Informatik für Mathematiker und Physiker - AS18

Exercise 3: Boolean expressions & Basic loops

Handout: 2. Okt. 2018 06:00

Due: 8. Okt. 2018 23:59

Task 1.5: two-complement integer representation

Open Task (https://expert.ethz.ch/solve/AwbPtawgCCsttbHK8)

Task

Now we assume an architecture using 4-bit arithmetics using two's complement representation of integers. Convert the following binary numbers to decimal numbers (0b is a prefix that indicates binary encoding):

- 1. 0b0001
- 2. 0b0101
- 3. 0b0111
- 4. 0b1000
- 5. 0b1010
- 6. 0b1111

Task 3: From decimal to binary representation

Open Task (https://expert.ethz.ch/solve/STL6kcBcEo8AHGJiJ)

Task

Write a program that inputs a natural, i.e., unsigned int, number n and outputs the binary digits of n in the *correct* order (i.e., starting with the most significant bit). Do not output the leading zeros.

Input

The decimal digits of a non-negative natural number that can fit into an unsigned int, in decreasing significance order, without leading zeroes neither separators (like spaces) between digits.

Example:

65533

Output

The binary digits of the same non-negative natural number, in decreasing significance order, without leading zeroes neither separators between digits.

Example:

1111111111111101

Task 2: From Natural Language to C++

Open Task (https://expert.ethz.ch/solve/Saufrm6qpuHSsTaES)

Task

Translate the following natural language expressions to C++ expressions.

Example: a is greater than a and smaller than a. \Rightarrow **Solution**: a > 3 && a < 5

- 1. a greater than b and the difference between a and b is smaller than 15.
- 2. a is an even natural number greater than 3.
- 3. a is at most 5 times greater than b and at least 5 times greater than c.
- 4. Either a is true or b and c are both false.
- 5. a is false and b is zero.

Task 4b: Fibonacci overflow check

Open Task (https://expert.ethz.ch/solve/cEeTK7Bu9BveR72cb)

Task

Fibonacci numbers are the integers in the following sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$ Each number is the sum of the two previous numbers.

Fibonacci numbers grow fast, thus they can easily exceed the value range of a 32-bit number. Think of a general way how you can check whether the result of an addition would exceed the range (overflow) of a 32-bit number without actually performing the addition (causing the overflow).

Write a program that asks the user for an integer n and then prints the first n Fibonacci numbers. Print each number on a new line. Use an unsigned int (32-bit) to represent the current Fibonacci number. Using the check described above, if calculating the next Fibonacci number would exceed the range representable by an unsigned int (32-bit), exit the loop.

Finally, on a new line print the total number of Fibonacci numbers printed x, and the number of Fibonacci numbers requested n in the format: x of n.

Input

A natural number n.

Example:

```
3
```

Output

The n first Fibonacci numbers, one per line, nothing else on each output line, except for numbers that exceed the range representable by unsigned int. On the next output line, exactly \times of n, where \times stands for the number of printed Fibonacci numbers and n for the number of requested Fibonacci numbers.

Example:

```
0
1
1
3 of 3
```

Task 1: Expression Evaluation

Open Task (https://expert.ethz.ch/solve/ogsndcBpSSY8t6yXK)

Task

Which of the following expressions evaluate to true, which to false?

```
    3 >= 3
    true || false && false
    (true || false) && false
    3 > (1 < true)</li>
    8 > 4 > 2 > 1
```

6. 2 < a < 4 (a is a variable of type int)

Task 4a: Fibonacci primes

Open Task (https://expert.ethz.ch/solve/zGmmf3Rf6isR2vREz)

Task

Fibonacci numbers are the integers in the following sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$ Each number is the sum of the two previous numbers.

Fibonacci primes are Fibonacci numbers that are also prime numbers. Write a program that asks the user for an integer m and then computes and prints all Fibonacci primes between 0 and m (including). Print each number on a new line.

Finally, on a new line print the total number of Fibonacci primes found.

Input

A natural number m.

Example:

14

Output

The Fibonnaci primes between $\,_0$ and $\,_m$, inclusive, in increasing order, followed by the number of such primes. There should be exactly one number per output line and nothing else.

Example:

2 3 5 13 4