Cell;

 c.subcell = new int(0);

 }

 ~A() {

delete c;

 }

/* copy constructor, assignment operator, public methods */

 ...

private:

struct Cell {

int* subcell;

 };

 Cell* c;

};

3.

void do_something(int* p) {

/* Do something */

 ...

}

void f() {

int v;

int* w = &v;

 do_something(w);

delete w;

}

4.

5.

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifmp/AS18/ex13e

2 iš 5 2018-12-11 15:20

class Vec {

public:

 Vec(unsigned int sz) {

array = new int[sz];

 }

 ~Vec() {

delete[] array;

 }

int& operator[](int l) {

return array[l];

 }

/* copy constructor, assignment operator, other public methods */

 ...

private:

int* array;

};

void f() {

 Vec v;

delete[] &v[0];

}

Task 2: Array-based Vector, Rule of
Three
Open Task (/solve/pb5Y8Zn3JNjdv6f4n)

Task
You are provided a partial implementation of an array-based vector class avec .

Declarations are given in file avec.h , member functions that are already implemented

are in file avec_locked.cpp . Your task is to implement copy constructor, assignment

operator and destructor for class avec , in file avec.cpp .

Memory tracking: The internal elements of class avec are objects of class tracked

(see file tracker.h). Such objects encapsulate a single integer location which is

tracked by an internal memory manager. This is used internally to catch as much

memory/deallocation error as possible upon occurrence.

Testing: Tests are already provided in file main.cpp . If you want to carry further testing

yourself, you may do so within function your_own_tests() , which is called by main()

when encountering an unknown test identifiant.

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifmp/AS18/ex13e

3 iš 5 2018-12-11 15:20

Task 3: Smart Pointers
Open Task (/solve/EREmFysmM9s4jptHs)

Task
The objective of this problem is to implement a reference-count smart pointer, with

functionality similar to that of a std::shared_ptr . Smart pointers implement the same

functionality as regular pointers, except that when the last smart pointer to an object is

destroyed, the pointed-to memory is deallocated as well. Reference-count smart pointer

achieve this by allocating and maintaining an extra counter in memory together with the

actual pointed-to object, which represents the number of smart pointers currently

pointing to the pointed-to object. In particular, the destruction of the last smart pointer to

an object is detected because the counter become .

Remark: As one of the tests shows, using smart pointers instead of regular pointers is

not always a suitable solution in order to prevent memory leaks.

Locations: The declarations of smart pointer class (Smart) and member functions is

provided in file smart.h . The implementation of member functions should be done in

file smart.cpp . Smart pointer encapsulate pointer to object of class tracked , which is

declared in file smart.h .

Structure: In class Smart , member variable ptr represent the pointer (potentially

shared by several object of class Smart) to the underlying pointed-to object. Member

variable count represent the (shared) location containing the number of objects of

class Smart currently holding the pointed-to object. Alternatively, both pointers may be

nullptr , which corresponds to the notion of a null smart pointer. A null smart pointer

and does not manage any memory.

Object pointed by smart pointers belong to class tracked , which is a linked list node

where the next pointer is represented using a smart pointer. In particular, tests will use

this structure to build linked list with shared nodes, and check at the end that everything

was correctly deallocated. To that end, every objects of class tracked are tracked

behind the scenes.

Steps:

Implement default constructor for class Smart . Default constructor should create

a null smart pointer.

1.

Implement constructor Smart(tracked* t) . If t==nullptr , this should return a

null smart pointer. Otherwise, the caller must enforces that t points to memory

allocated by new . This constructor then makes smart pointers responsible for

eventually deallocating the memory stored in t when it can no longer be used. In

particular, no other smart pointer should be responsible for deallocation of t

before this constructor is called.

2.

Implement copy constructor, assignment operator and destructor for class3.

0

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifmp/AS18/ex13e

4 iš 5 2018-12-11 15:20

Smart .

Optional: Figure out the situations in which smart pointers are not suitable for memory

management, in the sense that they may lead to memory leaks. You may look at the

tests which leak memory for inspiration.

Exercise 13: Memory Management with Classes ... https://expert.ethz.ch/print/ifmp/AS18/ex13e

5 iš 5 2018-12-11 15:20

