
Informatik für Mathematiker und Physiker - AS18

Exercise 12: Iterators and Containers
Handout: 4. Dez. 2018 06:00

Due: 10. Dez. 2018 23:59

Task 1: Lexicographic comparison

Open Task (/solve/i5Co32GsR3BiySnPJ)

Task
Words in, e.g., a dictionary or an index are sorted lexicographically as given by the

alphabet.

Task: Implement a lexicographic comparison function for strings using the alphabetical

ordering provided by the ASCII code.

A string a is lexicographically smaller than a string b , if

the first character of a in that both a and b differ is smaller than the

corresponding character of b (e.g., bicycle < bike because the first different

characters are c < k).

the string a forms the start of b , but is shorter (e.g., web < website).

Write a function that compares two strings. The function must return true if the first

string is smaller than the second with respect to lexicographic order. The function

must, using using Iterator = std::string::iterator; have the following

signature:

// PRE: [first1,last1) and [first2,last2) are valid ranges

// POST: returns true if string at [first1,last1) is lexicographically

// smaller than string at [first2,last2)

bool lexicographic_compare(Iterator first1, Iterator last1,

 Iterator first2, Iterator last2)

1.

Write a program using this function to compare two strings given as standard

input, and output the lexicographic minimum of the two. If the two strings are

identical, the program should instead print EQUAL .

2.

Note: Using string comparison functions from the standard library is not allowed.

Input

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifmp/AS18/ex12e

1 iš 4 2018-12-04 15:36

Two strings, separated by newlines.

Example:

bike

bicycle

Output
The minimum of the two input strings, with respect to the lexicographical order, or

EQUAL if both strings are equal.

Example:

bicycle

Task2: Decomposing a Set into Intervals

Open Task (/solve/iAW2uz3SteWaQvwRP)

Task
Any finite set of integers can be uniquely decomposed as a union of disjoint maximal

integer intervals, e.g as the union of non-overlapping intervals which are as large as

possible. For example, the set decomposes as

. Note that or

 are not valid decompositions, as and

 are not maximal interval subsets of , and intervals may not repeat.

Write a program that input a set of integer, as the (possibly repeating) sequence of its

members, and output the interval decomposition of the set in ascending order of

boundaries.

Reminder: ordered sets can be represented in C++ using the std::set<...>

container, in which elements are added using the insert method. Iteration (using

iterators) in ordered sets takes place in increasing order.

Hint: You may first define a function that, from two std::set iterators first and

last , find the largest integer interval starting from first and ending before last ,

and returns an iterator just after this interval.

Input
A set of non-negative integer, given as the sequence of its members followed by a

negative integer. The sequence can be in any order and may feature repetitions.

Example:

X = {1, 2, 3, 5, 6, 8}
X = [1, 3] ∪ [5, 6] ∪ [8, 8] X = [1, 2] ∪ [3, 3] ∪ [5, 6] ∪ [8, 8]
X = [1, 3] ∪ [5, 6] ∪ [5, 6] ∪ [8, 8] [1, 2]
[3, 3] X

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifmp/AS18/ex12e

2 iš 4 2018-12-04 15:36

3 5 8 6 5 3 2 1 -1

Output
The interval decomposition of the input set, with interval given in increasing order of

boundaries. The interval decomposition must be given as a parenthesized sequence of

intervals, with intervals separated by the character U . Intervals themselves must be

given by their lower and upper bound, separated by a comma and parenthesized by

brackets, with the lower bound coming first.

Example:

([1,3]U[5,6]U[8,8])

Task 3: Dynamic Queue

Open Task (/solve/zDNeJ5rHb2hC2aS2Y)

Task
Your objective is to implement your own queue class integer values as a dynamic data

structure.

A queue provides the two basic operations: enqueue and dequeue. The operation

enqueue adds new element to the back of the queue. The operation dequeue removes

the first element from the queue:

A common way to implement a queue is using a linked list in a similar way to how the

stack was implemented in the lecture. In order to be able to both enqueue and dequeue,

we need to access respectively the first and last elements of the list.

A class invariant helps to detect implementation problems early. For this queue, we have

the following class invariant: Either both pointers first and last are set to nullptr

or both are not set to nullptr . Check the invariant at suitable places, e.g., after

modifications of the queue data members.

We suggest to implement the queue by dividing the work. First, start with the basic

queue operations: enqueue , dequeue , is_empty . Then, implement the output

operator operator<< (output all elements in the queue from first to last), and finally,

implement the copy constructor, assignment operator, and the destructor. Make sure that

when copying a queue r to another queue q , no pointer from q points to an element

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifmp/AS18/ex12e

3 iš 4 2018-12-04 15:36

in r .

To output the queue content (output operator), use the following format: bracket open

([) , zero or more integer numbers separated by spaces, bracket close (]). E.g., the

empty queue must be output like this: [] , the queue containing elements 13, 7, and 42

(from first to last): [13 7 42] .

Procedure: The queue declaration is already provided. Your task is to fill the missing

definitions for the required functions, marked by comments \\ TODO in queue.cpp .

Function annotations (pre- and postconditions), found along declarations in the header

queue.h , explain what the function is supposed to do. You may (and probably need to)

add extra private member function declarations (in queue.h) and definitions (in

queue.cpp) to class Queue . You must not change other parts of the template code.

Testing: The test input consists of a list of function calls in text representation. The

template includes the parser for this text representation to avoid a lengthy specification.

You do not have to implement it, but you may want to take a look at it to understand how

it works. Also you can use it to do test your queue manually.

The main function allocates ten queues that are initially empty. A queue_id from 0-9

identifies each of these test queues, e.g., print 1 prints contents of queue 1, while

copy 1 2 copies contents from queue 1 to queue 2. The following EBNF defines the

input:

 queue_ops = queue_op { queue_op } "end" .

 queue_op = enqueue | is_empty | dequeue | print | copy | assign .

 // enqueues (integer) element

 enqueue = "enqueue" queue_id integer .

 // returns whether queue is empty

 is_empty = "is_empty" queue_id .

 // dequeues element

 dequeue = "dequeue" queue_id .

 // prints queue contents

 print = "print" queue_id .

 // copy queue (delete/new)

 copy = "copy" queue_id queue_id .

 // assign queue (operator=)

 assign = "assign" queue_id queue_id .

 queue_id = integer

 integer = C++ intenger value

Exercise 12: Iterators and Containers - Print Vie... https://expert.ethz.ch/print/ifmp/AS18/ex12e

4 iš 4 2018-12-04 15:36

