
4. Control Statements II

Visibility, Local Variables, While Statement, Do Statement, Jump
Statements

92

Visibility

Declaration in a block is not “visible” outside of the block.
int main ()
{

{
int i = 2;

}
std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

m
ai

n
bl

oc
k

„Blickrichtung”

93

Control Statement defines Block

In this respect, statements behave like blocks.

int main()
{

for (unsigned int i = 0; i < 10; ++i)
s += i;

std::cout << i; // Error: undeclared name
return 0;

}

bl
oc

k

94

Scope of a Declaration
Potential scope: from declaration until end of the part that contains the declaration.

in the block

{
int i = 2;
...

}

in function body

int main() {
int i = 2;
...
return 0;

}

in control statement

for (int i = 0; i < 10; ++i) {s += i; ... }

sc
op

e

sc
op

e

scope

95

Scope of a Declaration
Real scope = potential scope minus potential scopes of declarations of symbols
with the same name

int main()
{

int i = 2;
for (int i = 0; i < 5; ++i)

// outputs 0,1,2,3,4
std::cout << i;

// outputs 2
std::cout << i;

return 0;
}

i 2
in

fo
r

in
m

ai
n

sc
op

e
of

i

96

Automatic Storage Duration

Local Variables (declaration in block)

are (re-)created each time their declaration is reached

memory address is assigned (allocation)
potential initialization is executed

are deallocated at the end of their declarative region (memory is
released, address becomes invalid)

97

Local Variables

int main()
{

int i = 5;
for (int j = 0; j < 5; ++j) {

std::cout << ++i; // outputs 6, 7, 8, 9, 10
int k = 2;
std::cout << −−k; // outputs 1, 1, 1, 1, 1

}
}

Local variables (declaration in a block) have automatic storage
duration.

98

while Statement

while (condition)
statement

statement: arbitrary statement, body of the while statement.
condition: convertible to bool.

99

while Statement

while (condition)
statement

is equivalent to

for (; condition ;)
statement

100

while-Statement: Semantics

while (condition)
statement

condition is evaluated

true: iteration starts
statement is executed

false: while-statement ends.

101

while-statement: why?

In a for-statement, the expression often provides the progress
(“counting loop”)

for (unsigned int i = 1; i <= n; ++i)
s += i;

If the progress is not as simple, while can be more readable.

102

Example: The Collatz-Sequence (n ∈ N)

n0 = n

ni =

{ni−1
2

, if ni−1 even

3ni−1 + 1 , if ni−1 odd
, i ≥ 1.

n=5: 5, 16, 8, 4, 2, 1, 4, 2, 1, ... (repetition at 1)

103

The Collatz Sequence in C++
// Program: collatz.cpp
// Compute the Collatz sequence of a number n.

#include <iostream>

int main()
{

// Input
std::cout << "Compute the Collatz sequence for n =? ";
unsigned int n;
std::cin >> n;

// Iteration
while (n > 1) {

if (n % 2 == 0)
n = n / 2;

else
n = 3 * n + 1;

std::cout << n << " ";
}
std::cout << "\n";
return 0;

} 104

The Collatz Sequence in C++

n = 27:
82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242,
121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 233,
700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336,
668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276,
638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429,
7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232,
4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488,
244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20,
10, 5, 16, 8, 4, 2, 1

105

The Collatz-Sequence

Does 1 occur for each n?

It is conjectured, but nobody can prove it!

If not, then the while-statement for computing the
Collatz-sequence can theoretically be an endless loop for some
n.

106

do Statement

do
statement

while (expression);

statement: arbitrary statement, body of the do statement.
expression: convertible to bool.

107

do Statement

do
statement

while (expression);

is equivalent to

statement
while (expression)

statement

108

do-Statement: Semantics

do
statement

while (expression);

Iteration starts
statement is executed.

expression is evaluated
true: iteration begins
false: do-statement ends.

109

do-Statement: Example Calculator

Sum up integers (if 0 then stop):

int a; // next input value
int s = 0; // sum of values so far
do {

std::cout << "next number =? ";
std::cin >> a;
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);

110

Conclusion

Selection (conditional branches)

if and if-else-statement

Iteration (conditional jumps)

for-statement
while-statement
do-statement

Blocks and scope of declarations

111

Jump Statements

break;
continue;

112

break-Statement

break;

Immediately leave the enclosing iteration statement.
useful in order to be able to break a loop “in the middle” 2

2and indispensible for switch-statements.
113

Calculator with break
Sum up integers (if 0 then stop)

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
// irrelevant in last iteration:
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0);

114

Calculator with break
Suppress irrelevant addition of 0:

int a;
int s = 0;
do {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

} while (a != 0)

115

Calculator with break
Equivalent and yet more simple:

int a;
int s = 0;
for (;;) {

std::cout << "next number =? ";
std::cin >> a;
if (a == 0) break; // stop loop in the middle
s += a;
std::cout << "sum = " << s << "\n";

}

116

Calculator with break
Version without break evaluates a twice and requires an additional
block.
int a = 1;
int s = 0;
for (;a != 0;) {

std::cout << "next number =? ";
std::cin >> a;
if (a != 0) {

s += a;
std::cout << "sum = " << s << "\n";

}
}

117

continue-Statement

continue;

Jump over the rest of the body of the enclosing iteration statement
Iteration statement is not left.

118

Calculator with continue
Ignore negative input:

for (;;)
{

std::cout << "next number =? ";
std::cin >> a;
if (a < 0) continue; // jump to }
if (a == 0) break;
s += a;
std::cout << "sum = " << s << "\n";

}

119

Equivalence of Iteration Statements

We have seen:

while and do can be simulated with for

It even holds: Not so simple if a continue is used!

The three iteration statements provide the same “expressiveness”
(lecture notes)

120

Control Flow
Order of the (repeated) execution of statements

generally from top to bottom. . .
. . . except in selection and iteration statements

condition

statement

true

false if (condition)
statement

121

Control Flow if else

condition

statement1

statement2

true

false
if (condition)

statement1
else

statement2

122

Control Flow for
for (init statement condition ; expression)

statement

init-statement

condition

statement

expression

true

false

123

Control Flow break in for

init-statement

condition

statement

expression
break

125

Control Flow continue in for

init-statement

condition

statement

expression

continue

126

Control Flow: the Good old Times?

Observation
Actually, we only need if and jumps to
arbitrary places in the program (goto).

Models:
Machine Language
Assembler (“higher” machine language)
BASIC, the first prorgamming language
for the general public (1964)

if

goto

127

BASIC and home computers...

...allowed a whole generation of young adults to program.

Home-Computer Commodore C64 (1982)

ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/C
om

mo
do

re
_6

4

128

Spaghetti-Code with goto
Output of all prime numbers with BASIC

true

true

129

The “right” Iteration Statement

Goals: readability, conciseness, in particular

few statements
few lines of code
simple control flow
simple expressions

Often not all goals can be achieved simultaneously.

130

Odd Numbers in {0, . . . , 100}

First (correct) attempt:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 == 0)
continue;

std::cout << i << "\n";
}

131

Odd Numbers in {0, . . . , 100}

Less statements, less lines:

for (unsigned int i = 0; i < 100; ++i)
{

if (i % 2 != 0)
std::cout << i << "\n";

}

132

Odd Numbers in {0, . . . , 100}
Less statements, simpler control flow:

for (unsigned int i = 1; i < 100; i += 2)
std::cout << i << "\n";

This is the “right” iteration statement!

133

Jump Statements

implement unconditional jumps.
are useful, such as while and do but not indispensible
should be used with care: only where the control flow is simplified
instead of making it more complicated

134

The switch-Statement

switch (condition)
statement

condition: Expression, convertible to
integral type

statement : arbitrary statemet, in
which case and default-lables are
permitted, break has a special
meaning.

int Note;
...
switch (Note) {

case 6:
std::cout << "super!";
break;

case 5:
std::cout << "cool!";
break;

case 4:
std::cout << "ok.";
break;

default:
std::cout << "hmm...";

}
135

Semantics of the switch-statement

switch (condition)
statement

condition is evaluated.
If statement contains a case-label with (constant) value of
condition, then jump there
otherwise jump to the default-lable, if available. If not, jump over
statement.
The break statement ends the switch-statement.

136

Control Flow switch

switch

statement

case

case

default

break

break

137

Control Flow switch in general

If break is missing, continue with the next case.
7: ???
6: ok.
5: ok.
4: ok.
3: oops!
2: ooops!
1: oooops!
0: ???

switch (Note) {
case 6:
case 5:
case 4:

std::cout << "ok.";
break;

case 1:
std::cout << "o";

case 2:
std::cout << "o";

case 3:
std::cout << "oops!";
break;

default:
std::cout << "???";

}

138

5. Floating-point Numbers I

Types float and double; Mixed Expressions and Conversion;
Holes in the Value Range

139

“Proper Calculation”

// Program: fahrenheit_float.cpp
// Convert temperatures from Celsius to Fahrenheit.

#include <iostream>

int main()
{

// Input
std::cout << "Temperature in degrees Celsius =? ";
float celsius;
std::cin >> celsius;

// Computation and output
std::cout << celsius << " degrees Celsius are "

<< 9 * celsius / 5 + 32 << " degrees Fahrenheit.\n";
return 0;

}

140

Fixed-point numbers

fixed number of integer places (e.g. 7)
fixed number of decimal places (e.g. 3)

0.0824 = 0000000.082

Disadvantages

Value range is getting even smaller than for integers.
Representability depends on the position of the decimal point.

third place truncated

141

Floating-point numbers

fixed number of significant places (e.g. 10)
plus position of the decimal point

82.4 = 824 · 10−1

0.0824 = 824 · 10−4

Number is Mantissa× 10Exponent

142

Types float and double

are the fundamental C++ types for floating point numbers
approximate the field of real numbers (R,+,×) from mathematics
have a big value range, sufficient for many applications (double
provides more places than float)
are fast on many computers

143

Arithmetic Operators

Like with int, but . . .

Division operator / models a “proper” division (real-valued, not
integer)
No modulo operators such as % or %=

144

Literals
are different from integers by providing

decimal point

1.0 : type double, value 1

1.27f : type float, value 1.27

and / or exponent.

1e3 : type double, value 1000

1.23e-7 : type double, value 1.23 · 10−7

1.23e-7f : type float, value 1.23 · 10−7

1.23e-7f

integer part

fractional part

exponent

145

Computing with float: Example

Approximating the Euler-Number

e =
∞∑

i=0

1

i!
≈ 2.71828 . . .

using the first 10 terms.

146

Computing with float: Euler Number
// Program: euler.cpp
// Approximate the Euler number e.

#include <iostream>

int main ()
{

// values for term i, initialized for i = 0
float t = 1.0f; // 1/i!
float e = 1.0f; // i-th approximation of e

std::cout << "Approximating the Euler number...\n";
// steps 1,...,n
for (unsigned int i = 1; i < 10; ++i) {

t /= i; // 1/(i-1)! -> 1/i!
e += t;
std::cout << "Value after term " << i << ": " << e << "\n";

}

return 0;
}

147

Computing with float: Euler Number

Value after term 1: 2
Value after term 2: 2.5
Value after term 3: 2.66667
Value after term 4: 2.70833
Value after term 5: 2.71667
Value after term 6: 2.71806
Value after term 7: 2.71825
Value after term 8: 2.71828
Value after term 9: 2.71828

148

Mixed Expressions, Conversion

Floating point numbers are more general than integers.
In mixed expressions integers are converted to floating point
numbers.

9 * celsius / 5 + 32

149

Value range

Integer Types:

Over- and Underflow relatively frequent, but ...

the value range is contiguous (no “holes”): Z is “discrete”.

Floating point types:

Overflow and Underflow seldom, but ...

there are holes: R is “continuous”.

150

Holes in the value range
float n1;
std::cout << "First number =? ";
std::cin >> n1;

float n2;
std::cout << "Second number =? ";
std::cin >> n2;

float d;
std::cout << "Their difference =? ";
std::cin >> d;

std::cout << "Computed difference − input difference = "
<< n1 − n2 − d << "\n";

input 1.1

input 1.0

input 0.1

output 2.23517e-8

W
ha

ti
s

go
in

g
on

he
re

?

151

