- Characterized by three things: - 1. Alphabet Σ the allowed symbols - 2. Production P how to replace each symbol - 3. Initial word s_0 the word to start with - Characterized by three things: - 1. Alphabet Σ the allowed symbols - 2. Production P how to replace each symbol - 3. Initial word s_0 the word to start with • Example: 1. $$\Sigma := \{F, +, -\}$$ 2. $$P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$$ 3. $$s_0 := F$$ 1. $$\Sigma := \{F, +, -\}$$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $$s_0 := F$$ $$s_0$$: \overline{F} $$w_1$$: $$W_3$$: How does it look after 3 rounds? 1. $$\Sigma := \{F, +, -\}$$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $$s_0 := F$$ $$s_0$$: $$w_1$$: $F+F+$ W_2 : W_3 : How does it look after 3 rounds? 1. $$\Sigma := \{F, +, -\}$$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $$s_0 := F$$ $$s_0$$: \mathbb{F} $$w_1$$: $F+F+$ W_2 : W_3 : How does it look after 3 rounds? $$w_1$$: $F+F+$ $$w_2$$: $F+F+$ W_3 : s_0 : 1. $$\Sigma := \{F, +, -\}$$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $$s_0 := R$$ How does it look after 3 rounds? 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++ w_3 : How does it look after 3 rounds? 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+ w_3 : How does it look after 3 rounds? 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : How does it look after 3 rounds? 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $$s_0 := F$$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : F+F+ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : F+F++ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : F+F++F++ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $S_{\Omega} \coloneqq F$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : F+F++F+++ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+++ w_3 : F+F++F+++ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $s_0 \coloneqq F$ $$s_0$$: F w_1 : F+F+ w_2 : F+F++F+F+++ w_3 : F+F++F+F+++F+F++F+F+ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ $$s_0$$: F $$w_1$$: $F+F+$ $$w_2$$: $F+F++F+F++$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $s_0 \coloneqq F$ $$s_0$$: \mathbb{F} $$w_1$$: $F+F+$ $$w_2$$: $F+F++F+F++$ 1. $$\Sigma \coloneqq \{F, +, -\}$$ 2. $P \coloneqq \begin{cases} F \mapsto F + F + \\ + \mapsto + \\ - \mapsto - \end{cases}$ 3. $s_0 \coloneqq F$ $$s_0$$: \mathbb{F} $$w_1$$: $F+F+$ $$w_2$$: $F+F++F+F++$ $$w_3$$: $F+F++F+F+++F+F+++++$ ## Exercise #### Exercise #### Compute the words w_0 , w_1 , w_2 , w_3 for 1. $$\Sigma := \{a, b, c\}$$ 1. $$\Sigma \coloneqq \{a, b, c\}$$ 2. $P \coloneqq \begin{cases} a \mapsto a \\ b \mapsto ac \\ c \mapsto ab \end{cases}$ 3. $s_0 \coloneqq b$ 3. $$s_0 := k$$ #### Exercise #### Solution: w_1 : aC w_2 : aab w_3 : aaac 1. $$\Sigma := \{a, b, c\}$$ 1. $$\Sigma \coloneqq \{a, b, c\}$$ 2. $P \coloneqq \begin{cases} a \mapsto a \\ b \mapsto ac \\ c \mapsto ab \end{cases}$ 3. $s_0 \coloneqq b$ 3. $$s_0 := b$$ ## Draw Lindenmayer Systems #### Two Step Procedure Goal: Draw n-th step of Lindenmayer system - Done in 2 steps - 1. Obtain n-th step - 2. Draw it #### Step 1 – Obtain n-th Word Write and use the following two functions ``` std::string production (const char c) In: symbol e.g. F Out: its production e.g. F+F+ ``` #### Step 1 – Obtain n-th Word Write and use the following two functions ``` std::string production (const char c) In: symbol e.g. F Out: its production e.g. F+F+ ``` - std::string next_word (const std::string word) - In: w_n (Word of step n) e.g. FF - Out: w_{n+1} (Word of step n+1) e.g. F+F+F+F - Applies production to each character in w_n and concatenates the results. ### Step 2 – Draw It • Idea: view alphabet as turtle commands Example: ``` Alphabet: \Sigma \coloneqq \{F, +, -\} F turtle::forward() turtle::left(90) turtle::right(90) ```