
13. Pointers, Algorithms, Iterators and
Containers II

Iterations with Pointers, Arrays: Indices vs. Pointers, Arrays and
Functions, Pointers and const, Algorithms, Container and Iteration,
Vector-Iteration, Typdef, Sets, the Concept of Iterators

367

Recall: Pointers running over the Array

Beispiel

int a[5] = {3, 4, 6, 1, 2};
for (int∗ p = a; p < a+5; ++p)

std::cout << ∗p << ’ ’; // 3 4 6 1 2

An array can be converted into a pointer to its first element.
Pointers “know” arithmetics and comparisons.
Pointers can be dereferenced.

⇒ Pointers can be used to operate on arrays.

368

Arrays: Indices vs. Pointer

int a[n];

// Task: set all elements to 0

// Solution with indices is more readable
for (int i = 0; i < n; ++i)

a[i] = 0;

// Solution with pointers is faster and more generic
int* begin = a; // Pointer to the first element
int* end = a+n; // Pointer past the end
for (int* p = begin; p != end; ++p)

*p = 0;

369

Arrays and Indices
// Set all elements to value
for (int i = 0; i < n; ++i)

a[i] = value;

Computational costs

s

Adresse von a[0] = a+ 0 · s address of a[n-1] = a+ (n− 1) · s

⇒ One addition and one multiplication per element
370

The Truth about Random Access

The expression

a[i]

is equivalent to

*(a + i)

a+ i · s

371

Arrays and Pointers
// set all elements to value
for (int* p = begin; p != end; ++p)
∗p = value;

Computational cost

begin end

p

p

⇒ one addition per element
372

Reading a book . . . with indices . . . with pointers

Random Access
open book on page 1
close book
open book on pages 2-3
close book
open book on pages 4-5
close book
....

Sequential Access
open book on page 1
turn the page
turn the page
turn the page
turn the page
turn the page
...

373

Array Arguments: Call by (const) reference

void print_vector (const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {

std::cout << v[i] << " ";
}

}
void make_null_vector (int (&v)[3]) {

for (int i = 0; i<3 ; ++i) {
v[i] = 0;

}
}

374

Array Arguments: Call by value (not really ...)

void make_null_vector (int v[3]) {
for (int i = 0; i<3 ; ++i) {

v[i] = 0;
}

}
...
int a[10];
make_null_vector (a); // only sets a[0], a[1], a[2]

int∗ b;
make_null_vector (b); // no array at b, crash!

375

Array Arguments: Call by value does not exist

Formal argument types T[n] or T[] (array over T) are
equivalent to T* (pointer to T)
For passing an array the pointer to its first element is passed
length information is lost
Function cannot work on a part of an array (example: search for
an element in the second half of an array)

376

Arrays in Functions

Covention of the standard library: pass an array (or a part of it) using
two pointers

begin: pointer to the first element
end: pointer behind the last element
[begin, end) designates the elements of the part of the array
valid range means: there are array elements “available” here.
[begin, end) is empty if begin == end

377

Arrays in Functions: fill

// PRE: [begin, end) is a valid range
// POST: every element within [begin, end) will be set to value
void fill (int* begin, int* end, int value) {

for (int* p = begin; p != end; ++p)
*p = value;

}
...

int a[5];
fill (a, a+5, 1);
for (int i=0; i<5; ++i)

std::cout << a[i] << " "; // 1 1 1 1 1

expects pointers to the first element of a
range

pass the address (of the first element)
of a

378

Pointers are not Integers!

Addresses can be interpreted as house numbers of the memory, that is,
integers

But integer and pointer arithmetics behave differently.

ptr + 1 is not the next house number but the s-next, where s is the memory
requirement of an object of the type behind the pointer ptr.

Integers and pointers are not compatible

int* ptr = 5; // error: invalid conversion from int to int*
int a = ptr; // error: invalid conversion from int* to int

379

Null-Pointer

special pointer value that signals that no object is pointed to
represented b the integer number 0 (convertible to T*)

int* iptr = 0;
cannot be dereferenced (checked during runtime)
to avoid undefined behavior

int* iptr; // iptr points into ‘‘nirvana’’
int j = *iptr; // illegal address in *

380

Pointer Subtraction

If p1 and p2 point to elements of the same array a with length n

and 0 ≤ k1, k2 ≤ n are the indices corresponding to p1 and p2,
then

p1 - p2 has value k1 - k2

Only valid if p1 and p2 point into the same array.

The pointer difference describes “how far away the elements are
from each other”

381

Pointer Operators

Description Op Arity Precedence Associativity Assignment

Subscript [] 2 17 left R-value→ L-
value

Dereference * 1 16 right R-Wert →
L-Wert

Address & 1 16 rechts L-value →
R-value

Precedences and associativities of +, -, ++ (etc.) like in chapter 2

382

Mutating Functions

Pointers can (like references) be used for functions with effect

Beispiel
int a[5];
fill(a, a+5, 1); // modifies a

pass address of the first element of a

pass address of the element past a

Such functions are called mutating

383

Const Correctness

There are also non-mutating functions that access elements of an array only in
a read-only fashion

// PRE: [begin , end) is a valid and nonempty range
// POST: the smallest value in [begin, end) is returned
int min (const int∗ begin ,const int∗ end)
{

assert (begin != end);
int m = ∗begin; // current minimum candidate
for (const int∗ p = ++begin; p != end; ++p)

if (∗p < m) m = ∗p;
return m;

}

mark with const: value of objects cannot be modified through such
const-pointers.

384

const is not absolute

The value at an address can change even if a const-pointer
stores this address.

beispiel
int a[5];
const int* begin1 = a;
int* begin2 = a;
*begin1 = 1; // error *begin1 is constt
*begin2 = 1; // ok, although *begin will be modified

const is a promise from the point of view of the const-pointer, not
an absolute guarantee

385

Wow – Palindromes!
// PRE: [begin end) is a valid range of characters
// POST: returns true if the range forms a palindrome
bool is_palindrome (const char∗ begin, const char∗ end) {

while (begin < end)
if (*(begin++) != *(--end)) return false;

return true;
}

R O T O R

begin end

386

Algorithms

For many problems there are prebuilt solutions in the standard
library

Example: filling an array

#include <algorithm> // needed for std::fill
...

int a[5];
std::fill (a, a+5, 1);

for (int i=0; i<5; ++i)
std::cout << a[i] << " "; // 1 1 1 1 1

387

Algorithms

Advantages of using the standard library

simple programs
less sources of errors
good, efficient code
code independent from the data type
there are also algorithms for more complicated problems such as
the efficient sorting of an array

388

Algorithms

The same prebuilt algorithms work for many different data types.

Example: filling an array

#include <algorithm> // needed for std::fill
...

char c[3];
std::fill (c, c+3, "!");

for (int i=0; i<3; ++i)
std::cout << c[i]; // !!!

389

Excursion: Templates
Templates permit the provision of a type as argument

The compiler finds the matching type from the call arguments

Example fill with templates

template <typename T>
void fill (T∗ begin , T∗ end, T value) {

for (T∗ p = begin; p != end; ++p)
∗p = value;

}
int a[5];
fill (a, a+5, 1); // 1 1 1 1 1

char c[3];
fill (c, c+3, ’!’); // !!!

The triangular brackets we already
know from vectors. Vectors are also im-
plemented as templates.

std::fill is also implemented as template!
390

Containers and Traversal

Container: Container (Array, Vector, . . .) for elements
Traversal: Going over all elements of a container

Initialization of all elements (fill)
Find the smallest element (min)
Check properties (is_palindrome)
· · ·

There are a lot of different containers (sets, lists, . . .)

391

Iteration Tools

Arrays: indices (random access) or pointers (natural)
Array algorithms (std::) use pointers

int a[5];
std::fill (a, a+5, 1); // 1 1 1 1 1

How do you traverse vectors and other containers?
std::vector<int> v (5, 0); // 0 0 0 0 0
std::fill (?, ?, 1); // 1 1 1 1 1

392

Vectors: too sexy for pointers

Our fill with templates does not work for vectors. . .
. . . and std::fill also does not work in the following way:

std::vector<int> v (5, 0);
std::fill (v, v+5, 1); // Compiler error message !

Vectors are snobby. . .

they refuse to be converted to pointers,. . .
. . . and cannot be traversed using pointers either.
They consider this far too primitive.

393

Also in memory: Vector 6= Array
bool a[8] = {true, true, true, true, true, true, true, true};

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

true

8 Byte (Speicherzelle = 1 Byte = 8 Bit)

std::vector<bool> v (8, true);

0b11111111 1 Byte bool*-pointer does not fit here because
it runs byte-wise and not bit-wise

394

Vector-Iterators
Iterator: a “pointer” that fits to the container.

Example: fill a vector using std::fill – this works

#include <vector>
#include <algorithm> // needed for std::fill

...
std::vector<int> v(5, 0);
std::fill (v.begin(), v.end(), 1);
for (int i=0; i<5; ++i)

std::cout << v[i] << " "; // 1 1 1 1 1

395

Vector Iterators
For each vector there are two iterator types defined

std::vector<int>::const_iterator
for non-mutating access
in analogy with const int* for arrays

std::vector<int>::iterator
for mutating access
in analogy with int* for arrays

A vector-iterator it is no pointer, but it behaves like a pointer:
it points to a vector element and can be dereferenced (*it)
it knows arithmetics and comparisons (++it, it+2, it < end,. . .)

396

Vector-Iterators: begin() and end()
v.begin() points to the first element of v

v.end() points past the last element of v

We can traverse a vector using the iterator. . .

for (std::vector<int>::const_iterator it = v.begin();
it != v.end(); ++it)

std::cout << ∗it << " ";

. . . or fill a vector.

std::fill (v.begin(), v.end(), 1);

397

Type names in C++ can become looooooong

std::vector<int>::const_iterator
The declaration of a type alias helps with

typedef Typ Name;

existing type Name that can now be used
to access the type

Examples
typedef std::vector<int> int_vec;
typedef int_vec::const_iterator Cvit;

398

Vector Iterators work like Pointers

typedef std::vector<int>::const_iterator Cvit;

std::vector<int> v(5, 0); // 0 0 0 0 0

// output all elements of a, using iteration
for (Cvit it = v.begin(); it != v.end(); ++it)

std::cout << *it << " ";
Vector element
pointed to by it

399

Vector Iterators work like Pointers

typedef std::vector<int>::iterator Vit;

// manually set all elements to 1
for (Vit it = v.begin(); it != v.end(); ++it)
∗it = 1;

// output all elements again, using random access
for (int i=0; i<5; ++i)

std::cout << v[i] << " ";

increment the iterator

short term for
*(v.begin()+i)

400

Other Containers: Sets

A set is an unordered collection of elements, where each element
is contained only once.

{1, 2, 1} = {1, 2} = {2, 1}
C++: std::set<T> for a set with elements of type T

401

Sets: Example Application

Determine if a given text contains a question mark and output all
pairwise different characters!

402

Letter Salad (1)
Consider a text as a set of characters.

#include<set>
...
typedef std::set<char>::const_iterator Csit;
...
std::string text =
"What are the distinct characters in this string?";

std::set<char> s (text.begin(),text.end());

Set is initialized with String iterator range
[text.begin(), text.end())

403

Letter Salad (2)
Determine if the text contains a question mark and output all characters

// check whether text contains a question mark
if (std::find (s.begin(), s.end(), ’?’) != s.end())

std::cout << "Good question!\n";

// output all distinct characters
for (Csit it = s.begin(); it != s.end(); ++it)

std::cout << ∗it;

Search algorithm, can be called with arbitrary
iterator range

Ausgabe:
Good question!
?Wacdeghinrst

404

Sets and Indices?

Can you traverse a set using random access? No.

for (int i=0; i<s.size(); ++i)
std::cout << s[i];

error message: no subscript operator

Sets are unordered.

There is no “ith element”.
Iterator comparison it != s.end() works, but not it < s.end()!

405

The Concept of Iterators

C++knows different iterator types

Each container provides an associated iterator type.
All iterators can dereference (*it) and traverse (++it)
Some can do more, e.g. random access (it[k], or, equivalently
*(it + k)), traverse backwards (--it),. . .

406

The Concept of Iterators

Every container algorithm is generic, that means:

The container is passed as an iterator-range
The algorithm works for all containers that fulfil the requirements
of the algorihm

std::find only requires * and ++ , for instance

The implementation details of a container are irrelevant.

407

Why Pointers and Iterators?

Would you not prefer the code

for (int i=0; i<n; ++i)
a[i] = 0;

over the following code?

for (int* ptr=a; ptr<a+n; ++ptr)
*ptr = 0;

Maybe, but in order to use the generic std::fill(a, a+n, 0);,
we have to work with pointers.

408

Why Pointers and Iterators?

In order to use the standard library, we have to know that:

a static array a is a the same time a pointer to the first element of a
a+i is a pointer to the element with index i

Using the standard library with different containers: Pointers⇒
Iterators

409

Why Pointers and Iterators?

Example: To search the smallest element of a container in the range
[begin, end) use the function call

std::min_element(begin, end)

returns an iterator to the smallest element
To read the smallest element, we need to dereference:

*std::min_element(begin, end)

410

That is Why: Pointers and Iterators

Even for non-programmers and “dumb” users of the standard
library: expressions of the form
*std::min_element(begin, end)
cannot be understood without knowing pointers and iterators.
Behind the scenes of the standard library: working with dynamic
memory based on pointers is indispensible. More about this later
in this course.

411

14. Recursion 1

Mathematical Recursion, Termination, Call Stack, Examples,
Recursion vs. Iteration

412

Mathematical Recursion

Many mathematical functions can be naturally defined recursively.
This means, the function appears in its own definition

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

413

Recursion in C++: In the same Way!

n! =

{
1, if n ≤ 1

n · (n− 1)!, otherwise

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1)
return 1;

else
return n * fac (n-1);

}
414

Infinite Recursion

is as bad as an infinite loop. . .
. . . but even worse: it burns time and memory

void f()
{

f(); // f() -> f() -> ... stack overflow
}

415

Recursive Functions: Termination

As with loops we need

progress towards termination

fac(n):
terminates immediately for n ≤ 1, otherwise the function is called
recusively with < n .

„n is getting smaller for each call.”

416

Recursive Functions: Evaluation

Example: fac(4)

// POST: return value is n!
unsigned int fac (unsigned int n)
{

if (n <= 1) return 1;
return n * fac(n-1); // n > 1

}

Initialization of the formal argument: n = 4
recursive call with argument n− 1 == 3

417

The Call Stack

For each function call:
push value of the call argument onto
the stack
always work with the top value
at the end of the call the top value is
removed from the stack

std:cout < < fac(4)

n = 4

n = 3

n = 2

n = 1n = 1 1! = 1

n = 2 2 · 1! = 2

n = 3 3 · 2! = 6

n = 4 4 · 3! = 24

fac(4)

fac(3)

fac(2)

fac(1) 1

2

6

24

418

Euclidean Algorithm

finds the greatest common divisor gcd(a, b) of two natural
numbers a and b

is based on the following mathematical recursion (proof in the
lecture notes):

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

419

Euclidean Algorithm in C++

gcd(a, b) =

{
a, if b = 0

gcd(b, a mod b), otherwise

unsigned int gcd
(unsigned int a, unsigned int b)

{
if (b == 0)

return a;
else

return gcd (b, a % b);
}

Termination: a mod b < b, thus b
gets smaller in each recursive call.

420

Fibonacci Numbers

Fn :=





0, if n = 0

1, if n = 1

Fn−1 + Fn−2, if n > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .

421

Fibonacci Numbers in C++

Laufzeit
fib(50) takes “forever” because it computes
F48 two times, F47 3 times, F46 5 times, F45 8 times, F44 13 times,
F43 21 times ... F1 ca. 109 times (!)

unsigned int fib (unsigned int n)
{

if (n == 0) return 0;
if (n == 1) return 1;
return fib (n-1) + fib (n-2); // n > 1

}

Correctness
and
termination
are clear.

423

Fast Fibonacci Numbers

Idea:

Compute each Fibonacci number only once, in the order
F0, F1, F2, . . . , Fn!
Memorize the most recent two numbers (variables a and b)!
Compute the next number as a sum of a and b!

424

Fast Fibonacci Numbers in C++

unsigned int fib (unsigned int n){
if (n == 0) return 0;
if (n <= 2) return 1;
unsigned int a = 1; // F_1
unsigned int b = 1; // F_2
for (unsigned int i = 3; i <= n; ++i){

unsigned int a_old = a; // F_i-2
a = b; // F_i-1
b += a_old; // F_i-1 += F_i-2 -> F_i

}
return b;

}

(Fi−2, Fi−1) −→ (Fi−1, Fi)

a b

very fast, also for fib(50)

425

Recursion and Iteration

Recursion can always be simulated by

Iteration (loops)
explicit “call stack” (e.g. array)

Often recursive formulations are simpler, but sometimes also less
efficient.

426

