- Characterized by three things:
 - 1. Alphabet Σ the allowed symbols
 - 2. Production P how to replace each symbol
 - 3. Initial word s_0 the word to start with

- Characterized by three things:
 - 1. Alphabet Σ the allowed symbols
 - 2. Production P how to replace each symbol
 - 3. Initial word s_0 the word to start with

• Example:

1.
$$\Sigma := \{F, +, -\}$$

2.
$$P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$$

3.
$$s_0 := F$$

1.
$$\Sigma := \{F, +, -\}$$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

3.
$$s_0 := F$$

$$s_0$$
: \overline{F}

$$w_1$$
:

$$W_3$$
:

How does it look after 3 rounds?

1.
$$\Sigma := \{F, +, -\}$$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

3.
$$s_0 := F$$

$$s_0$$
:

$$w_1$$
: $F+F+$

 W_2 :

 W_3 :

How does it look after 3 rounds?

1.
$$\Sigma := \{F, +, -\}$$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

3.
$$s_0 := F$$

$$s_0$$
: \mathbb{F}

$$w_1$$
: $F+F+$

 W_2 :

 W_3 :

How does it look after 3 rounds?

$$w_1$$
: $F+F+$

$$w_2$$
: $F+F+$

 W_3 :

 s_0 :

1.
$$\Sigma := \{F, +, -\}$$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

3.
$$s_0 := R$$

How does it look after 3 rounds?

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++
 w_3 :

How does it look after 3 rounds?

1.
$$\Sigma \coloneqq \{F, +, -\}$$

2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+
 w_3 :

How does it look after 3 rounds?

1.
$$\Sigma \coloneqq \{F, +, -\}$$

2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 :

How does it look after 3 rounds?

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

3.
$$s_0 := F$$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 :

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 : F+F+

1.
$$\Sigma \coloneqq \{F, +, -\}$$

2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 : F+F++

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 : F+F++F++

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$
3. $S_{\Omega} \coloneqq F$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 : F+F++F+++

1.
$$\Sigma \coloneqq \{F, +, -\}$$

2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+++
 w_3 : F+F++F+++

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

1.
$$\Sigma \coloneqq \{F, +, -\}$$

2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$
3. $s_0 \coloneqq F$

$$s_0$$
: F
 w_1 : F+F+
 w_2 : F+F++F+F+++
 w_3 : F+F++F+F+++F+F++F+F+

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$

$$s_0$$
: F

$$w_1$$
: $F+F+$

$$w_2$$
: $F+F++F+F++$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$
3. $s_0 \coloneqq F$

$$s_0$$
: \mathbb{F}

$$w_1$$
: $F+F+$

$$w_2$$
: $F+F++F+F++$

1.
$$\Sigma \coloneqq \{F, +, -\}$$
2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$
3. $s_0 \coloneqq F$

$$s_0$$
: \mathbb{F}

$$w_1$$
: $F+F+$

$$w_2$$
: $F+F++F+F++$

$$w_3$$
: $F+F++F+F+++F+F+++++$

Exercise

Exercise

Compute the words w_0 , w_1 , w_2 , w_3 for

1.
$$\Sigma := \{a, b, c\}$$

1.
$$\Sigma \coloneqq \{a, b, c\}$$
2. $P \coloneqq \begin{cases} a \mapsto a \\ b \mapsto ac \\ c \mapsto ab \end{cases}$
3. $s_0 \coloneqq b$

3.
$$s_0 := k$$

Exercise

Solution:

 w_1 : aC

 w_2 : aab

 w_3 : aaac

1.
$$\Sigma := \{a, b, c\}$$

1.
$$\Sigma \coloneqq \{a, b, c\}$$
2. $P \coloneqq \begin{cases} a \mapsto a \\ b \mapsto ac \\ c \mapsto ab \end{cases}$
3. $s_0 \coloneqq b$

3.
$$s_0 := b$$

Draw Lindenmayer Systems

Two Step Procedure

Goal: Draw n-th step of Lindenmayer system

- Done in 2 steps
 - 1. Obtain n-th step
 - 2. Draw it

Step 1 – Obtain n-th Word

Write and use the following two functions

```
std::string production (const char c)
In: symbol e.g. F
Out: its production e.g. F+F+
```

Step 1 – Obtain n-th Word

Write and use the following two functions

```
std::string production (const char c)
In: symbol e.g. F
Out: its production e.g. F+F+
```

- std::string next_word (const std::string word)
 - In: w_n (Word of step n) e.g. FF
 - Out: w_{n+1} (Word of step n+1) e.g. F+F+F+F
 - Applies production to each character in w_n and concatenates the results.

Step 2 – Draw It

• Idea: view alphabet as turtle commands

Example:

```
Alphabet: \Sigma \coloneqq \{F, +, -\}

F

turtle::forward()

turtle::left(90)

turtle::right(90)
```