
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

Introduction to Programming Exam

ETH Zurich

Date: 22 August 2011

Family name, first name: ...

Student number: ..

I confirm with my signature, that I was able to take this exam under regular circumstances
and that I have read and understood the directions below.

Signature: ...

Directions:

• Exam duration: 120 minutes.

• Except for a dictionary you are not allowed to use any supplementary material.

• Use a pen (not a pencil)!

• Please write your student number onto each sheet.

• All solutions can be written directly onto the exam sheets. If you need more space for
your solution ask the supervisors for a sheet of official paper. You are not allowed to use
other paper.

• Only one solution can be handed in per question. Invalid solutions need to be crossed out
clearly.

• Please write legibly! We will only correct solutions that we can read.

• Manage your time carefully (take into account the number of points for each question).

• Please immediately tell the exam supervisors if you feel disturbed during the exam.

Good luck!

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

Question Number of possible points Points

1 10

2 12

3 12

4 15

5 15

Total 64

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

1 Multiple choice (10 points)

Put checkmarks in the checkboxes corresponding to the correct statements. A correctly checked
or unchecked box is worth 0.5 points. An incorrectly checked or unchecked box is worth 0 points.

Example.

a. The sun is a mass of incandescent gas. � 0.5 points
b. 2× 2 = 4 � 0 points
c. Britney Spears is an honorary doctor of ETH. � 0.5 points
d. “Rösti” is a kind of sausage. � 0 points

1. Objects and classes

a. All types are either reference or expanded. �
b. If an object is of an expanded type, its fields cannot be modified

at runtime.
�

c. Suppliers of class C can use all the features of class C. �
d. A class can be both a supplier and a client. �
e. If C is a deferred class, then no entity can exist in a program

with static type C.
�

2. Control structures and recursion

a. A loop invariant is allowed to be violated between the execution
of any two instructions in the loop body.

�

b. The purpose of the loop variant is to guarantee termination of
the loop.

�

c. Calling routine r can result in infinite recursion only if the body
of r contains a call to r.

�

d. For every algorithm containing a loop there is an equivalent re-
cursive algorithm that does not contain loops.

�

e. For an inspect instruction with n options the equivalent code
not involving an inspect instruction contains n2 conditionals.

�

3. Design by Contract

a. An empty postcondition is equivalent to the postcondition True. �
b. An empty precondition is equivalent to the precondition False. �
c. When reasoning about a creation procedure make, you are al-

lowed to assume that the class invariant of the object being cre-
ated holds at the beginning of make.

�

d. The invariant of a descendant class implies the invariant of its
ancestor.

�

e. A routine with an empty contract and an empty body is correct. �

4. Inheritance and polymorphism

a. A deferred class cannot inherit from an effective class. �
b. A class C cannot inherit from two different classes A1 and A2, if

both A1 and A2 have a common ancestor class.
�

c. An instruction o.f at runtime can result in executing different
routines.

�

d. An entity of static type C can only be attached to an object of
a type that is an ancester of C.

�

e. In class C a feature f inherited from class A can only be redefined
if f is deferred in A.

�

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

2 Inheritance and Polymorphism (12 Points)

Below you can see the class diagram and the source code of the revolutionary new iPlayer, an
audio and video player designed by ETH in Zürich, Switzerland.

*
MEDIUM

*
VIDEO_FILE

*
AUDIO_FILE

+
MP3_FILE

+
MP4_FILE

*
PLAYER

*
VIDEO_PLAYER

*
AUDIO_PLAYER

+
MP3_PLAYER

+
IPLAYER

Figure 1: Class digram of iPlayer

deferred class MEDIUM

feature
type: STRING
−− Type of the medium.

deferred
end

end

deferred class AUDIO FILE

inherit MEDIUM

feature
type: STRING

do
Result := ”audio file”

end
end

class MP3 FILE

inherit AUDIO FILE
redefine type end

feature
type: STRING

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

do
Result := ”mp3 file”

end
end

deferred class VIDEO FILE

inherit MEDIUM

feature
type: STRING

do
Result := ”video file”

end
end

class MP4 FILE

inherit VIDEO FILE
redefine type end

create
make

feature
type: STRING

make
do

type := ”mp4 file”
end

end

deferred class PLAYER

feature
play (m: MEDIUM)
−− Play a medium ‘m’.

do
io.put string (”Player is playing a ” + m.type + ”.%N”)

end
end

deferred class AUDIO PLAYER

inherit PLAYER
redefine play end

feature
play (a: AUDIO FILE)

do
io.put string (”Audio player is playing a ” + a.type + ”.%N”)

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

end
end

class MP3 PLAYER

inherit AUDIO PLAYER
redefine play end

feature
play (m: MP3 FILE)

do
io.put string (”MP3 player is playing a ” + m.type + ”.%N”)

end
end

deferred class VIDEO PLAYER

inherit PLAYER
undefine play end

feature
play (a: VIDEO FILE)

deferred
end

end

class IPLAYER

inherit
MP3 PLAYER

rename play as play mp3
select play mp3 end

VIDEO PLAYER
rename play as play mp4
redefine play mp4 end

feature
play mp4 (m: MP4 FILE)

do
io.put string (”iPlayer is playing a ” + m.type + ”.%N”)

end
end

Given the following variable declarations:

player: PLAYER
mp3 player: MP3 PLAYER
mp3 file: MP3 FILE
mp4 file: MP4 FILE
iplayer: IPLAYER

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

Indicate, for each of the code fragments below, if it is valid (i.e. will compile) by checking
the corresponding box. If the code fragment is not valid (i.e. will not compile), explain why this
is the case. If the code fragment compiles, specify the text that is printed to the screen when
the code fragment is executed. No other explanations are necessary.

Example:

create mp3 file.make
create mp3 player
player.play (mp3 file)

Does the code compile? � Yes � No
Output/error description: The code does not compile, because the feature make is not a
creation procedure of class MP3 FILE (in fact, it is not even a valid feature of the class).

Grading Scheme

1 Pt: For stating correctly whether it compiles/doesn’t compile.
1 Pt: For providing the correct output (if it compiles) or the reason why it doesn’t compile.

Task 1

create mp3 file
create player
player.play (mp3 file)

Does the code compile? � Yes � No
Type error: creation instruction applies to target of a deferred type.

Task 2

create mp3 player
create mp3 file
player := mp3 player
player.play (mp3 file)

Does the code compile? � Yes � No
“MP3 player is playing a mp3 file.”

Task 3

create mp4 file.make
create iplayer
iplayer.play mp4 (mp4 file)

Does the code compile? � Yes � No
“iPlayer player is playing a mp4 file.”

Task 4

create mp3 file
player := create {IPLAYER}
player.play (mp3 file)

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

Does the code compile? � Yes � No
“MP3 player is playing a mp3 file.”

Task 5

create mp3 player
mp3 player.play (create {MP4 FILE}.make)

Does the code compile? � Yes � No
Type error: non-compatible actual argument in feature call.

Task 6

create {MP3 PLAYER} iplayer
iplayer.play mp3 (create {MP3 FILE})

Does the code compile? � Yes � No
Error: Creation instruction lists explicit creation type which does not conform to type of target.

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

3 Specifying Software through Contracts (12 points)

In the Western calendar, a year is divided into 12 months, numbered from 1 to 12, and months
into days, numbered starting from 1. The 1st, 3rd, 5th, 7th, 8th, 10th, and 12th months have 31
days each, while the 4th, 6th, 9th, and 11th months have 30 days each. The 2nd month usually
has 28 days, but it has 29 days in leap years. A year is a leap year if and only if either it can
be divided by 4 but not by 100, or it can be divided by 400. For example, the years 2000 and
2004 are leap years, but the years 2011 and 2100 are not.

The following deferred class DATE defines a simple interface for dates in the Western cal-
endar. Please fill in the missing contracts (preconditions, postconditions, and class invariants)
of the class; the contracts must reflect all the details given in the informal specification above.
They also must ensure that the following client procedure always executes without contract
violations:

client (d: DATE)
require

d /= Void
local

i: INTEGER
do

d.set (2011, 8, 22)
check not d.is leap (2011) end
check d.is leap (2012) end
from i := 1 until i > 366 loop

d.proceed
i := i + 1

end
check d.year = 2012 and d.month = 8 and d.day = 22 end

end

Please note that the number of dotted lines is not indicative of the number of missing
assertions (contract elements).

deferred class
DATE

feature −− Access

year: NATURAL
−− Year of the date.

deferred
end

month: NATURAL
−− Month of the date.

deferred
end

day: NATURAL
−− Day of the date.

deferred
end

feature −− Status set

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

set (y, m, d: NATURAL)
−− Set ‘year’, ‘month’, and ‘day’ using ‘y’, ‘m’, and ‘d’, respectively.

require
valid month: 1 <= m and m <= 12 −− +0.5
valid day: 1 <= d and d <= days in month (y, m) −− +0.5

deferred
ensure

year set: year = y −− +0.5
month set: month = m −− +0.5
day set: day = d −− +0.5

end

feature −− Auxiliary queries

is long month (m: NATURAL): BOOLEAN
−− Does month ‘m’ have 31 days?

deferred
ensure

definition: Result = (m = 1 or m = 3 or m = 5 or m = 7 or m = 8 or m = 10
or m = 12) −− +1

end

is short month (m: NATURAL): BOOLEAN
−− Does month ‘m’ have 30 days?

deferred
ensure

definition: Result = (m = 4 or m = 6 or m = 9 or m = 11) −− +1
end

days in month (y, m: NATURAL): NATURAL
−− Number of days in month ‘m’ of year ‘y’.

require
valid month: 1 <= m and then m <= 12 −− +0.5

deferred
ensure

long months: is long month (m) implies Result = 31 −− +0.5
short months: is short month (m) implies Result = 30 −− +0.5
feb in nonleap: (m = 2 and not is leap(y)) implies Result = 28 −− +0.5
feb in leap: (m = 2 and is leap(y)) implies Result = 29 −− +0.5

end

is leap (y: NATURAL): BOOLEAN
−− Is ‘y’ a leap year?

deferred
ensure

definition: Result = (y \\ 4 = 0 and y \\ 100 /= 0) or else (y \\ 400 = 0) −−
+1

end

10

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

feature −− Basic operation

proceed
−− Proceed to the next date.
−− For example, if ‘Current’ represents the date Dec. 31, 2011 before the call,
−− then it represents Jan. 1, 2012 afterwards.

deferred
ensure

within month: old day < days in month(old year, old month) implies
(old year = year and old month = month and day = old day + 1) −−

+1
to next month: (old day = days in month(old year, old month) and old month <

12) implies
(old year = year and month = old month + 1 and day = 1) −− +1

to next year: (old day = days in month(old year, old month) and old month =
12) implies

(year = old year + 1 and month = 1 and day = 1) −− +1
end

−− Other features omitted for brevity.

invariant

valid month: 1 <= month and then month <= 12 −− +0.5
valid day: 1 <= day and then day <= days in month (year, month) −− +0.5

end

Grading:

• For each incorrect extra contract clause: -0.5.

11

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

4 Data Structures (15 points)

4.1 Background information

A skip list is a data structure that expands on the idea of a linked list. A node in a linked-list
has 1 link; each node in a skip list has 4 links, up, down, left, and right.

A skip list has the following properties:

• The nodes are arranged into rows; each row is a list of sorted elements.

• Every row, except for the bottom row, contains a subset of the elements beneath it, as in
Figure 2. This implies that the bottom row contains all the elements in the skip list.

• All nodes are mutually linked, i.e. node a.left = node b iff node b.right = node a, and
likewise for up and down.

• Every row begins with a universal minimal element (represented here by −∞).

• If an element exists in two adjacent rows, then the nodes are linked through the up/down
attributes. This can be seen for the elements 20 and −∞ in Figure 2.

-∞

-∞ 10

20

20 40

Figure 2: Initial skip list

When a new element is inserted into the skip list, it is first inserted into the bottom row, as
in Figure 3.

-∞

-∞ 10

20

20 30 40

Figure 3: Skip list after insertion of 30 into the bottom row

Whenever a node is added to any row, there is a chance that it will be promoted, adding
it to the row above, as in Figure 4. If there is no row above, a new one will be created. This
promotion to the row above happens randomly, and a promotion can trigger another promotion
(again, randomly).

4.2 Task

For the task the search feature is already implemented, and returns the rightmost node in
the bottom row of the skip list less-than or equal to the argument elem. Feature is promoted
randomly returns True or False, indicating whether to promote a node at any given time. You
must implement:

12

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

-∞

-∞ 10

20

20 30 40

30

Figure 4: Skip list after promotion of 30-node

• insert in row (a pre, a node: SKIP LINKABLE) inserts a node directly after a pre with
no promotion. An instance of this can be seen in the transformation between Figure 2
and Figure 3.

• promote (a link: SKIP LINKABLE) takes a link, which is already inserted in a row, and
either promotes it or does nothing. Remember, promote can trigger another promotion.

• insert (elem: INTEGER) takes an element and inserts a new node into the correct position
in the skip list, including promotion (if any).

While writing these procedures you are encouraged to use any applicable features already
available in the SKIP LIST and SKIP LINKABLE classes (i.e. the features shown below without
dotted lines).

4.3 Solution

class
SKIP LIST [G −> COMPARABLE]

inherit
ANY

redefine
out

end

create
make

feature
make (a signal: G)

do
create rand.set seed (42)
minimum := a signal

create head.make (minimum)
end

out: STRING
local

curs: SKIP LINKABLE [G]
do

Result := ””

13

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

from curs := head
until curs.down = Void
loop

curs := curs.down
end

from
until curs = Void
loop

Result := Result + curs.value.out + ”,”
curs := curs.right

end
end

minimum: G

head: SKIP LINKABLE [G]

has (elem: G): BOOLEAN
do

Result := search (elem).value = elem
end

search (elem: G): SKIP LINKABLE [G]
local

curs: SKIP LINKABLE [G]
done: BOOLEAN

do
from curs := head
until curs = Void or done
loop

if elem = curs.value then
from
until curs.down = Void
loop curs := curs.down
end

Result := curs
done := True

elseif elem > curs.value then
if curs.right = Void or else

elem < curs.right.value then
if curs.down = Void then

Result := curs
done := True

end
curs := curs.down

else
curs := curs.right

end
end

end

14

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

ensure
result exists: Result /= Void
result precedes element: Result.value <= elem

end

insert (elem: G)
require

not has (elem)
local

new link: SKIP LINKABLE [G]
do

create new link.make (elem)

insert in row (search (elem), new link)
promote (new link)

ensure
has (elem)

end

insert in row (a pre, a node: SKIP LINKABLE [G])
require

nodes exist: attached a pre and attached a node
different nodes: a pre /= a node

do
a node.set right (a pre.right)
a node.set left (a pre)

if a node.right /= Void then
a node.right.set left (a node)

end

a pre.set right (a node)
end

promote (a link: SKIP LINKABLE [G])
require

node exists: attached a link
already inserted: attached a link.left

local
curs: SKIP LINKABLE [G]
new link: SKIP LINKABLE [G]

do
if is promoted then

from curs := a link
invariant curs /= Void
until curs.up /= Void or curs.left = Void
loop curs := curs.left
end

if curs.up = Void then
curs.set up (create {SKIP LINKABLE[G]}.make (minimum))
curs.up.set down (curs)

15

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

end
curs := curs.up

create new link.make (a link.value)
insert in row (curs, new link)

a link.set up (new link)
new link.set down (a link)

promote (new link)
end

end

rand: RANDOM

is promoted: BOOLEAN
do

Result := (rand.item \\ 2) = 0
rand.forth

end
end

4.4 Grading Scheme

insert (4 points):

• creating a new link with the element – 1 point

• search for the correct spot to insert – 1 point

• inserting the new link at the correct spot – 1 point

• begin the promotion sequence – 1 point

insert in row (4 points):

• point the new node’s left to the previous node – 1 point

• point the new node’s right to the previous node’s right – 1 point

• if the new node’s right exists, back point its left to the new node – 1 point

• point the previous node’s right to the new node – 1 point

promote (7 points):

• only promote randomly – 1 point

• find left-most node – 2 points

• possibly create a new row (minimal element) – 1 point

• create a new link in the upper row – 1 point

• link the lower and upper levels – 1 point

• loop / recurse – 1 point

16

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

5 Agents (15 Points)

5.1 Background information

Classes LIBRARY (listing 1) and BOOK (listing 2) model a library containing books. Class
APPLICATION (listing 3) is used to query the library for certain kinds of books. You can
assume that the library is filled with books.

For reference, we provide an interface excerpt for the class ARRAYED LIST in listing 4.

5.2 Task

Your task is to fill in the dotted lines to implement the missing code in the classes below. You
are not supposed to add declarations of new features or local variables.

5.3 Listings

Listing 1: LIBRARY class excerpt

class
LIBRARY

feature −− Access

books: ARRAYED LIST [BOOK]

matched: ARRAYED LIST [BOOK]

feature −− Basic operations

match (criterion: FUNCTION [ANY, TUPLE [BOOK], BOOLEAN])
−− Find a match given ‘criterion’.

do
matched.wipe out

...

end
end

Listing 2: BOOK class excerpt

class
BOOK

feature −− Access

title: STRING
−− Title of ‘Current’.

number of copies: INTEGER
−− Number of copies of ‘Current’.

end

17

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

Listing 3: APPLICATION class excerpt

class
APPLICATION

create
make

feature {NONE} −− Initialization

make
−− Run application.

local
my library: LIBRARY

do
create my library.make

−− print the titles of the books having less than 5 copies.

...

...

−− print the number of copies of the book ”Pushing Ice”.

...

...

end

feature −− Output

print result (res: ARRAYED LIST [BOOK])
−− Print query result on console.

do
io.new line
if res.is empty then

print (”No books match the given criterion.”)
else

from
res.start

until
res.after

loop
print (res.item.title + ”, ” + res.item.number of copies.out + ”; ”)
res.forth

end
end

end

feature −− Query routines

copies less than (b: BOOK; c: INTEGER): BOOLEAN

18

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

−− Are there less than ‘c’ copies of ‘b’?
do

...

end

title matches (b: BOOK; s: STRING): BOOLEAN
−− Does ‘b’’s title match ‘s’?

do

...

end
end

Listing 4: ARRAYED LIST interface excerpt

class ARRAYED LIST [G]

feature −− Iteration

do all (action: PROCEDURE [ANY, TUPLE [G]])
−− Apply ‘action’ to every item, from first to last.
−− Semantics not guaranteed if ‘action’ changes the structure;
−− in such a case, apply iterator to clone of structure instead.

do if (action: PROCEDURE [ANY, TUPLE [G]]; test: FUNCTION [ANY, TUPLE [G],
BOOLEAN])
−− Apply ‘action’ to every item that satisfies ‘test’, from first to last.
−− Semantics not guaranteed if ‘action’ or ‘test’ changes the structure;
−− in such a case, apply iterator to clone of structure instead.

there exists (test: FUNCTION [ANY, TUPLE [G], BOOLEAN]): BOOLEAN
−− Is ‘test’ true for at least one item?

for all (test: FUNCTION [ANY, TUPLE [G], BOOLEAN]): BOOLEAN
−− Is ‘test’ true for all items?

feature −− Element change

force, extend (v: like item)
−− Add ‘v’ to end.
−− Do not move cursor.

feature −− Removal

wipe out
−− Remove all items.

end −− class ARRAYED LIST

19

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Exam
Summer 2011

5.4 Grading

The source code for the master solution is part of this exam.

• Class APPLICATION

– 3 points for the correct first invocation of feature match.

– 1 points for the correct first invocation of feature print result.

– 3 points for the correct second invocation of feature match.

– 1 points for the correct second invocation of feature print result.

– 2 points for the correct implementation of query copies less than.

– 2 points for the correct implementation of query title matches.

• Class LIBRARY

– 3 points for the correct implementation of feature match.

20

	Multiple choice (10 points)
	Inheritance and Polymorphism (12 Points)
	Specifying Software through Contracts (12 points)
	Data Structures (15 points)
	Background information
	Task
	Solution
	Grading Scheme

	Agents (15 Points)
	Background information
	Task
	Listings
	Grading

