
Informatik für Mathematiker und Physiker - AS18

Exercise 11: Classes & Pointers
Handout: 27. Nov. 2018 06:00

Due: 3. Dez. 2018 23:59

Task 1: Understanding struct & classes

Open Task (/solve/hyo7A3wK62frPRakR)

This task is a text based task. You do not need to write any program/C++ file: the answer

should be written in main.txt (and might include code fragments if questions ask for

them).

Task
Consider the following definitions:

struct A {

int a;

double b;

int c;

};

A str = {1, 1.5, 2};

std::vector<int> vec[] = {1, 1, 3};

int & a = vec[0];

For each of the provided expressions state their C++ type and value:

str.a * str.b1.

str.b == vec[1]2.

str.a * str.b / str.c3.

vec[str.a] / str.c4.

a / 2 - str.b5.

1.

2.

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifmp/AS18/ex11e

1 iš 5 2018-11-29 10:45

class B {

public:

 B () {

for (int i = 0; i < 128; ++i)

 vec[i] = 0;

 }

// PRE: ...

// POST: ...

void add (const char c) {

 ++vec[c];

 }

// PRE: ...

// POST: ...

int get (const char c) const {

return vec[c];

 }

private:

std::vector<int> vec[128];

};

Determine PRE- and POST-conditions for the methods add and get .

Task 2: Averager

Open Task (/solve/GhqA7odga7DqomeNd)

Task
Write a class Averager that computes averages of given values of type double .

Initially, an instance of class Averager does not contain any value. The class

Averager must provide the following functionality:

// POST: Adds a value to the current average calculation.

void add_value(double value);

// POST: Returns the average of all added values,

// or zero, if no value has been added.

double get_average();

// POST: Removes all values from the current average calculation.

void reset();

The declaration and implementation of class Averager must be split between header file

(averager.h , containing declaration) and implementation file (averager.cpp ,

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifmp/AS18/ex11e

2 iš 5 2018-11-29 10:45

containing implementation).

Task 3: Understanding Pointers

Open Task (/solve/jYnWaphWFoTtxvg7K)

This task is a text based task. You do not need to write any program/C++ file: the answer

should be written in main.txt (and might include code fragments if questions ask for

them).

Task
Complete the following function definitions according to the specified pre- and post

conditions:

// PRE: 0 <= i < vec.size()

// POST: Returns the address of the i-th element of vec.

int* lookup(const std::vector<int> vec &, const int i) {

}

1.

// PRE: a, b, and res are valid pointers to integer values.

// POST: integer at location res contains the result of adding the integer at loc

void add(int* res, const int* a, const int* b) {

}

2.

// PRE: a <= b are valid pointers to elements of the same contiguous memory block

// POST: Returns the number of elements in between those pointers (not including

int num_elem(const int* a, const int* b) {

}

3.

// PRE: str point within an allocated memory block containing a null character (0

// after str.

// POST: Returns the pointer to first element after str (inclusive)

// that is equal to ch, otherwise return 0.

const char* first_char(const char* str, const char ch) {

// hint: use natural iteration over str

}

4.

Task 4: Quick Sort

Open Task (/solve/fkzhxfJJ295moaqA7)

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifmp/AS18/ex11e

3 iš 5 2018-11-29 10:45

Task
Write a program that implements a naive sorting algorithm that sort the contents of an

integer array in ascending order. The algorithm to be used is described in steps below.

There is no need to invent a sorting algorithm, nor to write particularly efficient code.

Specific rules for this task:

The goal of this exercise is to exercise the usage of pointers: Instead of using a

vector to manage the values to be sorted, you have to explicitly allocate the

necessary memory yourself and to traverse the memory block using ranges.

1.

In particular, usage of vectors is forbidden.2.

Dereferencing pointers with operator [] , or performing pointer

addition/substraction (due to the equation *(a+i) = a[i]) is forbidden as well,

with the only exception of function input . Note that pointer

incrementation/decrementation is allowed, and is the expected method to traverse

memory ranges.

3.

Usage of library sorting function is of course not allowed.4.

Algorithm

Ranges of a memory block are given as interval . points to the first

element of the range and points just behind the last element of the range. E.g., for

a chunk of memory of size N beginning at pointer ptr , int* begin = ptr and

int* end = ptr + N .

Write a function void input(std::istream& is, int*& begin, int*& end)

that read a sequence of integer values from stream is , and store them in a

freshly allocated memory range. The bounds of the range must be stored in

begin and end at the end of the function execution.

The sequence of integer values is given in the following format:

an unsigned integer giving the length of the sequence.1.

 successive (signed) integer values giving the content of the sequence2.

1.

Write a function void output(std::ostream& os,const int* begin,const

int* end) that displays the values in range from begin to end , in order,

separated by single spaces. You can test it (and input) by writing a main that input

a sequence and output it immediately.

2.

Write a function void swap(int* a,int* b) that exchange the content of

location a and b . You can test it with a program that declares two integers

variables with chosen values, swap them, then output their content.

3.

Write a function int* pivot(int* begin,int* end) that re-order the content

of a non-empty range such that:

The element initially at begin (called the pivot) is at the returned location

res .

1.

All elements strictly lower than the pivot are moved at location before res2.

All elements greater or equal than the pivot are moved at location after3.

4.

[begin, end) begin
end

N
N

[begin; end)

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifmp/AS18/ex11e

4 iš 5 2018-11-29 10:45

res

This is done by repeatedly

picking any leftover non-pivot element (like the one located at begin+1),1.

swapping with either the first or last element of the range, depending on

whether the element is lower than the pivot or not, so that the chosen

element is now at a correct position

2.

then shrinking the range to exclude the now well-placed chosen element3.

until only the pivot is left in the range. In other words, the method is to eject

elements on the expected side of the range until the range is reduced to the pivot.

Write a recursive function void quicksort(int* begin,int* end) that sort a

range by pivoting, then recursively sorting the halves on each side of the pivot

result. Make sure to correctly handle empty range, as well as to ensures that the

range size decrease on each recursive call, as otherwise your function may not

terminate.

5.

Write a program that use functions input , quicksort and output to input a

sequence of integer value, sort it and output the sorted sequence.

6.

Exercise 11: Classes & Pointers - Print View - E... https://expert.ethz.ch/print/ifmp/AS18/ex11e

5 iš 5 2018-11-29 10:45

