
Dynamic Storage Exercise

Dynamic Storage Exercise

int i;

while (std::cin >> i) ...

reads inputs as long as there are more available.

Write a code snippet which reads inputs as described above,
and which then stores these inputs in an array. For this
exercise you are not allowed to use the Standard Library (i.e.
no std::vector).

To achieve this you will have to use new[] and delete[].

2(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

3(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

4(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

5

4

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

6

4 2

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

7

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

8

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

9

4 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

10

4 2 7 4

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

11

4 2 7 24

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

12

4 2 7 24 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

13

4 2 7 24 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

14

24 74 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

15

24 7 34 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

16

24 7 3 84 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

17

24 7 3 8 64 2 7

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Idea:
1. Allocate some range (using new[])

2. As soon as range full, allocate larger range (using new[])

3. Copy over initial range

4. Delete initial range (using delete[])

5. Go back to 2. with newly generated memory

18

24 7 3 8 64 2 7

(From: Script Exercise 158.a)

…

Dynamic Storage Solution

• And the code…

19

int n = 1; // current array size

int k = 0; // number of elements read so far

// dynamically allocate array

int* a = new int[n]; // this time, n is NOT a constant

// read into the array

while (std::cin >> a[k]) {

if (++k == n) {

// next element wouldn't fit; replace the array a by

// a new one of twice the size

int* b = new int[n*=2]; // get pointer to new array

for (int i=0; i<k; ++i) // copy old array to new one

b[i] = a[i];

delete[] a; // delete old array

a = b; // let a point to new array

}

}

...

delete[] a; // don't forget to delete after use

(From: Script Exercise 158.a)

New Range - How Much Larger?

Dynamic Storage Solution

• "Much" larger?
• Pro: ranges less often full  copy less often

• Con: larger memory consumption

• Important: Larger by a factor, not by a constant…
• length_n = length_o * 2

length_n = length_o + 2

21(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

22

elements Case a) Case b)

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

23

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

24

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

Case a):

Significantly
fewer resizings.

arbitr. chosen

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

25

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

Each resizing
means:

Copy WHOLE
array.

Case a):

Significantly
fewer resizings.

(From: Script Exercise 158.a)

Dynamic Storage Solution

• Larger by: a) factor 2 b) constant 2

26

elements Case a) Case b)

2 2 2

3 4 4

4 4 4

5 8 6

6 8 6

7 8 8

8 8 8

9 16 10

10 16 10

11 16 12

12 16 12

13 16 14

14 16 14

15 16 16

16 16 16

17 32 18

arbitr. chosen

Each resizing
means:

Copy WHOLE
array.

Case a):

Significantly
fewer resizings.

(From: Script Exercise 158.a)

Vectors

Vectors

• Vectors can grow!

• This works as discussed before!

28

std::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Vectors store 3 pointers:

begin: begin of memory

end: end of user-accessible part

end2: end of allocated part

29

4 2 7 24 7

begin end end2

Dynamic Storage in Vectors

•Example:

30

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

31

0 0

begin end end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

32

0 0 7

begin end end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

33

20 0 7

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

34

20 0 7

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

35

20 0 7

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Space full

Now:
copy range

Dynamic Storage in Vectors

•Example:

36

20 0 7

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

37

20 0 7 0

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

38

2 00 0 7 0

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

39

2 00 0 7 70

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

40

2 00 0 7 270

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

Dynamic Storage in Vectors

•Example:

41

2 00 0 7 270

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

end

Dynamic Storage in Vectors

•Example:

42

2 00 0 7 270

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

end

Dynamic Storage in Vectors

•Example:

43

2 00 0 7 27 60

begin end2

ifmp::vector<int> vec (2,0); // 0 0

vec.push_back(7); // 0 0 7

vec.push_back(2); // 0 0 7 2

vec.push_back(6); // 0 0 7 2 6

end

Dynamic Storage in Vectors

•Exercise sheet 12: implement your own vector type.

• Important:

• In constructor Set initial range

• In copy-constructor Don’t copy just pointers;

i.e. copy the ranges behind them

• In operator= Like copy-constructor, in addition:
i) prevent self-assignments

ii) don’t forget to delete old range

44

