16. Structs and Classes |

Rational Numbers, Struct Definition, Overlading Functions and
Operators, Const-References, Encapsulation

468

Vision
How it could (will) look like

// input

std::cout << "Rational number r =7 ";
rational r;

std::cin >> r;

std::cout << "Rational number s =7 ";
rational s;

std::cin >> s;

]
~

// computation and output
std::cout << "Sum is " << r + s << ".\n";

470

Calculating with Rational Numbers

m Rational numbers (Q)) are of the form % with n and d in Z

m C-+-+does not provide a built-in type for rational numbers

We build a C+ +-type for rational numbers ourselves! ©

469

A First Struct

Invariant: specifies valid
value combinations (infor-
mal).

umerator)

struct rational {
int n;<— member variabl

int d;_// INV: d != 0

o

member variable (denominator)

m struct defines a new type

m formal range of values: cartesian product of the value ranges of
existing types

m real range of values: rational C int X int.

471

Accessing Member Variables

struct rational {

int n;

int 4; // INV: d != 0
};

rational add (rational a, rational b)
{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d * b.d;
return result;

T'n _ Qn + bn _ Gp ba + aq - by

re aq by

Input

// Input r

rational r;

std::cout << "Rational number r:\n";
std::cout << " numerator =7 ";
std::cin >> r.n;

std::cout << " denominator =7 ";
std::cin >> r.d;

// Input s the same way
rational s;

aq - bq

472

A First Struct: Functionality

A struct defines a new type, not a variable!

// new type rational

struct rational { Meaning: every object of the new type is rep-
int n; resented by two objects of type int the ob-
int d; // INV: d != 0 jectsarecallednandd.

};

// POST: return value is the sum of a and b
rational add (const rational a, const rational b)

{

rational result;

result.d = a.d * b.d;

return result; member access to the int objects of a.

Vision comes within Reach ...

// computation
const rational t = add (r, s);

// output
std::cout << "Sum is " << t.n << "/" << t.d << ".\n";

475

Struct Definitions

name of the new type (identifier)

I

struct T {
T\ name;«
names of the underlying . names of the member
types Ty name;«; variables
T,, name,«;
};)
Range of Valuesof T: Ty x To x ... x T, |

476

Struct Definitions: Examples

struct extended_int {
// represents value if is_positive==true
// and —value otherwise
unsigned int value;
bool is_positive;

};

the underlying types can be different J

478

Struct Defintions: Examples

struct rational_vector_3 {
rational x;
rational y;
rational z;

};

underlying types can be fundamental or user defined)

477

Structs: Accessing Members

expression of struct-type T name of a member-variable of type T.

expression of type Ty ; value is the value of

eXpr, namek J the object designated by namey,

|

member access operator .

479

Structs: Initialization and Assignment

Default Initialization:

rational t; J

m Member variables of t are default-initialized

m for member variables of fundamental types nothing happens
(values remain undefined)

480

Structs: Initialization and Assignment

Assignment:

rational s;

rational t = s;

m The values of the member variables of s are assigned to the
member variables of t.

482

Structs: Initialization and Assignment

Initialization:
rational t = {5, 1};)

m Member variables of t are initialized with the values of the list,
according to the declaration order.

Structs: Initialization and Assignment

t.n _ .n
g EEE G @) g
Initialization:

rational t = add (r, s); J

m t is initialized with the values of add(r, s)

Structs: Initialization and Assignment

Assignment:

rational t;
t = add (r, s);

m t is default-initialized
m The value of add (r, s) isassignedtot

484

Comparing Structs?

For each fundamental type (int, double, .. .) there are
comparison operators == and !=, not so for structs! Why?

m member-wise comparison does not make sense in general...

2 4
m ...otherwise we had, for example, 3 =+ 5

486

Structs: Initialization and Assignment

rational s; — member variables are uninitialized
member-wise initialization:
t.n=1, t.d =5

rational u = t; — member-wise copy

rational t

t = u; <« member-wise copy

rational v = add (u,t); — member-wise copy

Structs as Function Arguments

void increment(rational dest, const rational src)

{
dest = add (dest, src); // modifies local copy only

}

Call by Value !

rational a;

rational b;

a.d=1; a.n =2

b = a;

increment (b, a); // no effect!

std::cout << b.n << "/" << b.d; // 1/ 2

Structs as Function Arguments

void increment(rational & dest, const rational src)

{
dest = add (dest, src);

}

Call by Reference |

rational a;

rational b;

a.d=1; a.n=2;

b = a;

increment (b, a);

std::cout << b.n << "/" << b.d; // 2/ 2

488

Overloading Functions

m Functions can be addressed by name in a scope

m It is even possible to declare and to defined several functions
with the same name

m the “correct” version is chosen according to the signature of the
function.

490

User Defined Operators

Instead of

rational t = add(r, s); J

we would rather like to write

rational t = r + s; |

This can be done with Operator Overloading.

Function Overloading

B A function is defined by name, types, number and order of arguments

double sq (double x) { ... } // f1
int sq (int x) { ... } // £2
int pow (int b, int e) { ... } // £3

int pow (int e) { return pow (2,e); } // f4

m the compiler automatically chooses the function that fits “best” for a function
call (we do not go into details)

std::cout << sq (3); // compiler chooses f2
std::cout << sq (1.414); // compiler chooses f1
std::cout << pow (2); // compiler chooses f4

std::cout << pow (3,3); // compiler chooses £3

491

Operator Overloading

m Operators are special functions and can be overloaded
m Name of the operator op:

operatorop |

m we already know that, for example, operator+ exists for different
types

492

Adding rational Numbers - After

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)

{
rational result;
result.n = a.n *x b.d + a.d * b.n;
result.d = a.d * b.d;
return result;
}

const rational t = r + s;
/r

infix notation

494

Adding rational Numbers - Before

// POST: return value is the sum of a and b
rational add (rational a, rational b)

{
rational result;
result.n = a.n * b.d + a.d * b.n;
result.d = a.d *x b.d;
return result;
}

const rational t = add (r, s);

493

Other Binary Operators for Rational Numbers

// POST: return value is difference of a and b
rational operator— (rational a, rational b);

// POST: return value is the product of a and b
rational operatorx (rational a, rational b);

// POST: return value is the quotient of a and b

// PRE:b!=0
rational operator/ (rational a, rational b);

495

Unary Minus

has the same symbol as the binary minus but only one argument:

// POST: return value is —a
rational operator— (rational a)

{

a.n = —a.n;
return a;
}
Arithmetic Assignment

We want to write

rational r;

r.n=1; r.d = 2;
rational s;
s.n=1; s.d = 3;

r += 8;
std::cout << r.n << "/" << r.d;

496

// 1/2

// 1/3

// 5/6

498

Comparison Operators

are not built in for structs, but can be defined

// POST: returns true iff a ==
bool operator== (rational a, ratiomnal b)

{

return a.n *x b.d == a.d *x b.n;

3

v

2 4
3 6

497

Operator+= First Trial

rational operator+= (rational a, rational b)

{
a.n = a.n *x b.d + a.d * b.n;
a.d x= b.d;
return a;

}

does not work. Why?

m The expression r += s has the desired value, but because the arguments are
R-values (call by value!) it does not have the desired effect of modifying r.

m Theresultof r += s is, against the convention of C++ no L-value.

499

Operator +=

rational& operator+= (rational& a, rational b)

{

a.n = a.n x b.d + a.d * b.n;

a.d x= b.d;
return a;

}

this works

m The L-value a is increased by the value of b and returned as
L-value

r += s; now has the desired effect.]

In/Output Operators

can be overloaded as well:

// POST: r has been written to out
std::ostream& operator<< (std::ostream& out,
rational r)

{
return out << r.n << "/" << r.d;
}
writes r to the output stream
and returns the stream as L-value.

502

In/Output Operators

can also be overloaded.

m Before:

std::cout << "Sum is "
<< t.n << u/n << t.d << "\n";

m After (desired):

std::cout << "Sum is "
<< t << "\n";

501

Input

// PRE: in starts with a rational number
// of the form "n/d"
// POST: r has been read from in
std::istream& operator>> (std::istream& in,
rational& r)
{
char c; // separating character ’/’
return in >> r.n >> ¢ >> r.d;

reads r from the input stream
and returns the stream as L-value.

503

Goal Attained!

// input
std::cout << "Rational number r =7 ";
rational r;

std::cin >>.r;

operator >>

std: :cout << "Rationa
rational s;
std::cin >> s;

operator +
// computation and output j/

std::cout << "Sum is " << r + s << ".\n";

~——

operator<< o

... are Better Passed as Const-Reference

struct SimulatedCPU {
unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536] ;
}; call by reference: only the address gets copied.

void outputState (const SimulatedCPU& pq/{
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (int i = p.stackPosition; i !'= 0; ——i)
std::cout << p.stack[i—1];

506

Recall: Large Objects ...

struct SimulatedCPU {
unsigned int pc;
int stack[16];
unsigned int stackPosition;
unsigned int memory[65536] ;
}; call by value: more than 256k get copied!

void outputState (SimulatedCPU pé/f/////
std::cout << "pc=" << p.pc;
std::cout << ", stack: ";
for (unsigned int i = p.stackPosition; i != 0; ——1i)
std::cout << p.stack[i—1];

505

A new Type with Functionality...

struct rational {

int n;

int d; // INV: d != 0
};

// POST: return value is the sum of a and b
rational operator+ (rational a, rational b)
{

rational result;

result.n = a.n * b.d + a.d * b.n;

result.d = a.d * b.d;

return result;

507

...Should be in a Library!

rational.h:

m Definition of a struct rational

m Function declarations

rational.cpp:

m arithmetic operators (operator+, operator+=, ...)

m relational operators (operator==, operator>, ...)
m in/output (operator >>, operator <<, ...

The Customer is Happy

...and programs busily using rational.
m output as double-value (2 — 0.6)

// POST: double approximation of r
double to_double (rational r)
{

double result = r.n;

return result / r.d;

}

508

510

Thought Experiment

The three core missions of ETH:

m research
m education
m technology transfer

We found a startup: RAT PACK®!

m Selling the rational library to customers
m ongoing development according to customer’s demands

509

The Customer Wants More
“Can we have rational numbers with an extended value range?”

m Sure, no problem, e.g.:

struet rational struct rational {
> unsigned int n;
unsigned int d;
bool is_positive;

};

New Version of RAT PACK®

“%’ It sucks, nothing works any more!
m What is the problem?

g
@\’ —2 is sometimes 0.6, this cannot be true!

m That is your fault. Your conversion to double
is the problem, our library is correct.

)
@ Up to now it worked, therefore the new
version is to blame!

We are to Blame!!

m Customer sees and uses our representation of rational numbers
(initially r.n, r.d)

m When we change it (r.n, r.d, r.is_positive), the customer’s
programs do not work anymore.

m No customer is willing to adapt the programs when the version of
the library changes.

= RAT PACK® is history. ..

)

514

Liability Discussion

// POST: double approximation of r

double to_double (rational r){
double result = r.n;
return result / r.d;

}

r.is_positive and result.is_positive
do not appear.

correct using. hot correct using

struct rational {
unsigned int n;
unsigned int d;
bool is_positive;

};

struct ratiomal {
int n;
int d;

};

Idea of Encapsulation (Information Hiding)

m A type is uniquely defined by its value range and its functionality
m The representation should not be visible.

m = The customer is not provided with representation but with
functionality!

|

str.length(),
v.push_back(1),...

515

Classes

m provide the concept for encapsulation in C+-+
m are a variant of structs
m are provided in many object oriented programming languages

Encapsulation: public/private

clm is used instead of struct if anything at all

. shall be “hidden”
int n;

int d; // INV: 4 !'= 0
};

only difference

m struct: by default nothing is hidden
m class : by default everything is hidden

