
Exercise Class 7

1 Floating Point Number Systems

1.1 Exercise: Addition

1.1.1 Task

Consider the normalized floating point number system

F ∗ (β, p, emin, emax)

with β = 2, p = 3, emin = −4, emax = 4.
Compute the following expressions as the parentheses suggest, representing each inter-

mediate result (and the final result) in the normalized floating point system according
to the rules of computing with floating point numbers.

(10 + 0.5) + 0.5
dezimal binary

10 ?????

+ 0.5 ?????

= ?????

+ 0.5 ?????

= ?? ← ?????

(0.5 + 0.5) + 10
dezimal binary

0.5 ?????

+ 0.5 ?????

= ?????

+ 10 ?????

= ?? ← ?????

1



1.1.2 Solution

(10 + 0.5) + 0.5
dezimal binär / binary

10 1.01 · 23

+ 0.5 0.0001 · 23

= 1.01 · 23

+ 0.5 0.0001 · 23

= 10 ← 1.01 · 23

(0.5 + 0.5) + 10
dezimal binär / binary

0.5 1.00 · 2−1

+ 0.5 1.00 · 2−1

= 1.00 · 20

+ 10 1010.0 · 20

= 12 ← 1.10 · 23

2 References

References allow us to build an alias for an already existing object. They can be used as
follows:

int a = 3;

int& b = a;

b = 2;

std::cout << a; // Output: 2

References are usually used as function parameters or return values. If the parameters
of a function are not of reference type, we say that we “pass them to the function by
value”. This is what we did in all of our functions until now. For example:

int foo (int i) { ... }

In this case the function makes its own copies of the values, and uses these copies to
do something in the function body. If the paramaters of a function are of reference type,
hence will become aliases of the call arguments, we say that we “pass the arguments by
references”. For example:

int foo (int& i) { ... }

There at least three cases where it is useful to use references:

1. For implementing functions that need to return more than one result. For example:
// POST: return value is the number of distinct real solutions of the quadratic

// equation ax^2 + bx + c = 0. If there are infinitely many solutions

// (a = b = c = 0), the return value is -1. Otherwise, the return value

// is a number n from {0,1,2} and the solutions are written to s1, ... , sn

int solve_quadratic_equation (const double a, const double b, const double c,

double& s1, double& s2)

2. Passing a reference to a function we avoid copying the parameter. All a refer-
ence does, is to tell the program the location of the variable which the reference
references. Now imagine you have a function that reads one entry in a gigantic
vector:

2



void read_i (Vector& v, unsigned int i);

The vector v better be a reference, else one would copy the whole thing everytime
an entry is read. If we use references it just tells the function where to find the one
original vector so it can read the entry.

3. Sometimes it is impossible to copy something. std::cout is an example of this: There
is only one output stream, we cannot make a copy of it like we could make a copy
of an integer.

int a = 5;

int b = a; // making a copy of an int

std::ostream o = std::cout; // Error: copying std::cout is impossible

std::ostream& o = std::cout; // This works, try it!

Not only function parameters can be references, but also references can be used as
function return types. This is, for example, useful for:

int& increment (int& m) {

return ++m;

}

int main () {

int n = 3;

increment (increment (n));

std::cout << n << "\n"; // outputs 5

return 0;

}

Here, the return type of the inner increment (n) is an int reference, returning n as an lvalue.
The outer increment function on the other hand absorbs the same l-value as its argument,
resulting in n = 5.

3


	Floating Point Number Systems
	Exercise: Addition
	Task
	Solution


	References

