12. Arrays lI

Strings, Lindenmayer Systems, Multidimensional Arrays, Vectors of
Vectors, Shortest Paths, Arrays and Vectors as Function Arguments

408

Strings: pimped char-Arrays
A std::string...
m knows its length

text.length() J

returns its length as int (call of a member function; will be explained later

m can be initialized with variable length

std::string text (n, ’a’)]

text is filled with n ’a’s

m “understands” comparisons

if (textl == text2) ...)

true if text1 and text2 match 410

Texts

m can be represented with the type std: : string from the standard
library.

B std::string text = "bool"; J
/7\

defines a string with length 4

m A string is conceptually an array with base type char, plus
additional functionality

m Requires #include <string>

409

Lindenmayer-Systems (L-Systems)

Fractals made from Strings and Turtles

L-Systems have been invented by the Hungarian biologist Aristid
Lindenmayer (1925 — 1989) to model the growth of plants.

411

Definition and Example The Described Language

Words wy, wy, wa, ... € ¥*: P(F)=F+F +
m{F, +, -}
m Alphabet X c| Ple) we = So wy = F
m Y*: all finite words over X F|F+F+ F+F+
m Production P : ¥ — ¥ " + + wy = P(w) w = [FlF]-
m Initial word s € ¥* o S —
m I wy = P(w) Woy ::|F+F+ F+F+
P(F)P(+)P(F)P(+)
Definition
The triple £ = (X, P, s¢) is an L-System. Definition
P(cicy...cp) = P(c1)P(c2) ... P(cy)
Turtle-Graphics Draw Words!
Turtle with position and direction.
Turtle understands 3 commands:
F: one step for- || +: turn by 90 de- || —: turnby —90 de-
ward v’ grees v/ grees v’

Sl B

414

lindenmayer . cpp: Main Program

Words wy, wy, wo, . .. w, € X*: std::string

#include "turtle.h"

std::cout << "Number of iterations =7 ";
unsigned int n;
std::cin >> n;

std::string w = "F"; w=wyg=F

for (unsigned int i = 0; i < n; ++i)
w = next_word (w); W= W; —> W = Wiy]
draw_word (w); draw w = w,,!

416

lindenmayer.cpp: draw word

// POST: draws the turtle graphic interpretation of word
void draw_word (std::string word)
{
for (unsigned int k = 0; k < word.length(); ++k)
switch (word[k]) {

jump to the case that corresponds to word [k] .

case ’F’:
turtle::forward(); forward! (function from our turtle library)
break; skip the remaining cases
case '+’
turtle::1left(90);
break; turn by 90 degrees! (function from our turtle library)
case '—’:
turtle: :right(90);
} turn by -90 degrees (function from our turtle library)

418

lindenmayer.cpp: next word

// POST: replaces all symbols in word according to their
// production and returns the result
std::string next_word (std::string word) {
std::string next;
for (unsigned int k = 0; k < word.length(); ++k)
next += production (wordl[k]);
return next;

}

// POST: returns the production of c
std::string production (char c) {
switch (c) {
case ’F’: return "F+F+";
default: return std::string (1, c); // trivial production ¢ —> ¢
}
} 417

L-Systems: Extensions

m Additional symbols without graphical interpretation (dragon. cpp)
m Arbitrary angles (snowflake.cpp)
m Saving and restoring the turtle state — plants (bush. cpp)

419

L-System-Challenge:

Multidimensional Arrays

In memory: flat

amazing.cpp!

a[0] [0] a[0][1]

afo] [2]

a[1][o0]

a[1][1]

a[1][2]

w_/

a[o0]

in our head: matrix

W_J

columns

a[1]

0

1

2

a[0] [0]

al0] [1]

a[0] [2]

rows 0
1

a[1] [0]

al1][1]

al1] [2]

Multidimensional Arrays

m are arrays of arrays
B can be used to store tables, matrices,
int a[2] [3]

|

a contains two elements and each of
them is an array of length 3 with base
type int

Multidimensional Arrays

m are arrays of arrays of arrays

T alexpry] ... [exprk]

N\

constant expressions

a has expr; elements and each of them is an array with
expr, elements each of which is an array of expr; ele-
ments and ...

Multidimensional Arrays Vectors of Vectors

Initialization m How do we get multidimensional arrays with variable dimensions?
int a[][3] = m Solution: vectors of vectors
{ Example: vector of length n of vectors with length m:
{2,4,6},{1,3,5} .
} std: :vector<std::vector<int> > a (n,

std: :vector<int>(m));

First dimension can be omitted

2 4 6 1 3 5
Application: Shortest Paths Application: shortest paths
Factory hall (n x m square cells) Solution
obstacle | |
free cell
/

S

L]

Starting position of the robot

position of the robot

L~

Goal: find the shortest path
- of the robot from S to T via
free cells.

426

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

4 5 6 7 9 15 16 17 18 19
3 14 15 16 17 18
2 12 ! .1? 14 15 16 17
: position, -
312 /1 | shortest path: : 18
starting positi T
- e - 19
5 4 3 10 11 20
This solves the original problem also: start in T; fol- 2
low a path with decreasing lenghts 1 og | 22 | 21 | 22

Preparation: Input Format

rows columns

8 12 obstacle

—————— X<~ - free cell
~XXX--X--A -

- SX-——

X XXX =
Ny QU QU
N QU QU
~—4X-—-X-T--
N

start position target position

428

430

This problem appears to be different

Find the lengths of the shortest paths to all possible targets.

19
18
17
3 18
4 19
5 20
6 21
7 22

429

to avoid

431

Preparation: Initial Marking

The Shortest Path Program

m Input the assignment of the hall and intialize the lengths

int tr = 0;

int tc = 0;

for (int r=1; r<n+l; ++r)

for (int c=1; c<m+1; ++c) {

char entry = ’-’;
std::cin >> entry;
if (entry == ’S’) floorl[r]l[c] = 0;
else if (entry == ’T’) floor[tr = r][tc = c] = -1;
else if (entry == ’X’) floor[r]l[c]l = -2;
else if (entry == ’-’) floor[r][c] = -1;

The Shortest Path Program

m Read in dimensions and provide a two dimensional array for the
path lengths

#include<iostream>
#include<vector>

int main()
{
// read floor dimensions
int n; std::cin >> n; // number of rows
int m; std::cin >> m; // number of columns .
Sentinel
// define a two-dimensional
// array of dimensions
// (n+2) x (m+2) to hold the floor plus extra walls around
std::vector<std::vector<int> > floor (n+2, std::vector<int>(m+2));

Das Kiirzeste-Wege-Programm

m Add the surrounding walls

for (int r=0; r<n+2; ++r)

floor[r] [0] = floor[r] [m+1] = -2;
for (int c=0; c<m+2; ++c)
floor[0] [c] = floor[n+1][c] = -2;

436

Mark all Cells with their Path Lengths
Step 2: all cells with path length 2

DO

unmarked neighbours of
cells with length 1

The Shortest Paths Program

Mark the shortest path by walking backwards from target to start.

int r = tr; int ¢ = tc;
while (floor[r][c] > 0) {
const int d = floor[r]l[c] — 1;

floor([r][c] = —3;
if (floor[r—1][c] == d) ——r;
else if (floor[r+1][c] == d) ++r;

else if (floorl[r][c—1] == d) ——c;
else ++c; // (floor[r] [c+1] == d)

437

439

Main Loop

Find and mark all cells with path lengths ¢ = 1,2, 3...
for (int i=1;; ++i) {
bool progress = false;
for (int r=1; r<n+l; ++r)
for (int c=1; c<m+1; ++c) {
if (floor[r][c] '= —1) continue;
if (floor[r—1][c] == i—1 || floor[r+1][c] == i—1 ||
floor[r][c—1] == i—1 || floor([r][c+1] == i—1) {
floor[rllc]l = i; // label cell with i
progress = true;
}
}

if (!progress) break;

}

Finish

440

The Shortest Path Program: output The Shortest Paths Program
Output

for (int r=1; r<n+1l; ++r) {
for (int c=1; c<m+1; ++c)

if (floor([r][c] == 0) m Algorithm: Breadth First Search
d:: << ’S?; .
elses:f (ioi tr &% ¢ == tc) 000000X~=~~= m The program can become pretty slow because for each i all cells
std::cout << ’T’; zgi:g;;;;: are traversed
else if (floorlr]lcl == -3) | XXX m Improvement: for marking with 4, traverse only the neighbours of
lee i (gizzrﬁ] (] - -2) ---X---X-o00~ the cells marked with i — 1.
std::cout << X’; T
else N _ X——mm
std::cout << ’-’;
std::cout << "\n";
} 441 44
Arrays as Function Arguments Arrays as Function Argumenbts
Arrays can also be passed as reference arguments to a function. This also works for multidimensional arrays.

(here: const because v is read-only)
void print_matrix(const int (&m) [3]1[3]) {

void print_vector(const int (&v)[3]) { for (int i = 0; i<3 ; ++i) {
for (int i = 0; i<3 ; ++i) { print_vector (m[il);
std::cout << v[i] << " " std::cout << "\n";
} }
} }

443 444

Vectors as Function Arguments

Vectors can be passed by value or by reference

void print_vector(const std::vector<int>& v) {
for (int i = 0; i<v.size() ; ++i) {
std::cout << v[i] << " ";
}
}

Here: call by reference is more efficient because the vector could be
very long

13. Pointers, Algorithms, Iterators and
Containers |

Pointers, Address operator, Dereference operator, Array-to-Pointer
Conversion

445

447

Vectors as Function Arguments

This also works for multidimensional vectors.

void print_matrix(const std::vector<std::vector<int> >& m) {
for (int i = 0; i<m.size() ; ++i) {
print_vector (m[il);
std::cout << "\n";
}
}

Strange Things...

#include<iostream>
#include<algorithm>

int main(){
int all = {3, 2, 1, 5, 4, 6, 7};

// output the smallest element of a
std::cout << *std::min_element (a, a + 7);

| |

return 0; 999 272

3

We have to undestand pointers first!

References: Where is Anakin?

“Search for Vader, and
Anakin find you will”

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker;
darth_vader = 22;

// anakin_skywalker = 22

449

Swap with Pointers

void swap(int* x, intx y){
int t = *x;

*X = *Y;
¥y = t;

}

int a = 2;

int b = 1;

swap (&a, &b);

std::cout << "a= " << a << "\n"; // 1

std::cout << "b = " << b << "\n"; // 2

451

Pointers: Where is Anakin?

“Anakins address is

Ox7fff6bdd1bb4.”
int anakin_skywalker = 9;

int* here = &anakin_skywalker;
std::cout << here; // Address
xhere = 22;

22

// anakin_skywalker

450

Pointer Types

Tk

An expression of type T* is called pointer (to T).

Pointer type to base type T.

452

Pointer Types

Value of a pointer to T is the address of an object of type T.

Beispiele
int* p; Variable p is pointer to an int.
float* q; Variable q is pointer to a float.

int* p = ...;

adr

integer value p

adr

Address Operator

&i; // ip initialized
// with address of 1i.

YN

ip = & i=5

455

Address Operator

The expression IS —

|
& lval

provides, as R-value, a pointer of type T*to an object at the address
of Ival

The operator & is called Address-Operator.

454

Dereference Operator

The expression =gl 6 e

|
xrval

returns as L-value the value of the object at the address represented
by rval.

The operator * is called Derecerence Operator.

456

Dereference Operator

Beispiel
int i = 5;
int* ip = &i; // ip initialized
// with address of i.
int j = *ip; // j == 5

.o PE e
- -
e e
T

457

Pointer Types

Do not point with a double* to an int!

int* i = ...; //ataddress i “lives” an int...
doublex j = i; //..and at j lives a double: error!

459

Address and Dereference Operators

pointer (R-value)

object (L-value)

458

Mnenmonic Trick

The declaration
T* p; p is of the type “pointer to T” J

can be read as
T *pjer _ *p is of type T |

Although this is legal, we do
not write it like this!

460

Pointer Arithemtics: Pointer plus int

m ptr: Pointer to element a[k] of the array a with length n
m Value of expr: integer i with 0 < k+1 <n

ptr + expr

is a pointer to a[k + i].

For k + i = n we get a past-the-end-pointer that must not be dereferenced.)

461

Conversion Array =- Pointer

How do we get a pointer to the first element of an array?
m Static array of type T'[n] is convertible to 7'

int a[5];
int* begin = a; // begin points to a[0]

m Length information is lost (,arrays are primitive”)

463

Pointer Arithemtics: Pointer minus int

m If ptr is a pointer to the element with index & in an array a with
length n
m and the value of expr is aninteger ¢, 0 < k — 1 < n,

then the expression
ptr - expr
provides a pointer to an element of a with index &£ — .
a ptr-expr (ptr)

| | |

L 1 1 1 1 1 1 1
k

462

Iteration over an Array of Pointers

int a[5] = {3, 4, 6, 1, 2};
for (int* p = a; p < a+5; ++p)
std::cout << *p <<’ ?; // 34612

m a+5 is a pointer behind the end of the array (past-the-end) that
must not be dereferenced.

m The pointer comparison (p < a+5) refers to the order of the two
addresses in memory.

464

