
1. Introduction

Computer Science: Definition and History, Algorithms, Turing
Machine, Higher Level Programming Languages, Tools, The first
C++Program and its Syntactic and Semantic Ingredients

23

What is Computer Science?

The science of systematic processing of informations,. . .
. . . particularly the automatic processing using digital computers.

(Wikipedia, according to “Duden Informatik”)

24

Informatics 6= Science of Computers

Computer science is not about machines, in the same way
that astronomy is not about telescopes.

Mike Fellows, US Computer Scientist (1991)

ht
tp

:/
/l

ar
c.

un
t.

ed
u/

ia
n/

re
se

ar
ch

/c
se

du
ca

ti
on

/f
el

lo
ws

19
91

.p
df

25

Computer Science⊆ Informatics

Computer science is also concerned with the development of fast
computers and networks. . .
. . . but not as an end in itself but for the systematic processing
of informations.

26



Computer Science 6= Computer Literacy

Computer literacy: user knowledge

Handling a computer
Working with computer programs for text processing, email,
presentations . . .

Computer Science Fundamental knowledge

How does a computer work?
How do you write a computer program?

27

This course

Systematic problem solving with algorithms and the programming
language C++.
Hence:

not only
but also programming course.

28

Algorithm: Fundamental Notion of Computer Science

Algorithm:

Instructions to solve a problem step by step
Execution does not require any intelligence, but precision (even
computers can do it)
according to Muhammed al-Chwarizmi,
author of an arabic
computation textbook (about 825)

“Dixit algorizmi. . . ” (Latin translation) ht
tp

:/
/d

e.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
lg

or
it

hm
us

29

Oldest Nontrivial Algorithm
Euclidean algorithm (from the elements from Euklid, 3. century B.C.)

Input: integers a > 0, b > 0

Output: gcd of a und b

While b 6= 0
If a > b then

a← a− b
else:

b← b− a
Result: a.

a b a b a b a b
30



Live Demo: Turing Machine

31

Euklid in the Box

0

[8]
→ L

1

[9]
→ R

2

L = 0?
stop

3

R > L?
springe

zu 6

4

L − R
→ [8]

5

springe
zu 0

6

R − L
→ [9]

7

springe
zu 0

8

b

9

a

Speicher

Programmcode Daten

Links

b

Rechts

a

Register

Daten
While b 6= 0

If a > b then
a← a− b

else:
b← b− a

Ergebnis: a.

32

ETH: pioneer of modern computer science
1950: ETH rents the Z4 from Konrad Zuse, the only working
computer in Europe at that time.

N
eu

e
Zü

rc
he

rZ
ei

tu
ng

,3
0.

A
ug

us
t1

95
0

33

ETH: pioneer of modern computer science

1956:

ht
tp

://
de

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/E

R
M

E
TH

34



ETH: pioneer of modern computer science
1958–1963: Entwicklung von ALGOL 60 (der ersten formal
definierten Programmiersprache), unter anderem durch Heinz
Rutishauer, ETH

1964: Erstmals können ETH-Studierende selbst einen Computer
programmieren (die CDC 1604, gebaut von Seymour Cray).

Vo
rt

ra
g

W
al

te
rG

an
de

r,
50

Ja
hr

e
P

ro
gr

am
m

ie
re

n,
E

TH
Zü

ric
h,

20
14

35

ETH: pioneer of modern computer science

Die Klasse 1964 im Jahr 2015 (mit einigen Gästen)

ht
tp

:/
/w

ww
.i

nf
.e

th
z.

ch
/n

ew
s-

an
d-

ev
en

ts
/s

po
tl

ig
ht

s/
19

64
.h

tm
l

36

ETH: pioneer of modern computer science

1968–1990: Niklaus Wirth entwickelt an der ETH die
Programmiersprachen Pascal, Modula-2 und Oberon und 1980 die
Lilith, einen der ersten Computer mit grafischer Benutzeroberfläche.

37

Computers – Concept

A bright idea: universal Turing machine (Alan Turing, 1936)

Alan Turing ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/A
la

n_
Tu

ri
ng

38



Computer – Implementation

Z1 – Konrad Zuse (1938)
ENIAC – John Von Neumann (1945)

Konrad Zuse

John von Neumann ht
tp

:/
/w

ww
.h

s.
un

i-
ha

mb
ur

g.
de

/D
E/

GN
T/

hh
/b

io
gr

/z
us

e.
ht

m
ht

tp
:/

/c
om

mo
ns

.w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:J
oh

n_
vo

n_
Ne

um
an

n.
jp

g

39

Computer

Ingredients of a Von Neumann Architecture

Memory (RAM) for programs and data

Processor (CPU) to process programs and data

I/O components to communicate with the world

40

Memory for data and program

Sequence of bits from {0, 1}.
Program state: value of all bits.
Aggregation of bits to memory cells (often: 8 Bits = 1 Byte)
Every memory cell has an address.
Random access: access time to the memory cell is (nearly)
independent of its address.

41

Processor

The processor (CPU)

executes instructions in machine language

has an own "fast" memory (registers)

can read from and write to main memory

features a set of simplest operations = instructions (e.g. adding
to register values)

42



Computing speed

In the time, on average, that the sound takes to travel from from my
mouth to you ...

30 m =̂ more than 100.000.000 instructions

a contemporary desktop PC can process more than 100 millions
instructions 2

2Uniprocessor computer at 1 GHz.
43

Programming

With a programming language we issue commands to a computer
such that it does exactly what we want.
The sequence of instructions is the
(computer) program

The Harvard Computers, human computers, ca.1890 ht
tp

:/
/e

n.
wi

ki
pe

di
a.

or
g/

wi
ki

/H
ar

va
rd

_C
om

pu
te

rs

44

Why programming?

Do I study computer science or what ...
There are programs for everything ...
I am not interested in programming ...
because computer science is a mandatory subject here,
unfortunately...
. . .

45

Mathematics used to be the lingua franca of the natural
sciences on all universities. Today this is computer
science.
Lino Guzzella, president of ETH Zurich, NZZ Online, 1.9.2017

46



This is why programming!

Any understanding of modern technology requires knowledge
about the fundamental operating principles of a computer.
Programming (with the computer as a tool) is evolving a cultural
technique like reading and writing (using the tools paper and
pencil)
Most qualified jobs require at least elementary programming skills
Programming is fun!

47

Programming Languages

The language that the computer can understand (machine
language) is very primitive.
Simple operations have to be subdivided into many single steps
The machine language varies between computers.

48

Higher Programming Languages

can be represented as program text that

can be understood by humans
is independent of the computer model
→ Abstraction!

49

Programming langauges – classification

Differentiation into

Compiled vs. interpreted languages

C++, C#, Pascal, Modula, Oberon, Java
vs.
Python, Tcl, Matlab

Higher programming languages vs. Assembler

Multi-purpose programming languages vs. single purpose
programming languages

Procedural, object oriented, functional and logical languages.

50



Why C++?

Other popular programming languages: Java, C#, Objective-C,
Modula, Oberon, Python . . .

C++ is practically relevant.
For the computational computing (as required in math and
physics), C++ offers a lot of useful concepts.
C++ is widespread and “runs everywhere”
C++ is standardized i.e. there is an “official” C++.
The lecturer likes C++.

51

Why C++?

C++equips C with the power of the abstraction of a higher
programming language
In this course: C++ introduced as high level language, not as
better C
Approach: traditionally procedural→ object-oriented.

52

Deutsch vs. C++

Deutsch
Es ist nicht genug zu wissen,
man muss auch anwenden.
(Johann Wolfgang von Goethe)

C++

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

53

Syntax and Semantics

Like our language, programs have to be formed according to
certain rules.

Syntax: Connection rules for elementary symbols (characters)
Semantics: interpretation rules for connected symbols.

Corresponding rules for a computer program are simpler but also
more strict because computers are relatively stupid.

54



C++: Kinds of errors illustrated with German sentences

Das Auto fuhr zu schnell.

DasAuto fuh r zu sxhnell.

Rot das Auto ist.

Man empfiehlt dem Dozenten
nicht zu widersprechen

Sie ist nicht gross und rothaarig.

Die Auto ist rot.

Das Fahrrad gallopiert schnell.

Manche Tiere riechen gut.

Syntaktisch und semantisch korrekt.

Syntaxfehler: Wortbildung.

Syntaxfehler: Satzstellung.

Syntaxfehler: Satzzeichen fehlen .

Syntaktisch korrekt aber mehrdeutig. [kein Analogon]

Syntaktisch korrekt, doch semantisch fehlerhaft:
Falscher Artikel. [Typfehler]

Syntaktisch und grammatikalisch korrekt! Semantisch
fehlerhaft. [Laufzeitfehler]

Syntaktisch und semantisch korrekt. Semantisch
mehrdeutig. [kein Analogon]

55

Syntax and Semantics of C++

Syntax

What is a C++ program?

Is it grammatically correct?

Semantics

What does a program mean?

What kind of algorithm does a program implement?

56

Syntax and semantics of C++

The ISO/IEC Standard 14822 (1998, 2011,...)

is the “law” of C++
defines the grammar and meaning of C++programs
contains new concepts for advanced programming . . .
. . . which is why we will not go into details of such concepts

57

Programming Tools

Editor: Program to modify, edit and store C++program texts
Compiler: program to translate a program text into machine
language
Computer: machine to execute machine language programs
Operating System: program to organize all procedures such as
file handling, editor-, compiler- and program execution.

58



Language constructs with an example

Comments/layout
Include directive
the main function
Values effects
Types and functionality
literals
variables

constants
identifiers, names
objects
expressions
L- and R- values
operators
statements

59

The first C++ program Most important ingredients. . .
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

Statements: Do something (read in a)!

Expressions: Compute a value (a2)!

60

Behavior of a Program
At compile time:

program accepted by the compiler (syntactically correct)

Compiler error

During runtime:

correct result

incorrect result

program crashes

program does not terminate (endless loop)
61

“Accessories:” Comments
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

comments

62



Comments and Layout
Comments

are contained in every good program.

document what and how a program does something and how it
should be used,

are ignored by the compiler

Syntax: “double slash” // until the line ends.

The compiler ignores additionally

Empty lines, spaces,

Indendations that should reflect the program logic
63

Comments and Layout

The compiler does not care...

#include <iostream>
int main(){std::cout << "Compute a^8 for a =? ";
int a; std::cin >> a; int b = a * a; b = b * b;
std::cout << a << "^8 = " << b*b << "\n";return 0;}

... but we do!

64

“Accessories:” Include and Main Function
// Program: power8.cpp
// Raise a number to the eighth power.
#include <iostream>
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

include directive
declaration of the main function

65

Include Directives

C++ consists of

the core language
standard library

in-/output (header iostream)
mathematical functions (cmath)
...

#include <iostream>

makes in- and output available

66



The main Function

the main-function

is provided in any C++ program

is called by the operating system
like a mathematical function ...

arguments
return value

... but with an additional effect

Read a number and output the 8th power.

67

Statements: Do something!
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

expression statements

return statement

68

Statements

building blocks of a C++ program
are executed (sequentially)
end with a semicolon
Any statement has an effect (potentially)

69

Expression Statements

have the following form:

expr;

where expr is an expression
Effect is the effect of expr, the value of expr is ignored.

Example: b = b*b;

70



Return Statements

do only occur in functions and are of the form

return expr;

where expr is an expression
specify the return value of a function

Example: return 0;

71

Statements – Effects
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

effect: output of the string Compute ...

Effect: input of a number stored in a

Effect: saving the computed value of a*a into b

Effect: saving the computed value of b*b into b

Effect: output of the value of a and the computed value of b*bEffect: return the value 0

72

Values and Effects

determine what a program does,
are purely semantical concepts:

Symbol 0 means Value 0 ∈ Z
std::cin >> a; means effect "read in a number"

depend on the program state (memory content, inputs)

73

Statements – Variable Definitions
int main() {

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;
// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4
// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b ∗ b << "\n";
return 0;

}

declaration statement

type
names

74



Declaration Statements

introduce new names in the program,
consist of declaration and semicolon

Example: int a;
can initialize variables

Example: int b = a * a;

75

Types and Functionality

int:

C++ integer type

corresponds to (Z,+,×) in math

In C++ each type has a name and

a domain (e.g. integers)

functionality (e.g. addition/multiplication)

76

Fundamental Types

C++ comprises fundamental types for

integers (int)

natural numbers (unsigned int)

real numbers (float, double)

boolean values (bool)

...

77

Literals

represent constant values
have a fixed type and value
are "syntactical values".

Examples:

0 has type int, value 0.

1.2e5 has type double, value 1.2 · 105.

78



Variables

represent (varying) values,
have

name
type
value
address

are "visible" in the program
context.

Beispiel
int a; defines a variable with

name: a

type: int

value: (initially) undefined

Address: determined by
compiler

79

Objects

represent values in main memory
have type, address and value (memory content at the address)
can be named (variable) ...
... but also anonymous.

Remarks
A program has a fixed number of variables. In order to be able to deal with a
variable number of value, it requires "anonymous" addresses that can be address
via temporary names.

80

Identifiers and Names

(Variable-)names are identifiers

allowed: A,...,Z; a,...,z; 0,...,9;_
First symbol needs to be a character.

There are more names:

std::cin (Qualified identifier)

81

Expressions: compute a value!

represent Computations

are either primary (b)

or composed (b*b). . .

. . . from different expressions, using operators

have a type and a value

Analogy: building blocks

82



Expressions Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";

return 0;

composite expression

Two times composed expression

Four times composed expression
83

Expressions

represent computations
are primary or composite (by other expressions and operations)

a * a
composed of
variable name, operator symbol,variable name
variable name: primary expression

can be put into parantheses

a * a is equivalent to (a * a)

84

Expressions

have type, value und effect (potentially).

Example

a * a

type: int (type of the operands)

Value: product of a and a

Effect: none.

Example

b = b * b

type: int (Typ der Operanden)

Value: product of b and b

effect: assignment of the product value
to b

The type of an expression is fixed but the value and effect are only
determined by the evaluation of the expression

85

L-Values and R-Values
// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b * b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a<< "^8 = " << b * b << ".\ n";
return 0;

L-value (expression + address)

L-value (expression + address)

R-Value (expression that is not an L-value)

R-Value

R-Value

86



L-Values and R-Values

L-Wert (“Left of the assignment operator”)

Expression with address

Value is the content at the memory location according to the
type of the expression.

L-Value can change its value (e.g. via assignment)

Example: variable name

87

L-Values and R-Values

R-Wert (“Right of the assignment operator”)

Expression that is no L-value

Example: literal 0

Any L-Value can be used as R-Value (but not the other way
round)

An R-Value cannot change its value

88

L-Value and R-Value

89

Operators and Operands Building Blocks

// input
std::cout << "Compute a^8 for a =? ";
int a;
std::cin >> a;

// computation
int b = a ∗ a; // b = a^2
b = b ∗ b; // b = a^4

// output b ∗ b, i.e., a^8
std::cout << a << "^8 = " << b * b << "\n";
return 0;

left operand (output stream)
right operand (string)output operator

left operand (input stream)

right operand (variable name)
input operator

assignment operator

multiplication operator

90



Operators

Operators

combine expressions (operands) into new composed
expressions

specify for the operands and the result the types and if the have
to be L- or R-values.

have an arity

91

Multiplication Operator *

expects two R-values of the same type as operands (arity 2)
"returns the product as R-value of the same type", that means
formally:

The composite expression is an R-value; its value is the product of the
value of the two operands

Examples: a * a and b * b

92

Assignment Operator =

Left operand is L-value,
Right operand is R-value of the same type.
Assigns to the left operand the value of the right operand and
returns the left operand as L-value

Examples: b = b * b and a = b

Attention, Trap!
The operator = corresponds to the assignment operator of mathematics (:=), not
to the comparison operator (=).

93

Input Operator >>

left operand is L-Value (input stream)
right operand is L-Value
assigns to the right operand the next value read from the input
stream, removing it from the input stream and returns the input
stream as L-value

Example std::cin >> a (mostly keyboard input)

Input stream is being changed and must thus be an L-Value.

94



Output Operator <<

left operand is L-Value (output stream)
right operand is R-Value
outputs the value of the right operand, appends it to the output
stream and returns the output stream as L-Value

Example: std::cout << a (mostly console output)

The output stream is being changed and must thus be an L-Value.

95

Output Operator <<

Why returning the output stream?

allows bundling of output

std::cout << a << "^8 = " << b * b << "\n"

is parenthesized as follows

((((std::cout << a) << "^8 = ") << b * b) << "\n")

std::cout << a is the left hand operand of the next << and is
thus an L-Value that is no variable name

96

power8 exact.cpp

Problem with power8.cpp: large input values are not correctly
handled
reason: domain of the type int is limited
solution: use a different type
e.g. ifm::integer

97

power8 exact.cpp
// Program: power8_exact.cpp
// Raise a number to the eighth power,
// using integers of arbitrary size

#include <iostream>
#include <IFMP/integer.h>

int main()
{

// input
std::cout << "Compute a^8 for a =? ";
ifmp::integer a;
std::cin >> a;

// computation
ifmp::integer b = a * a; // b = a^2
b = b * b; // b = a^4

// output b * b, i.e., a^8
std::cout << a << "^8 = " << b * b << ".\n";
return 0;

} 98


