public area

17. Classes

Classes, Member Functions, Constructors, Stack, Linked List,
Dynamic Memory, Copy-Constructor, Assignment Operator, Concept
Dynamic Datatype

519

Member Functions: Declaration

class rational {
public:
("// POST: return value is the numerator of xthis

int numerator () const member function
return n3
< }
// POST: return value is the denominator of x*this
int denominator () const { :
member functions have ac-
return d; = .
3 .~ cess to private data
private: \\ th f b ;
int n; Ny € SCope Oor members In a

int d: // INV: di= 0 -~ class is the whole class, inde-
}: ’ pendent of the declaration or-
’ der

521

Encapsulation: public/private

Good news: r.d = 0 cannot happen

class rational { any more by accident.

int n;

.) . =

int d; // INV: d != 0 Bad news: the customer cannot do any-
}; thing any more . ..
Application Code ...and we can't, either.

. (no operator+,...)
rational r;

r.n = 1; // error: n is private
r.d = 2; // error: d is private
int i = r.n; // error: n is private

520

Member Functions: Call

// Definition des Typs
class rational {

};

// Variable des Typs
rational r; |\ nomber access

// Zaehler
// Nenner

int n = r.numerator();
int d = r.denominator();

522

Member Functions: Definition

numerator of *this
const

// POST: returns
int numerator ()

{

return n;

}

m A member function is called for an expression of the class. in the function,
*xthis is the name of this implicit argument. this itself is a pointer to it.

m const refers to *this, i.e., it promises that the value associated with the implicit
argument cannot be changed

® n is the shortcut in the member function for (*this) .n

Member-Definition: In-Class vs. Out-of-Class

class ratiomnal {
int n;

class rational {
int n;

int numerator () const

{

int numerator () const;

return n; };
}

int rational: :numerator () const

}; {

m No separation between return n;

declaration and definition (bad

for libraries) m This also works.

525

Comparison

It would look like this... ... without member functions
class rational { struct bruch {
int n; int n;
};
int numerator () const
{ int numerator (const bruchsx dieser)
return (*this) .n; {
} return (xdieser).n;
}; }
rational r; bruch r;
std::cout << r.numerator(); | std::cout << numerator(&r);

524

Constructors

m are special member functions of a class that are named like the
class

m can be overloaded like functions, i.e. can occur multiple times with
varying signature

m are called like a function when a variable is declared. The
compiler chooses the “closest” matching function.

m if there is no matching constructor, the compiler emits an error
message.

526

Initialisation? Constructors!

class rational

{
public:
rational (int num, int den) o
. n (num), d (den) In|t|al|zat|on. of the
{ member variables
assert (den != 0); «——— function body.
}
}

rna‘tional r (2,3); //r=2/3

527

Initialisation “rational = int”?

class rational

{
public:
rational (int num)
: n (num), d (1)
{} «—— empty function body
};

rational r (2);
rational s = 2;

// explicit initialization with 2
// implicit conversion

529

Constructors: Call

m directly

rational r (1,2); // initialisiert r mit 1/2 J
m indirectly (copy)

rational r = rational (1,2); J

528

User Defined Conversions

are defined via constructors with exactly one argument

User defined conversion from int to
rational (int num) «—— rational. values of type int can now
:n (num), 4 (1) be converted to rational.
{3

rational r = 2; // implizite Konversion

530

The Default Constructor

class rational

{

public: empty list of arguments

IL;tional ()/
:n (0), 4 (D
{3

};
rational r; // r =0

= There are no uninitiatlized variables of type rational any more!

531

RAT PACK® Reloaded ...

Customer’s program now looks like this:

// POST: double approximation of r
double to_double (const rational r)
{
double result = r.numerator();
return result / r.denominator();

}

m We can adapt the member functions together with the
representation v’

533

The Default Constructor

m is automatically called for declarations of the form

rational r;

m is the unique constructor with empty argmument list (if existing)
m must exist, if rational r; is meantto compile

m if in a struct there are no constructors at all, the default
constructor is automatically generated

RAT PACK® Reloaded ...
class ratiomnal { int numerator () const
~ {
B private: return n;
© int n; }
O int d;
};
class rational { int numerator () const{
R if (is_positive)
private: return n;
L unsigned int n; else {
g unsigned int d; int result = n;
© bool is_positive; return —result;

};

}
} 534

RAT PACK® Reloaded ?

class rational { int numerator () const

e {
private: if (is_positive)
unsigned int n; return n;
unsigned int 4; else {
bool is_positive; int result = n;
}; return —result;
}
}

m value range of nominator and denominator like before
m possible overflow in addition

535

Fix: “our” type rational: :integer
Customer’s point of view (rational.h):

public:
typedef int integer; // might change
// POST: returns numerator of xthis
integer numerator () const;

m We provide an additional type!
m Determine only Functionality, e.g:

m implicit conversion int — rational::integer
m function double to_double (rational::integer)

537

Encapsulation still Incompleete

Customer’s point of view (rational.h):

class rational {

public:
// POST: returns numerator of xthis
int numerator () const;

private:
// none of my business

};

m We determined denominator and nominator type to be int
m Solution: encapsulate not only data but alsoe types.

536

RAT PACK® Revolutions

Finally, a customer program that remains stable

// POST: double approximation of r
double to_double (const ratiomal r)

{
rational::integer n = r.numerator();
rational::integer d = r.denominator();
return to_double (n) / to_double (d);
}

538

Separate Declaration and Definition

class rational {

public:
rational (int num, int denum);
typedef int integer;
integer numerator () const;

rational.h

private:

};
rational::rational (int num, int den):
n (num), d (den) {}
rational::integer rational::numerator () const
4 ~

{

rational.cpp

return n; class name member name

} 539

Motivation: Stack (push, pop, top, empty)

3

5| push(4)

1]

2]

3

5] top() =3 Goal: we implement a stack class
1 Question: how do we create
2] space on the stack when push is

called?

541

Motivation: Stack

540

We Need a new Kind of Container

Our main container: Array (T[])

m Contiguous area of memory, random access (to ith element)
m Simulation of a stack with an array?
m No, at some point the array will become “full”.

top

1156 |38 (9|33 |8]|9]3

—
not possible to execute push(3) here!

542

Arrays are no all-rounders...

m It is expensive to insert or delete elements “in the middle ”.

00—

If we want to insert,
we have to move ev-
erything to the right
(if there is space at
all!)

The new Container: Linked List

m No contiguous area of memory and no random
access

m Each element “knows” its successor

m Insertion and deletion of arbitrary elements is
simple, even at the beginning of the list

m = A stack can be implemented as linked list

pointer

543

545

Arrays are no all-rounders...

m It is expensive to insert or delete elements “in the middle ”.

Linked List: Zoom

T If we want to remove this el-

ement, we have to move ev-
erything to the right of it.

544

element (type struct list_node)

key (type int)

struct list_node {
int key;
list_nodex next;
// constructor

list_node (int k, list_nodex n)

: key (k), next (n)
};

o

next (type 1ist_nodex)

{3

546

Stack = Pointer to the Top Element

element (type struct list_node)

e

key (type int) next (type list_nodex)

class stack {
public:
void push (int value) {...}

private:
list_nodex top_node;

};

Dynamic Memory

m For dynamic data structures like lists we need dynamic memory

m Up to now we had to fix the memory sizes of variable at compile
time

m Pointers allow to request memory at runtime

m Dynamic memory management in C++ with operators new and
delete

549

Sneak Preview: push (4)

void push (int value)

{

top_node = new list_node (value,

}

top_node) ;

top_node

\W—w- 5[e—5]"]

548

The new Expression

underlying type
new T(..) | weT
T "
constructor arguments

new-Operator

m Effect: new object of type T is allocated in memory ...
®m ...and initialized by means of the matching constructor.
m Value: address of the new object

nevw for Arrays

underlying type

|

new | [expr]

N

type int, value n; expr not necessarily
constant!

’ expression of type T*

new-Operator

m memory for an array with length n and underlying type Tis
allocated

m Value of the expression is the address of the first element of the
array

The delete Expression

Objects generated with new have dynamic storage duration: they
“live” until they are explicitly deleted

type void

delete expr
s N
delete-Operator nginter of type T* pointing to an object
that had been created with new.

m Effect: object is deleted and memory is released

The new Expression push(4)

m Effect: new object of type T is allocated in memory ...
m ...and intialized by means of the matching constructor
m Value: address of the new object

top_node = new list_node (value, top_node);

top_node

N EEEE

delete for Arrays

’ type void

delete[] expr
/ i
pointer of type T, that points

to an array that previously
delete-Operator :
P had been allocated using

new

m Effect: array is deleted and memory is released

Carefult with new and delete!

= new rational;
t; other pointers may also point to the same object

rational* t
rational* s
delete s;
int nominator =

memory for t is allocated

... and used for releaseing the object

(*t) .denominator() ;
+

Dereferencing of ,dangling pointers”

<—— error: memory already released!

m Pointer to released objects: dangling pointers
m Releasing an object more than once using delete is a similar severe error

m delete can be easily forgotten: consequence are memory leaks. Can lead to
memory overflow in the long run.

Stack Continued: pop O
void pop()
{

assert (lempty());

list_node*x p = top_node;

top_node = top_node->next;

delete p; T

¥ shortcut for (*top_node) .next

top_node

P\

5| e—16]]

557

Who is born must die...

Guideline “Dynamic Memory”
For each new there is a matching delete!

Non-compliance leads to memory leaks

m old objects that occupy memory. ..
m ...untilitis full (heap overflow)

556

Traverse the Stack print)

void print (std::ostream& o) const

{

const list_node* p = top_node;
while (p != 0) {
0 << p—>key << " "; // 156
P = p—>next;

}
p
d
1]/@8—5 86|

}

top_node

558

Output Stack:

class stack {
public:
void push (int value) {...}

operator<<

void print (std::ostream& o) const {...}
private:
list_nodex top_node;

};

// POST: s is written to o
std: :ostream& operator<< (std::ostream& o, const stack& s)
{

s.print (o);

return o;

}

559

Stack Done? Obviously not...

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1
stack s2 = si;

std::cout << 82 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, crash!

561

Empty Stack , empty (), top()

stack() // default constructor
: top_node (0)
{3
bool empty () const
{
return top_node == 0;
}

int top () const

{
assert (lempty());
return top_node—>key;

}

560

What has gone wrong?

sl
./Pointer to “zombie”!

2 T .
. member-wise initialization: copies the
top_node pointer only.

stack s2 = sl;—
std::cout << 82 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n'";

// 31

s2.pop (); // Oops, crash!

562

We need a real copy

sl @ 3 e—{1[e—e

s2 @ 3]/ e—1]|e—e

stack s2 = si;
std::cout << s2 << "\n"; // 2 3 1

sl.pop O;
std::cout << s1 << "\n"; // 3 1

s2.pop O; // ok

It works with a Copy Constructor

We use a copy function of the 1ist_node:

// POST: xthis is initialized with a copy of s
stack (const stack& s)
: top_node (0)
{
if (s.top_node != 0)
top_node = s.top_node->copy();
}

s e——{2[e—3 er—1 e—e

*this ® > 2| e— 3 o1 e °

565

The Copy Constructor

m The copy constructor of a class T is the unique constructor with

declaration
T (const T& x);

m is automatically called when values of type T are initialized with

values of type T
Tx=t; (t of type T)
T x (t);

m If there is no copy-constructor declared then it is generated
automatically (and initializes member-wise — reason for the
problem above

The (Recursive) Copy Function of 1ist node

// POST: pointer to a copy of the list starting

// at xthis is returned
list_nodex copy () const
{

if (next !'= 0)

return new list_node (key, next->copy());
else

return new list_node (key, 0);

X
CEECIIC
{1 o—e

*this (list_node) ® >
|
|

564

566

Initialization # Assignment!

stack si;

sl.push (1);

sl.push (3);

sl.push (2);

std::cout << s1 << "\n"; // 2 3 1

stack s2;
s2 = s1; // Zuweisung

sl.pop O;
std::cout << s1 << "\n"; // 3 1
s2.pop (); // Oops, Crash!

It works with an Assignment Operator!

Here a release function of the 1ist_node is used:

567

// POST: xthis (left operand) is getting a copy of s (right operand)

stack& operator= (const stack& s)

{

if (top_node != s.top_node) { // keine Selbtszuweisung!

if (top_node != 0) {

top_node->clear(); // loesche Knoten in xthis

top_node = 0;
}
if (s.top_node != 0)

top_node = s.top_node->copy(); // kopiere s nach xthis

}

return *this; // Rueckgabe als L—Wert (Konvention)

}

569

The Assignment Operator

m Overloading operator= as a member function
m Like the copy-constructor without initializer, but additionally

m Releasing memory for the “old” value
m Check for self-assignment (s1=s1) that should not have an effect

m If there is no assignment operator declared it is automatically
generated (and assigns member-wise — reason for the problem
above

The (recursive) release function of 1ist _node

// POST: the list starting at *this is deleted
void clear ()
{
if (mext !'= 0)
next->clear();
delete this;
}

568

570

Zombie Elements

{
stack s1; // local variable
sl.push (1);
sl.push (3);
s1.push (2);
std::cout << s1 << "\n"; // 2 3 1
}

// s1 has died (become invalid)...

m ...but the three elements of the stack s1 continue to live (memory
leak)!

m They should be released together with s1.

Using a Destructor, it Works

// POST: the dynamic memory of xthis is deleted
~stack()

{
if (top_node != 0)
top_node—>clear() ;

m automatically deletes all stack elements when the stack is being
released

m Now our stack class follows the guideline “dynamic memory”

The Destructor

m The Destructor of class T is the unique member function with
declaration

~T();
m is automatically called when the memory duration of a class object
ends

m If no destructor is declared, it is automatically generated and calls
the destructors for the member variables (pointers top_node, no
effect — reason for zombie elements

Dynamic Datatype

m Type that manages dynamic memory (e.g. our class for a stack)
m Other Applications:

m Lists (with insertion and deletion “in the middle”)
m Trees (next week)
m waiting queues
m graphs
m Minimal Functionality:
m Constructors
Destructor }

]
m Copy Constructor
m Assignment Operator

Rule of Three: if a class defines at least
one of them, it must define all three

