

Vorlesung 2: Zimtsterne
Ganze Zahlen, Arithmetische Ausdrucke

Wie viele Zimtsterne wollen Sie backen?
11
Zutaten: 2 Eiweiss, 0.55 EL Zimt.

Beispiel zeigt auch
 Konversionbool - int

* Fliesskommazahlen

// Zimtsterne
#include<iostream>

// Zutaten fuer 10 Zimtsterne (Betty Bossi):

// 1 Eiweilss (unsigned 1int)
j; 0.5 EL Zimt (float) Wie viele Zimtsterne wollen Sie backen?
e o o 11

Zutaten: 2 Eiweiss, 0.55 EL Zimt.
int main()

{
std::cout << "Wie viele Zimtsterne wollen Sie backen?\n";
unsigned int zimtsterne;
std::cin >> zimtsterne;

std: :cout << "Zutaten: ";

std::cout << zimtsterne / 10 + (zimtsterne % 10 != @) << " Eiweiss, ";
std::cout << zimtsterne * 0.05 << " EL Zimt.\n";
return 0;

Vorlesung 3: Samichlaus-Checker
Typ bool, Logische Operatoren, if-else

War Ihr Kind brav?
0

Wie alt ist Ihr Kind?
5

Strafe vom Schmutzli!

// Samichlaus-Checker

#include<iostream>

int main(Q)

{
std: :cout << "War Ihr Kind brav?\n";
bool brav;

std::cin >> brav;

std::cout << "Wie alt ist Ihr Kind?\n";
unsigned int alter;
std::cin >> alter;

if (brav || alter < 3)

std: :cout << "Geschenk vom Samichlaus!\n";
else War Ihr Kind brav?

- 0
.. n ' "n,
std::cout << "Strafe vom Schmutzli!\n"; Wie alt ist Ihr Kind?
5
return 0, Strafe vom Schmutzli!

Vorlesung 3: Ho-Ho-Ho-Automat
for-, while-Anweisung

Beispiel zeigt auch Ho Ho Ho
* Postdekrement Ho Ho Ho

// Ho-Ho-Ho-Automat
#include<iostream>

int main()
{
for (int 1=0; 1<3; ++1)
std::cout << "Ho ";
std::cout << "\n';

// Nochmal, weil's so schodn war...

int wie_oft_noch = 3;

while (wie_oft_noch-- > @)
std::cout << "Ho ";

std::cout << "\n';

return 0; :g :g :g
}

Vorlesung 4: Adventskalender Welches Turchen?
do-Anweisung geiiﬂz?%rchen?
Schooon!
Welches Turchen?
4
Falsches Turchen!
Welches Turchen?

" Beispiel zeigt auch
e Kurzschlussauswertung
* Vektoren

// Adventskalender
#include<iostream>
#include<vector>

int main()

{

std: :vector<bool> offen (25, false);
offen[@] = true; // sentinel, Wdchter

unsigned int tag;
do {
std::cout << "Welches Turchen?\n";
std::cin >> tag;
1f (tag < 25 && !offen[tag] && offen[tag-1]) {
// tag == 0 oder >= 25: Kurzschlussauswertung wichtig!
offen[tag] = true;
std::cout << " Schooon!\n";
} else
std: :cout << Falsches Tirchen!\n";
} while (loffen[24]);
return 0;

Welches Turchen?
1
Schooon!
Welches Turchen?
2
Schooon'!
Welches Turchen?
4
Falsches Turchen!
Welches Turchen?

Vorlesung 4: Die Weihnachtsformel
Typen £loat und double

V17

Number of ornaments = 50" X (Tree height in cms)
13 xT1

3 X (Tree height in cms)

Length of tinsel (cms) =

Length of lights (cms) = TT X (Tree height in cms)

ptee hegliin oms)
10

Height of the star/angel (cms) =

// Die Weihnachtsformel

#include<iostream>

int main()

{
const double nikolaus_tag = 6.0;
const double heilige_koenige = 3.0;
const double adventssonntage = 4.0;

double x = nikolaus_tag;
double w = 0.0;
while (x > le-5) {
std::cout << w << '\n';
W += X;
X *= heilige_koenige / adventssonntage;

}

return 0;

// Die Weihnachtsformel

#include<iostream>

int main(Q)

{ . .
const double nikolaus_tag = 6.0; Was st dle |etZte
const double heilige_koenige = 3.0; Ausga be ?
const double adventssonntage = 4.0;
double x = nikolaus_tag;
double w = 0.0; (a) 7
while (x > le-5) { (b) 12

std::cout << w << '\n'; (c) 24

W += X;

X *= heilige_koenige / adventssonntage; (d) 42
} (e) 2017
return 0;

// Die Weihnachtsformel

#include<iostream>
int main()
{ . .
const double nikolaus_tag = 6.0; Was Ist dle Ietzte
const double heilige_koenige = 3.0; Ausga be ?
const double adventssonntage = 4.0;
double x = nikolaus_tag;
double w = 0.0; (a) 7
while (x > le-5) { (b) 12
std::cout << w << '\n'; (c) 24
W += X;
X *= heilige_koenige / adventssonntage; (d) 42
} (e) 2017
. o 3\
return 0; Losung: 6 - Zi=0 2 =24

dok o kR Rk Rk Rk kok Rk ok Rk Rk Rk kK kK kK
HHKK FAkK K doHk Kk * T I S N
* * kK K RRRRNORKK K *k kK Hk KRRk *k

e L 2 T 2 * * *K HORKNK RORNOKK FKKNK
O r es u n C n ee * kK L 2 T T N 2 doK KK oK KK KK oK RRRRK 3k
e *ok Hk ok Rk kR ok kKRR Kk dokokk *ok ok *
*
*

dK K K KK KK K *k kK Hok L . T N HHKK
doHk kK * Xk Hopkkok koK kKK KK Kk kK K K kK XK

[] [
rr] rT] dopdokok kK ok ok Rk ok Rk Kk ok kX * ok ok ok
I e S S O a Za e n u n I O n e n * FK K KK K K K RNOKNOKNRK doRk kK K Rokkk Kok
, * ARRRRRRRK K Rokk K K HAok kK L T 2 kKK
L = HHNK * Ok Kk L 2 = S -
* % * Xk dRk RRNOKNOK RokK R RokK KKk KK K K K
L I = T 2 S koK Rk ROk ok * HokHkK
* kK K XK * ok kK * kKK X kRRKEK kK *K KK
kOkRokRk kK kK kX doHk Kk * kKKK LT T T
*k HokkK K dkK KK * dokk kK KNk *
kK K Hokk ko ok ok kKK Rk kKR Rk ok Rk okk *
dok ok kK *ok dk kK K Rk Rk Rk Xk L T 2
Kk HKRAOKK * ok koK *K kK * * Xk ok ok X
FAK RK Ok RRRKNOKK KK ok kR Rk Ok ok kKR ook Kok K
doRRkK KK dok ok Rk RNk kK X k0 k Rkk Rk Xk
HORNORRRRK K oK KK ORNOK kKKK FoRkK K Hokk Rk KK
* Kk kKK * * Aok KK Hok dk kK Kok
* Rk ok kokkk kK ok ok kK Rk k% L T I 2
L L * kK K dHkK K K KK * HoKk
* ok dok ko kokok kKoK kK kK kORkok Kok KK RROKKKK
kK Kk K FoKRNK KK KON K KNK KK *
*K Kk * oAk KoK * * Xk
* doRRKKR KK K K * k0 kk kK ok K kK
E I S = kRN doK KRRk kK K K kK kK Kk
Kk ook Kk Rk Rk KooK Rk K dokkokk doK ARRRK RORROK KKK
kKKK ko RRRRNORKRK K *k K Hok kKK kK *
Kk kK Rk KoK dK K KK KK K K XK * Kk kK
dok kK kK * * 0 kk kK Ok Kk Hokok kKK KoKk
doRk RokokRkK kK K SoRRRRRRKR K kK Kk X dRKK K
* kK * ok ko 3k * Hokk *okk kK
*ok L L Rk kK KdOK HORHK HORK
Kk KK RRKRK * L T I T T 2 * kK Hok
dk kKK K ok ok ok ok Kk k0 Kk ok ok kK kK Hok
dk ko Kk ko ok K ORRNKK Rk KRR kK Kk kK kX
dok ok Rokokkk K ok ok K kK K kK K Kk RdoKk K kK
dok kK *k Kk K K * * *ok HRRRNK KKK
oKk * * * % kKK RRNOKNOKR KKK *K kX
dAk K KK kK kK * X kokRkRk Ok kK ok Kok Rk Rk kK Xk
dokk kK K ok Rk R KoKk *k Kk * X Kk KK
*
*

¥R K K X K X X X X X ¥ X

*
*

FAK RRK KRR KK * ok kK k dokk ok K KK kK Kok
doRkK kKR ROREK K Hok KK K K KK XK Hok kK
kKK * * *k HORAKAK AORAOKK KoKk *
SRR kR K KK Rk X * X L T 2 N S T N T

// Schnee
#include<iostream>
#include<cassert>

// PRE: @ <=d <1
// POST: gibt die bindren Nachkommstellen von d aus,
// wobei {0,1} durch {' ', "*'} dargestellt werden
void schnee (double d)
{
while (d '= 0) {
assert (0.0 <= d && d < 1.0);
d *= 2.0;
if (d >= 1.0) {
std::cout << "*';
d -=1.0;
} else
std::cout << " '}

}

std::cout << '\n';

}

int main()
{
const double frau_holle = 0.01812;
for (double d = 0.1; d < 1.0; d += frau_holle)
schnee (d);
return 0;

}

* X X X X X X

*
*
*
*

dk o ckk kK koK
HHKK HKK K
* L 2 *
L 2 T 2 *
* kK L 2
Hk ko ok Kk
dK K K KK KK K
Fokk ok * ok
dokokKk K Rk ok kK
HK K KKK
B T T 2
ko ok Ok
* * Xk HoHk
L T T T 2 T
K K K * kK kK
FoRRNK K KKK
* dokHk K ok
* % * ok kK
* Kk K *K *
ok dok kKoK

dok o ckk kk o kK Rk KoK KK KK KK XK
doHk Kk * T I S N
SRR K kK Kk koK kKK kK
* *K SdokRRRK dokNkkK ok kkok
ko kK doK KK oK KK KK oK RRRRK 3k
L T N S T T N 2 S *K Rk *
* kk % Hok * ok kK X HHKK
kOoRkRK kK Kk K kK kK Kk KK K K KK XK
dk ok Kk K ok Rk K kK E T N
HK K RAOKAKNK Aok K K KKK KK
k¥ kK Xk kK kK L N 2 kKK
kKK ko kKK ko kkokk ko ckk ok
FRRAOKRK KK K RkK KKk KK K K K
* L T T N T 2 2 * kKK
* kKKK X kRRKEK kK *K KK
* % Fokk ok L I 2 HAK RNk
* o kK * dokk kK kKK *
kK OROKEK Rk ROKK KKK K kK ok *
koK Kk koK Rk kK 3k L T 2 2
kK ko OKkK ko ok * * ok kK K Ok

Aok oK KRR koK ok kR Rk Ok ok kKR ook Kok K

*

dokk ok ok

koK RNREK K K K koK KK KK XK

HRRAORAKK K K KK * Hokk Rk KK

* XXX X X X X X X X X ¥

HokK
* K
HokK
*K
*K
Hok
*K
HoK
Hok
kK
*k
*K
*K
*ok

* * 0k X

* dokok Rk ok
*K Kk XK *
* ok kK k%
kK KK K
*K Kk

ok * * KN K *k *K Ok Kk
dk o ok ok ok kKK K Xk kK ok kkK K
*K K dHkK K K KK * HoKk

ok ok KKK KK K kOKNOK R K RORKRKK
dok ckkok ckk dORRKNR KRR oK *
HoK * Hokk Kk * * Xk

* AR
E I S = * %
* kK Kk Rk kK
*RNK * kK
Kk kK Rk KoK
dk kKK kK *
dokok jokkRdK K XK
ko kK

L I T T 2

KORNK KRR

dokk ok * X
k0 kK kK KK
L 2 T T T
FokK *k kk ok
* * * *
koK Kk kK K
£ I T T N T 2
KRR RRRKRK kK
LT I S S
kK * *
doRkK kKR kK koK

dokk kK * k0 kK koK kK kXK
KKK doK KRRk kK K K kK kK Kk
FRAK KK K RNORKK dok RORNOKR RKRK kK
kKKK K *k ok dok o kokRk kK *
Aok ok Rk KRRk K K K X kk Xk
* 0 ckk ok ok ok kK kK kK K KK KRR
dokloRRRK koK kXK dokokk K
* ok ko 3k * Hokk *okk kK
dAK K kK kK FoRAHK AR K
* K ORRK K RNOK RNOKK X koK Hok
* ok Kk kK kK K kK Kk Kk ok
kORNORAK dok kR kK ko kK kX
Hok K RAK K kK K kK RdKEK K kXK
Ak * * *k HORRRK KK
* K koK RokRORNOKK KKK ko ok ok
* X kokRkRk Ok kK ok Kok Rk Rk kK Xk
ko kKK ok kK * xRk Kk
k ok ok ok ok okk KOk ok kR KRR KK
L T S 2 ok kKK
ok SdokoRRRK okNOKkK Aok *
*K K * X K Okokkkk koK Rk kK

Vorlesung 6: Weihnachtsbaum
Funktionen, Stepwise Refinement

// Weihnachtsbaum int mainQ)

#include<iostream> {
#include<cassert> weihnachtsbaum (20);
#include<string> return 0;

}

// PRE: total - baum ist gerade
// POST: zeichnet einen Weihnachstbaumschnitt mit

// Breite total und Baumbreite baum (in der
// Mitte des Schnitts)

void schnitt (unsigned int total, unsigned int baum)
{

assert ((total - baum) % 2 == 0);

std::cout << std::string ((total-baum)/2, " ");
std::cout << std::string (baum, EIDY
std::cout << std::string ((total-baum)/2, ' ');

std::cout << "\n";
}
// PRE: hoehe ist gerade AR AR A KKK
// POST: zeichnet einen Weihnachtsbaum mit
// hoehe vielen Schnitten; jeder
// zweite hat Baumbreite 1 FRRRRRRRRRORK

void weihnachtsbaum (unsigned int hoehe)

{
assert Choehe % 2 == 0);

for (int i=1; i<hoehe; i+=2) {

schnitt (hoehe+l, 1); AR AR A KKK

schnitt Choehe+l, 1);

}
}

Vorlesung 7: Weihnachtsmann
Referenztypen

Ich glaube an Symbolfigur weihnachtlichen Schenkens, Symbolfigur weihnachtlichen Schenkens, Symbolfigur weihnachtlichen Schenkens.

// Weihnachtsmann
#include<iostream>
#include<string>

int main()
{
std: :string weihnachtsmann;
std: :string& santa_claus = weihnachtsmann;
std: :string& vaeterchen_frost = weihnachtsmann;
std: :string& usw = weihnachtsmann;

usw = "Symbolfigur weihnachtlichen Schenkens",
std::cout << "Ich glaube an "
<< weihnachtsmann << ", "

<< santa_claus << ",
<< vaeterchen_frost << ".\n";

return 0;

} Ich glaube an Symbolfigur weihnachtlichen Schenkens, Symbolfigur weihnachtlichen Schenkens, Symbolfigur weihnachtlichen Schenkens.

Vorlesung 7: Einmal werden wir noch wach
Call-by-Reference

Beispiel zeigt auch

Felder

Morgen, Kinder, wird's was geben

Text: Martin Friedrich Philipp Bartsch (1795)

G C G C

Melodie: Carl Gottlieb Hering (1809)
D G G Em C G D

1. Mor-gen, Kin-der, wird's was ge-ben, mor-gen wer-den wir uns freun;
welch ein Ju-bel, welch ein Le-ben wird in__ un-serm Hau-se sein!

Am C D Bm Em F D/F4 G

5 O # —1 | = —t | I A — i n

\\vl T T {F IF i » o }" i =I =I IF | | — T T]
o I I I T I N——

Ein-mal wer-den wir noch wach, hei-Ba, dann ist Weih-nachts-tag!

2. Wie wird dann die Stube gldnzen 3.
von der groBlen Lichterzahl,
schoner als bei frohen Tédnzen
ein geputzter Kronensaal!
Wisst ihr noch vom vorgen Jahr,
wie's am Weihnachtsabend war?

4. Wisst ihr noch den groflen Wagen 5,
und die schone Jagd von Blei?
Unsre Kleiderchen zum Tragen
und die viele Nascherei?

Meinen fleifigen Sdgemann
mit der Kugel unten dran?

Gesetzt von Peter Crighton @

Wisst ihr noch mein Reiterpferdchen,
Malchens nette Schéferin?

Jettchens Kiiche mit dem Herdchen
und dem blank geputzten Zinn?
Heinrichs bunten Harlekin

mit der gelben Violin?

Welch ein schoner Tag ist morgen,
viele Freuden hoffen wir!

Unsre lieben Eltern sorgen

lange, lange schon dafiir.

O gewiss, wer sie nicht ehrt,

ist der ganzen Lust nicht wert!

// Einmal werden wir noch wach
#include<iostream>
#include<string>

void swap (std::string& a, std::string& b)
{

std::string h = a;

a=b;

b = h;
}

int main()
{
std: :string lied[] = {"Einmal", "werden", "wach", "noch", "wir"};
swap (lied[2], lied[4]);
for (int 1=0; 1<5; ++1)
std::cout << lied[1] << " "}
std::cout << "\n';

}

Vorlesung 8: Weihnachtskugel
/weidimensionale Felder

SRR KRR KRR KRRk R KK

K S S S S S K SR S S S S S S S S K SR S S S S S K S K S K S K S S SR R R K S K K K KK KK KK KD

KSR SRS S S S S K SR K S S S S SR S S K S K S S K S K S K S K S K S K S K K K K K K S K KK KK KK K KK

SRR AR AR AR AR AR K

1 SRS SR S R S S S S SR S SR S SR S S S S S S S S SR S SR S S S S S S S S S S S S S SR S SR S SR S R SR R SR R R SR R R R K>

K SRS SR S S SR S S S S S SR S SR S S S S S S S S SR S S S S S S S S S S S S S S S S S SR S SR S R SR R SR SR R SR R R R K K>

1 SRS SR S R SR S S S SR S SR S SR S S S S S S S S S S S S S S S S S SR S S S S S S S S SR S R S R SR R SR SR R S R R R K>

K SRS SR S S SR S S S S S SR S SR S S S S S S S S S S SR S S S S S S S S S S S S S S S SR S R S R SR R SR R R SR R R K K>

K SR S S S S S S S SR SR S R SR S SR SR R R R K K K

K SR S S S S S R S S S S S S S SR S S S S S S S S S S S S S S S S S SR S SR S R SR SR SR R R R R K KD

// Weihnachtskugel
#include<iostream>
#include<cassert>
const unsigned int d = 31; // Durchmesser+l

// PRE: d ist ungerade
void mache_weihnachtskugel (char (&k)[d][d])
{

assert (d ¥ 2 '= 0);

unsigned int r = d/2; // Radius

for (int x=0; x<d; ++X)

for (int y=0; y<d; ++y)
if ((X-r)*(x-r) + (y-r)*(y-r) < r*r)
k[(x]yl] =y %2 7?7 "*" : "-"; // Muster!

else
k[xJlyl = " "3
}
void drucke_weihnachtskugel (const char (&k)[d][d])
{

// von oben nach unten
for (int y=d-1; y>=0; --y) {
for (int x=0; x<d; ++x)
// Ostereivermeidung:jedes Zeichen zweimal!
std::cout << k[xJ[y] << k[x][Lvy];
std::cout << '\n';
}
}

int mainQ)

{

char k[d][d];
mache_weihnachtskugel (k);
drucke_weihnachtskugel (k);
return 0;

Vorlesung 9: Geschenkeliste
Zeiger / Iteratoren, Bereiche

Was wunscht du dir?
iPhone
Nein, das kannst du vergessen!

#include<iostream>
#include<string>

// PRE: [begin, end) ist ein giultiger Bereich
// POST: ein Zeiger auf das erste Vorkommen von g in [begin end) wird zurilickgegeben;
// falls g nicht vorkommt, wird end zuriickgegeben
const std::string* finde_geschenk (std::string g, const std::string* begin, const std::string* end)
{

for (const std::string* p = begin; p != end; ++p)

if (*p == g) return p;
return end;

}

int main O

{

std::string liste[] = {"Barbie", "Holzeisenbahn", "Socken"};

std: :cout << "Was winscht du dir?\n";
std: :string wunsch;
std::cin >> wunsch;

const std::string* p = finde_geschenk (wunsch, liste, liste+3);
if (p !'= liste+3)

std::cout << "Ja, das gibt's vielleicht!\n";
else

. A
std::cout << "Nein, das kannst du vergessen!\n"; Was winscht du dir?

iPhone
return 0; Nein, das kannst du vergessen!

Vorlesung 9: Nusse verteilen
Zeiger / Iteratoren, Bereiche, Rekursion

OUUADRMDRWWWWNNNNNRRRERRERROOOOOO®

Moglichkeiten fir 3 Kinder und 6 Nusse:

OSFRONPFOWNRFOEOR_,RWNRFOUURAWNPFOOUUBMARWNREFS®
SRR NOOEFRNWOeERNWRAERNWRARUUERLRNWAULIO

// NlUsse verteilen
#include<iostream>

// PRE: [begin, end) ist ein gultiger Bereich, begin <= bedient_end <= end
// POST: alle Mdglichkeiten, noch n Nisse unter den Kindern [bedient_end, end)
// zu verteilen, werden ausgegeben
void verteile_nuesse (unsigned int n, unsigned int* begin,
unsigned int* bedient_end, unsigned int* end)

{
if (bedient_end == end) { // alle Kinder bedient?
if (n == 0) { // alle Niisse verteilt?
for (unsigned int* p = begin; p != end; ++p)
std::cout << *p << ' '; // Verteilung ausgeben
std::cout << '"\n';
}
} else { // erstes unbedientes Kind bekommt k Niisse
for (unsigned int k=0; k<=n; ++k) {
*bedient_end = k;
?7?? a) verteile_nuesse (n-k, begin+1, bedient_end, end)
¥ b) verteile_nuesse (n-k, begin, bedient_end-1, end)
} . . .
} c) verteile_nuesse (n-k, begin, bedient_end+1, end)

d) verteile_nuesse (n-k, begin, bedient_end, end-1)

OCFRONRFOWNRFOOERA_,RWNPFOUUAWNPFOOULLAWNRELS®
oS0 rRroOoRNOFRNWeERNWAERNWRAUISOSRLRNWAUIO

// Nusse verteilen
#include<iostream>

// PRE: [begin, end) ist ein giiltiger Bereich, begin <= bedient_end <= end
// POST: alle Mdglichkeiten, noch n Niisse unter den Kindern [bedient_end, end)
// zu verteilen, werden ausgegeben
void verteile_nuesse (unsigned int n, unsigned int* begin,
unsigned int* bedient_end, unsigned int* end)
{
if (bedient_end == end) { // alle Kinder bedient?
if (n == 0) { // alle Niisse verteilt?
for (unsigned int* p = begin; p != end; ++p)
std::cout << *p << ' '; // Verteilung ausgeben
std::cout << '"\n';
}
} else { // erstes unbedientes Kind bekommt k Nisse
for (unsigned int k=0; k<=n; ++k) {
*pbedient_end = k;
verteile_nuesse (n-k, begin, bedient_end+1l, end);

OUVUEAEARARRPRWWWWNNNNNRRRRERRREREROOOOOO®

}
}
}

OSFRONPFOWNRFOEOR_,RWNRFOUURAWNPFOOUUBMARWNREFS®
oS0 rRroOoRNOFRNWeERNWAERNWRAUISOSRLRNWAUIO

// PRE: [begin, end) ist ein giultiger Bereich
// POST: alle Mdglichkeiten, n Niusse unter den Kindern [begin, end)
// zu verteilen, werden ausgegeben
void verteile_nuesse (unsigned int n, unsigned int* begin, unsigned int* end)
{
verteile_nuesse (n, begin, begin, end);

}

int main()

{
unsigned int kinder[3];
verteile_nuesse (6, kinder, kinder+3);
return 0;

}

OUVUEAEARARRPRWWWWNNNNNRRRRERRREREROOOOOO®

OSFRONPFOWNRFOEOR_,RWNRFOUURAWNPFOOUUBMARWNREFS®
oS0 rRroOoRNOFRNWeERNWAERNWRAUISOSRLRNWAUIO

Vorlesung 10: Kutsche
EBNF / Parsen

(&)
(®

Gib eine Kutsche ein!
YYYYYY
Rentierstarken = 6

// Kutsche
#include<iostream>
#include<istream>
#include<string>
#include<sstream>
#include<cassert>

// EBNF fur Weihnachtsmann-Kutschen
[/ —m e -
// Kutsche = Rentiere "_"

// Rentiere = "Y" {"Y"}

// declarations

// PRE: 1is = Kutsche...

// POST: Kutsche wird aus is extrahiert und die Anzahl
// der Rentiere zuriickgegeben

unsigned int Kutsche (std::istream& is);

// PRE: 1is = Kutsche...

// POST: Rentiere wird aus is extrahiert und die Anzahl
// der Rentiere zuriickgegeben

unsigned int Rentiere (std::istream& 1is);

// definitions

// POST: leading whitespace characters are extracted

// from is, and the first non-whitespace character
// 1s returned (@ if there is no such character)
char lookahead (std::istream& is)
{
1s >> std::ws; // skip whitespaces
if (is.eof())
return 0; // end of stream
else
return is.peek(); // next character in 1is
}
// POST: if next chararcer in is is ch, consume ¢ and return
// true, otherwise return false
bool consume (std::istream& is, char c)
{
if (lookahead (is) == c) {
1s >> C;
return true;
} else

return false;

unsigned int Kutsche (std::istream& 1is)

{

unsigned int r = Rentiere (1s);

1f (lconsume (is, '_'))
assert (false); // kein Schlitten
return r;
}

unsigned int Rentiere (std::istream& 1is)
{
unsigned int r = 0;
while (consume (is, 'Y'))
++0;
assert (r > @); // mindestens ein Rentier
return r;

int main(Q)
{
std: :cout << "Gib eine Kutsche ein!\n";
std: :string k;
std::cin >> k;
std: :stringstream santamobil (k);

std::cout << "Rentierstdrken = " << Kutsche (santamobil) << '\n';

return Q;

Gib eine Kutsche ein!
YYYYYY
Rentierstarken = 6

Vorlesung 11: Zaubersack
Structs, Operatoren

// Zaubersack
#include<iostream>

struct sack {
unsigned int geschenke; // Kapazitdt

}s

// POST: vergrdssert s um den Faktor 2
sack& operator+ (sack& s)
{

s.geschenke *= §;

return s;

}

// POST: verkleinert s um den Faktor 2
sack& operator- (sack& s)

{

s.geschenke /= 8;
return s;

}

int main()

{

sack s = {3};

+(+s);

std::cout << s.geschenke
<< '\n'; // 196

-s:

std::cout << s.geschenke
<< '\n'; // 24

return 0;

Vorlesung 12: Rudolph
Klassen, Members, Konstruktoren

// Rudolph int main O

#include<iostream> {
#include<string> Rentier dasher;
Rentier dancer;
class Rentier Rentier rudolph ("rot");
{
public: std::cout << dasher.nase()
// Default-Konstruktor << '\n'; // braun
Rentier() std: :cout << dancer.nase()
: nasenfarbe ("braun™) << '\n'; // braun
{} std::cout << rudolph.nase()

<< '\n"; // rot

// Konstruktor mit Farbe '
Rentier (std::string f) return 0;

: nasenfarbe (f) }

{}

// Nasenfarbe
std::string nase () const

{

return nasenfarbe;

}

private:
std: :string nasenfarbe;

}s

Vorlesung 12: Bescherung

Dynamische Datentypen
3 F

11111

// Bescherung
#1nclude<iostream>
#1nclude<string>

class Geschenk {
private:

std: :string* was_ist_es;
public:

// Inhalt

std::string inhalt () const

{

1f (was_ist_es != 0)
return *was_1ist_es;
else

return "nichts";

// Default-Konstruktor
Geschenk ()

: was_1ist_es (0)

{

std::cout << "Da 1st ja gar nichts drin!\n";

¥

// Konstruktor mit String
Geschenk (const std::string& 1)
. was_1st_es (new std::string (1))

{

std::cout << "Wow,

¥

<< *was_1ist_es << ", danke!\n";

// Copy-Konstruktor
Geschenk (const Geschenk& g)
. was_1ist_es (@)
{
1f (g.was_ist_es !=0) {
was_1ist_es = new std::string (*(g.was_ist_es));

}

std::cout << "Ok, nochmal " << 1inhalt() << "...\n";

¥

// Destruktor

~Geschenk ()

{
std::cout << 1nhalt() << "... das war ein tolles Geschenk!\n";
delete was_1ist_es;

¥

// Zuwelsungs-0Operator
Geschenk& operator= (const Geschenk& g)

{
1f (was_ist_es != g.was_ist_es) { // vermeide Selbstzuweisung
std::cout << "Du tauschst mir " << inhalt() << " gegen ";
1f (was_ist_es != 0) {
delete was_1ist_es;
was_1st_es = 0;
¥
1f (g.was_ist_es != 0)
was_1ist_es = new std::string (*(g.was_ist_es));
std::cout << 1nhalt() << " 7?7\n";
3
return *this;
¥

}; // Ende Geschenk

Bescherung!

int main(Q)

{

Gesc
Gesc
Gesc
Gesc

nen
nen
nen

nen

K gl;
k g2 ("Barbie™);
k g3 ("Holzeisenbahn");

< g4 ("Socken");

Geschenk g5 = g4;
g5 = Geschenk ("iPhone");

Da ist ja gar nichts drin!
Wow, Barbie, danke!

Wow, Holzeisenbahn, danke!
Wow, Socken, danke!

Ok, nochmal Socken...

Wow, 1iPhone, danke!

Du tauschst mir Socken gegen

iPhone... das war ein tolles
iPhone... das war ein tolles
Socken... das war ein tolles
Holzeisenbahn... das war ein
Barbie... das war ein tolles
nichts... das war ein tolles

iPhone 7?77
Geschenk!
Geschenk!
Geschenk!
tolles Geschenk!
Geschenk!
Geschenk!

