
12. Arrays II

Strings, Lindenmayer Systems, Multidimensional Arrays, Vectors of
Vectors, Shortest Paths, Arrays and Vectors as Function Arguments

408

Texts

can be represented with the type std::string from the standard
library.

std::string text = "bool";

defines a string with length 4

A string is conceptually an array with base type char, plus
additional functionality
Requires #include <string>

409

Strings: pimped char-Arrays
A std::string. . .

knows its length

text.length()
returns its length as int (call of a member function; will be explained later

can be initialized with variable length

std::string text (n, ’a’)

text is filled with n ’a’s

“understands” comparisons

if (text1 == text2) ...
true if text1 and text2 match 410

Lindenmayer-Systems (L-Systems)
Fractals made from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid
Lindenmayer (1925 – 1989) to model the growth of plants.

411

Definition and Example

Alphabet Σ

Σ∗: all finite words over Σ

Production P : Σ→ Σ∗

Initial word s0 ∈ Σ∗

{F , + , −}
c P (c)
F F + F +
+ +
− −

F

Definition
The triple L = (Σ, P, s0) is an L-System.

412

The Described Language
Words w0, w1, w2, . . . ∈ Σ∗: P (F) = F + F +

w0 := s0

w1 := P (w0)

w2 := P (w1)

...

w0 := F

w1 := F + F +

w2 := F + F + + F + F + +

...
Definition
P (c1c2 . . . cn) := P (c1)P (c2) . . . P (cn)

F F

P (F) P (F)

+ +

P (+) P (+)

413

Turtle-Graphics
Turtle with position and direction.

Turtle understands 3 commands:
F : one step for-
ward X

+ : turn by 90 de-
grees X

− : turn by−90 de-
grees X

trace

414

Draw Words!

w1 = F + F +X

415

lindenmayer.cpp: Main Program
Words w0, w1, w2, . . . wn ∈ Σ∗: std::string

...
#include "turtle.h"
...
std::cout << "Number of iterations =? ";
unsigned int n;
std::cin >> n;

std::string w = "F";

for (unsigned int i = 0; i < n; ++i)
w = next_word (w);

draw_word (w);

w = w0 = F

w = wi → w = wi+1

draw w = wn!
416

lindenmayer.cpp: next word
// POST: replaces all symbols in word according to their
// production and returns the result
std::string next_word (std::string word) {

std::string next;
for (unsigned int k = 0; k < word.length(); ++k)

next += production (word[k]);
return next;

}

// POST: returns the production of c
std::string production (char c) {

switch (c) {
case ’F’: return "F+F+";
default: return std::string (1, c); // trivial production c −> c
}

} 417

lindenmayer.cpp: draw word
// POST: draws the turtle graphic interpretation of word
void draw_word (std::string word)
{

for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {
case ’F’:

turtle::forward();
break;

case ’+’:
turtle::left(90);
break;

case ’−’:
turtle::right(90);

}
}

jump to the case that corresponds to word[k] .

forward! (function from our turtle library)
skip the remaining cases

turn by 90 degrees! (function from our turtle library)

turn by -90 degrees (function from our turtle library)

418

L-Systems: Extensions

Additional symbols without graphical interpretation (dragon.cpp)
Arbitrary angles (snowflake.cpp)
Saving and restoring the turtle state→ plants (bush.cpp)

419

L-System-Challenge: amazing.cpp!

420

Multidimensional Arrays

are arrays of arrays
can be used to store tables, matrices,

int a[2][3]

a contains two elements and each of
them is an array of length 3 with base
type int

421

Multidimensional Arrays

In memory: flat

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

a[0] a[1]

in our head: matrix columns

rows

0 1 2

0 a[0][0] a[0][1] a[0][2]

1 a[1][0] a[1][1] a[1][2]

422

Multidimensional Arrays

are arrays of arrays of arrays

T a[expr1] ... [exprk]

a has expr1 elements and each of them is an array with
expr2 elements each of which is an array of expr3 ele-
ments and ...

constant expressions

423

Multidimensional Arrays

Initialization

int a[][3] =
{

{2,4,6},{1,3,5}
}

2 4 6 1 3 5

First dimension can be omitted

424

Vectors of Vectors

How do we get multidimensional arrays with variable dimensions?
Solution: vectors of vectors

Example: vector of length n of vectors with length m:

std::vector<std::vector<int> > a (n,
std::vector<int>(m));

425

Application: Shortest Paths
Factory hall (n×m square cells)

S

T

Starting position of the robot
target position of the robot

obstacle

free cell

Goal: find the shortest path
of the robot from S to T via
free cells.

426

Application: shortest paths
Solution

S

T

427

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

This solves the original problem also: start in T; fol-
low a path with decreasing lenghts

starting position

target position,
shortest path:
length 21

21

20

19 18

428

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 8 9 15 16 17 18 19

3 9 10 14 15 16 17 18

2 1 0 10 11 12 13 14 15 16 17

3 2 1 11 12 13 17 18

4 3 2 10 11 12 20 19 18 19

5 4 3 9 10 11 21 20 19 20

6 5 4 8 9 10 22 21 20 21

7 6 5 6 7 8 9 23 22 21 22

429

Preparation: Input Format

8 12
------X-----
-XXX--X-----
--SX--------
---X---XXX--
---X---X----
---X---X----
---X---X-T--
-------X----

⇒ S

T

rows columns

start position target position

obstacle

free cell

430

Preparation: Sentinels

S

T

row 0, column 0 row 0, column m+1

row n, column 0 row n+1, column m+1

Surrounding sentinels to avoid special
cases.

431

Preparation: Initial Marking

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-2

start

432

The Shortest Path Program

Read in dimensions and provide a two dimensional array for the
path lengths
#include<iostream>
#include<vector>

int main()
{

// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns

// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int> > floor (n+2, std::vector<int>(m+2));

Sentinel

433

The Shortest Path Program

Input the assignment of the hall and intialize the lengths
int tr = 0;
int tc = 0;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floor[r][c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r][c] = -2;
else if (entry == ’-’) floor[r][c] = -1;

}

435

Das Kürzeste-Wege-Programm

Add the surrounding walls
for (int r=0; r<n+2; ++r)

floor[r][0] = floor[r][m+1] = -2;

for (int c=0; c<m+2; ++c)
floor[0][c] = floor[n+1][c] = -2;

436

Mark all Cells with their Path Lengths

Step 2: all cells with path length 2

2 1 0
2 1

2

Tunmarked neighbours of
cells with length 1

unmarked neighbours of
cells with length 2

437

Main Loop

Find and mark all cells with path lengths i = 1, 2, 3...
for (int i=1;; ++i) {

bool progress = false;
for (int r=1; r<n+1; ++r)

for (int c=1; c<m+1; ++c) {
if (floor[r][c] != −1) continue;
if (floor[r−1][c] == i−1 || floor[r+1][c] == i−1 ||

floor[r][c−1] == i−1 || floor[r][c+1] == i−1) {
floor[r][c] = i; // label cell with i
progress = true;

}
}

if (!progress) break;
}

438

The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.
int r = tr; int c = tc;
while (floor[r][c] > 0) {

const int d = floor[r][c] − 1;
floor[r][c] = −3;
if (floor[r−1][c] == d) −−r;
else if (floor[r+1][c] == d) ++r;
else if (floor[r][c−1] == d) −−c;
else ++c; // (floor[r][c+1] == d)

}

439

Finish

-3 -3 -3 -3 -3 -3 15 16 17 18 19

-3 9 -3 14 15 16 17 18

-3 -3 0 10 -3 -3 -3 -3 -3 -3 17

3 2 1 11 12 13 -3 18

4 3 2 10 11 12 20 -3 -3 19

5 4 3 9 10 11 21 -3 19 20

6 5 4 8 9 10 22 -3 20 21

7 6 5 6 7 8 9 23 22 21 22

440

The Shortest Path Program: output

Output
for (int r=1; r<n+1; ++r) {

for (int c=1; c<m+1; ++c)
if (floor[r][c] == 0)

std::cout << ’S’;
else if (r == tr && c == tc)

std::cout << ’T’;
else if (floor[r][c] == -3)

std::cout << ’o’;
else if (floor[r][c] == -2)

std::cout << ’X’;
else

std::cout << ’-’;
std::cout << "\n";

}

⇒

ooooooX-----
oXXX-oX-----
ooSX-oooooo-
---X---XXXo-
---X---X-oo-
---X---X-o--
---X---X-T--
-------X----

441

The Shortest Paths Program

Algorithm: Breadth First Search
The program can become pretty slow because for each i all cells
are traversed
Improvement: for marking with i, traverse only the neighbours of
the cells marked with i− 1.

442

Arrays as Function Arguments

Arrays can also be passed as reference arguments to a function.
(here: const because v is read-only)

void print_vector(const int (&v)[3]) {
for (int i = 0; i<3 ; ++i) {

std::cout << v[i] << " ";
}

}

443

Arrays as Function Argumenbts

This also works for multidimensional arrays.

void print_matrix(const int (&m)[3][3]) {
for (int i = 0; i<3 ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}

444

Vectors as Function Arguments

Vectors can be passed by value or by reference

void print_vector(const std::vector<int>& v) {
for (int i = 0; i<v.size() ; ++i) {

std::cout << v[i] << " ";
}

}

Here: call by reference is more efficient because the vector could be
very long

445

Vectors as Function Arguments

This also works for multidimensional vectors.

void print_matrix(const std::vector<std::vector<int> >& m) {
for (int i = 0; i<m.size() ; ++i) {

print_vector (m[i]);
std::cout << "\n";

}
}

446

13. Pointers, Algorithms, Iterators and
Containers I

Pointers, Address operator, Dereference operator, Array-to-Pointer
Conversion

447

Strange Things. . .
#include<iostream>
#include<algorithm>

int main(){
int a[] = {3, 2, 1, 5, 4, 6, 7};

// output the smallest element of a
std::cout << *std::min_element (a, a + 7);

return 0;
}

??? ???

We have to undestand pointers first!
448

References: Where is Anakin?

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker;
darth_vader = 22;

// anakin_skywalker = 22

“Search for Vader, and
Anakin find you will”

449

Pointers: Where is Anakin?

int anakin_skywalker = 9;
int* here = &anakin_skywalker;
std::cout << here; // Address
*here = 22;

// anakin_skywalker = 22

“Anakins address is
0x7fff6bdd1b54.”

450

Swap with Pointers

void swap(int∗ x, int∗ y){
int t = ∗x;
∗x = ∗y;
∗y = t;

}

...
int a = 2;
int b = 1;
swap(&a, &b);
std::cout << "a= " << a << "\n"; // 1
std::cout << "b = " << b << "\n"; // 2

451

Pointer Types

T* Pointer type to base type T.

An expression of type T* is called pointer (to T).

452

Pointer Types
Value of a pointer to T is the address of an object of type T.

Beispiele
int* p; Variable p is pointer to an int.
float* q; Variable q is pointer to a float.

integer value p = adr

adr

int* p = ...;

453

Address Operator

The expression

& lval

L-value of type T

provides, as R-value, a pointer of type T* to an object at the address
of lval

The operator & is called Address-Operator.

454

Address Operator

Example
int i = 5;
int* ip = &i; // ip initialized

// with address of i.

i = 5ip = &i

455

Dereference Operator

The expression

*rval

R-value of type T*

returns as L-value the value of the object at the address represented
by rval.

The operator * is called Derecerence Operator.

456

Dereference Operator
Beispiel
int i = 5;
int* ip = &i; // ip initialized

// with address of i.
int j = *ip; // j == 5

*ip = i = 5 ipj = 5

Value
457

Address and Dereference Operators

pointer (R-value)

object (L-value)

& *

458

Pointer Types

Do not point with a double* to an int!

Examples

int* i = ...; // at address i “lives” an int...
double* j = i; //...and at j lives a double: error!

459

Mnenmonic Trick

The declaration

T* p; p is of the type “pointer to T”

can be read as

T *p; *p is of type T

Although this is legal, we do
not write it like this!

460

Pointer Arithemtics: Pointer plus int

ptr : Pointer to element a[k] of the array a with length n

Value of expr : integer i with 0 ≤ k + i ≤ n

ptr + expr

is a pointer to a[k + i].

For k + i = n we get a past-the-end-pointer that must not be dereferenced.

461

Pointer Arithemtics: Pointer minus int

If ptr is a pointer to the element with index k in an array a with
length n
and the value of expr is an integer i, 0 ≤ k − i ≤ n,

then the expression

ptr - expr

provides a pointer to an element of a with index k − i.

a (a[n])ptr

k

i

ptr-expr

462

Conversion Array⇒ Pointer

How do we get a pointer to the first element of an array?

Static array of type T [n] is convertible to T*
Example
int a[5];
int* begin = a; // begin points to a[0]

Length information is lost („arrays are primitive”)

463

Iteration over an Array of Pointers

Example
int a[5] = {3, 4, 6, 1, 2};
for (int* p = a; p < a+5; ++p)

std::cout << *p << ’ ’; // 3 4 6 1 2

a+5 is a pointer behind the end of the array (past-the-end) that
must not be dereferenced.
The pointer comparison (p < a+5) refers to the order of the two
addresses in memory.

464

