
9. Reference Types

Reference Types: Definition and Initialization, Call By Value, Call by
Reference, Temporary Objects, Constants, Const-References

255

Swap!

// POST: values of x and y are exchanged
void swap (int& x, int& y) {
int t = x;
x = y;
y = t;
}
int main(){

int a = 2;
int b = 1;
swap (a, b);
assert (a == 1 && b == 2); // ok!

}
256

Reference Types

We can make functions change the values of the call arguments
no new concept for functions, but a new class of types

Reference Types

257

Reference Types: Definition

T&

underlying type

read as „T-reference”

T& has the same range of values and functionality as T, ...
but initialization and assignment work differently.

258

Anakin Skywalker alias Darth Vader

259

Anakin Skywalker alias Darth Vader

int anakin_skywalker = 9;
int& darth_vader = anakin_skywalker; // alias
int& lord_vader = darth_vader; // another alias
darth_vader = 22;

std::cout << anakin_skywalker; // 22

22

anakin_skywalkeranakin_skywalker darth_vaderdarth_vader lord_vader

assignment to the L-value behind the alias

260

Reference Types: Intialization and Assignment

int& darth_vader = anakin_skywalker;
darth_vader = 22; // anakin_skywalker = 22

A variable of reference type (a reference) can only be initialized
with an L-Value .
The variable is becoming an alias of the L-value (a different name
for the referenced object).
Assignment to the reference is to the object behind the alias.

261

Reference Types: Implementation

Internally, a value of type T& is represented by the address of an
object of type T.

int& j; // Error: j must be an alias of something

int& k = 5; // Error: the literal 5 has no address

262

Call by Reference
Reference types make it possible that functions modify the value of the call arguments:

void increment (int& i)
{ // i becomes an alias of the call argument

++i;
}
...
int j = 5;
increment (j);
std::cout << j << "\n"; // 6

6

j i

initialization of the formal arguments

263

Call by Reference

Formal argument has reference type:

⇒ Call by Reference

Formal argument is (internally) initialized with the address of the call
argument (L-value) and thus becomes an alias.

264

Call by Value

Formal argument does not have a reference type:

⇒ Call by Value

Formal argument is initialized with the value of the actual parameter
(R-Value) and thus becomes a copy.

265

In Context: Assignment to References
// PRE: [a1, b1], [a2, b2] are (generalized) intervals,
// POST: returns true if [a1, b1], [a2, b2] intersect, in which case
// [l, h] contains the intersection of [a1, b1], [a2, b2]
bool intervals_intersect (int& l, int& h,

int a1, int b1, int a2, int b2) {
sort (a1, b1);
sort (a2, b2);
l = std::max (a1, a2);

a1 b1

a2 b2h = std::min (b1, b2);
return l <= h;

}
...
int lo = 0; int hi = 0;
if (intervals_intersect (lo, hi, 0, 2, 1, 3))

std::cout << "[" << lo << "," << hi << "]" << "\n"; // [1,2]
266

In Context: Initialization of References
// POST: a <= b
void sort (int& a, int& b) {

if (a > b)
std::swap (a, b); // ’passing through’ of references a,b

}

bool intervals_intersect (int& l, int& h,
int a1, int b1, int a2, int b2) {

sort (a1, b1); // generates references to a1,b1
sort (a2, b2); // generates references to a2,b2
l = std::max (a1, a2);
h = std::min (b1, b2);
return l <= h;

}
267

Return by Value / Reference

Even the return type of a function can be a reference type (return
by reference)
In this case the function call itself is an L-value

int& increment (int& i)
{

return ++i;
}

exactly the semantics of the pre-increment

268

Temporary Objects
What is wrong here?

int& foo (int i)
{

return i;
}

Return value of type int& be-
comes an alias of the formal argu-
ment. But the memory lifetime of i
ends after the call!

3 imemory re-
leased

j

value of the actual parameter is
pushed onto the call stacki is returned as reference...and disappears from the stackj becomes alias to released memoryvalue of j is output

int k = 3;
int& j = foo (k); // j is an alias of a zombie
std::cout << j << "\n"; // undefined behavior

269

The Reference Guidline

Reference Guideline
When a reference is created, the object referred to must “stay alive”
at least as long as the reference.

270

The Compiler as Your Friend: Constants

Constants

are variables with immutable value

const int speed_of_light = 299792458;
Usage: const before the definition

271

The Compiler as Your Friend: Constants

Compiler checks that the const-promise is kept

const int speed_of_light = 299792458;
...
speed_of_light = 300000000;

compiler: error
Tool to avoid errors: constants guarantee the promise :“value
does not change”

272

Constants: Variables behind Glass

273

The const-guideline

const-guideline
For each variable, think about whether it will change its
value in the lifetime of a program. If not, use the
keyword const in order to make the variable a
constant.

A program that adheres to this guideline is called const-correct.

274

Const-References

have type const T & (= const (T &))
can be initialized with R-Values (compiler generates a temporary
object with sufficient lifetime)

const T& r = lvalue;
r is initialized with the address of lvalue (efficient)

const T& r = rvalue;
r is initialized with the address of a temporary object with the value
of the rvalue (flexible)

275

What exactly does Constant Mean?

Consider an L-value with type const T

Case 1: T is no reference type

Then the L-value is a constant.

const int n = 5;
int& i = n; // error: const-qualification is discarded
i = 6;

The compiler detects our attempt to cheat

276

What exactly does Constant Mean?

Consider L-value of type const T

Case 2: T is reference type.

Then the L-value is a read-only alias which cannot be used to change the value

int n = 5;
const int& i = n;// i: read-only alias of n
int& j = n; // j: read-write alias
i = 6; // Error: i is a read-only alias
j = 6; // ok: n takes on value 6

277

When const T& ?

Rule
Argument type const T & (call by read-only reference) is used for
efficiency reasons instead of T (call by value), if the type T requires
large memory. For fundamental types (int, double,...) it does not
pay off.

Examples will follow later in the course

278

10. Arrays I

Array Types, Sieve of Erathostenes, Memory Layout, Iteration,
Vectors, Characters and Texts, ASCII, UTF-8, Caesar-Code

279

Array: Motivation

Now we can iterate over numbers

for (int i=0; i<n ; ++i) ...
Often we have to iterate over data. (Example: find a cinema in
Zurich that shows “C++ Runner 2049” today)
Arrays allow to store homogeneous data (example: schedules of
all cinemas in Zurich)

280

Arrays: a first Application

The Sieve of Erathostenes

computes all prime numbers < n

method: cross out all non-prime numbers

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 234 6 8 10 12 14 16 18 20 226 9 12 15 18 212 3 5 7 11 13 17 19 23

at the end of the crossing out process, only prime numbers remain.

Question: how do we cross out numbers ??
Answer: with an array.

281

Sieve of Erathostenes: Initialization

const unsigned int n = 1000;
bool crossed_out[n];
for (unsigned int i = 0; i < n; ++i)

crossed_out[i] = false;

constant!

crossed_out[i] indicates if i has been crossed out.

282

Sieve of Eratosthenes: Computation
for (unsigned int i = 2; i < n; ++i)

if (!crossed_out[i]){
// i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)
crossed_out[m] = true;

}
}

The sieve: go to the next non-crossed out number i (this must be a
prime number), output the number and cross out all proper multiples
of i

283

Arrays: Definition

Declaration of an array variable:

T a [expr]

base type

variable of array type

constant integer expression
value provides the length of the array

value is known at compile time.
e.g. literal, constant

type of a: „T[k]”
values range of a: T k

Beispiel: bool crossed_out[n]
284

Memory Layout of an Array

An array occupies a contiguous memory area

example: an array with 4 elements

memory cells for a value of type T each

285

Random Access
The L-value

a [expr]

has type T and refers to the i-th element of the array a (counting
from 0!)

value i

a[0] a[1] a[2] a[3]

286

Random Access

a [expr]

The value i of expr is called array index.
[]: subscript operator

287

Random Access

Random access is very efficient:

s: memory consumption of
T
(in cells)

p: address of a p+ s · i: address of a[i]

a[i]

288

Array Initialization

int a[5];

The five elements of a remain uninitialized (values can be
assigned later)

int a[5] = {4, 3, 5, 2, 1};

the 5 elements of a are initialized with an initialization list.
int a[] = {4, 3, 5, 2, 1};

also ok: the compiler will deduce the length

289

Arrays are Primitive

Accessing elements outside the valid bounds of the array leads to
undefined behavior.

int arr[10];
for (int i=0; i<=10; ++i)
arr[i] = 30; // runtime error: access to arr[10]!

290

Arrays are Primitive

Array Bound Checks
With no special compiler or runtime support it is the sole
responsibility of the programmer to check the validity of element
accesses.

291

Arrays are Primitive (II)

Arrays cannot be initialized and assigned to like other types
int a[5] = {4,3,5,2,1};
int b[5];
b = a; // Compiler error!
int c[5] = a; // Compiler error!
Why?

292

Arrays are Primitive

Arrays are legacy from the language C and primitive from a
modern viewpoint
In C, arrays are very low level and efficient, but do not offer any
luxury such as initialization or copying.
Missing array bound checks have far reaching consequences.
Code with non-permitted but possible index accesses has been
exploited (far too) often for malware.
the standard library offers comfortable alternatives

293

Vectors

Obvious disadvantage of static arrays: constant array length
const unsigned int n = 1000;
bool crossed_out[n];

remedy: use the type Vector from the standard library

#include <vector>
...
std::vector<bool> crossed_out (n, false);

element type in triangular brackets

Initialization with n elements
initial value false.

294

Sieve of Erathostenes with Vectors
#include <iostream>
#include <vector> // standard containers with array functionality
int main() {
// input
std::cout << "Compute prime numbers in {2,...,n−1} for n =? ";
unsigned int n;
std::cin >> n;

// definition and initialization: provides us with Booleans
// crossed_out[0],..., crossed_out[n−1], initialized to false
std::vector<bool> crossed_out (n, false);

// computation and output
std::cout << "Prime numbers in {2,...," << n−1 << "}:\n";
for (unsigned int i = 2; i < n; ++i)
if (!crossed_out[i]) { // i is prime
std::cout << i << " ";
// cross out all proper multiples of i
for (unsigned int m = 2∗i; m < n; m += i)
crossed_out[m] = true;

}
std::cout << "\n";
return 0;

}
297

Characters and Texts

We have seen texts before:
std::cout << "Prime numbers in {2,...,999}:\n";

String-Literal

can we really work with texts? Yes:

Character: Value of the fundamental type char
Text: Array with base type char

298

The type char (“character”)

represents printable characters (e.g. ’a’) and control characters
(e.g. ’\n’)

char c = ’a’

defines variable c of type
char with value ’a’

literal of type char

299

The type char (“character”)

is formally an integer type

values convertible to int / unsigned int
all arithmetic operators are available (with dubious use: what is
’a’/’b’ ?)
values typically occupy 8 Bit

domain:
{−128, . . . , 127} or {0, . . . , 255}

300

The ASCII-Code

defines concrete conversion rules
char −→ int / unsigned int
is supported on nearly all platforms

Zeichen −→ {0, . . . , 127}
’A’, ’B’, ... , ’Z’ −→ 65, 66, ..., 90
’a’, ’b’, ... , ’z’ −→ 97, 98, ..., 122
’0’, ’1’, ... , ’9’ −→ 48, 49, ..., 57

for (char c = ’a’; c <= ’z’; ++c)
std::cout << c; abcdefghijklmnopqrstuvwxyz

301

Extension of ASCII: UTF-8

Internationalization of Software⇒ large character sets required.
Common today: unicode, 100 symbol sets, 110000 characters.
ASCII can be encoded with 7 bits. An eighth bit can be used to
indicate the appearance of further bits.

Bits Encoding
7 0xxxxxxx

11 110xxxxx 10xxxxxx
16 1110xxxx 10xxxxxx 10xxxxxx
21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
26 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
31 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Interesting property: for each byte you can decide if a new UTF8 character begins.

302

Einige Zeichen in UTF-8
Symbol Codierung (jeweils 16 Bit)

11100010 10011000 10100000

11100010 10011000 10000011

11100010 10001101 10101000

11100010 10011000 10011001

11100011 10000000 10100000

11101111 10101111 10111001

ht
tp

://
t-a

-w
.b

lo
gs

po
t.c

h/
20

08
/1

2/
fu

nn
y-

ch
ar

ac
te

rs
-in

-u
ni

co
de

.h
tm

l

303

Caesar-Code
Replace every printable character in a text by its
pre-pre-predecessor.

’ ’ (32) → ’|’ (124)
’!’ (33) → ’}’ (125)

...
’D’ (68) → ’A’ (65)
’E’ (69) → ’B’ (66)

...
∼ (126) → ’{’ (123)

304

Caesar-Code: Main Program

// Program: caesar_encrypt.cpp
// encrypts a text by applying a cyclic shift of −3

#include<iostream>
#include<cassert>
#include<ios> // for std::noskipws

// PRE: s < 95 && s > −95
// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
void shift (char& c, int s);

spaces and newline char-
acters shall not be ig-
nored

305

Caesar-Code: Main Program
int main ()
{
std::cin >> std::noskipws; // don’t skip whitespaces!

// encryption loop
char next;
while (std::cin >> next) {
shift (next, −3);
std::cout << next;

}
return 0;

}

Conversion to bool: re-
turns false if and only if
the input is empty.

shifts only printable
characters.

306

Caesar-Code: shift-Function
// PRE: s < 95 && s > −95
// POST: if c is one of the 95 printable ASCII characters, c is
// cyclically shifted s printable characters to the right
void shift (char& c, int s)
{
assert (s < 95 && s > −95);
if (c >= 32 && c <= 126) {
if (c + s > 126)
c += (s − 95);

else if (c + s < 32)
c += (s + 95);

else
c += s;

}
}

Call by reference!

Overflow – 95 backwards!

underflow – 95 forward!

normal shift

307

./caesar encrypt < power8.cpp

„|Moldo^j7|mltbo5+‘mm
„|O^fpb|^|krj_bo|ql|qeb|bfdeqe|mltbo+

fk‘irab|9flpqob^j;|

fkq|j^fk%&
x
||„|fkmrq
||pqa77‘lrq|99|~@ljmrqb|^[5|clo|^|:<|~8||
||fkq|^8
||pqa77‘fk|;;|^8

||„|‘ljmrq^qflk
||fkq|_|:|^|’|^8|„|_|:|^[/
||_|:|_|’|_8|||||„|_|:|^[1

||„|lrqmrq|_|’|_)|f+b+)|^[5
||pqa77‘lrq|99|^|99|~[5|:|~|99|_|’|_|99|~+Yk~8
||obqrok|-8
z

Program = Moldoj

308

Caesar-Code: Decryption

// decryption loop
char next;
while (std::cin >> next) {
shift (next, 3);
std::cout << next;

}

Now: shift by 3 to right

An interesting way to output power8.cpp

./caesar_encrypt < power8.cpp | ./caeser_decrypt

309

