ETHZ D-INFK Introduction to Programming — Exam

Prof.

Dr. B. Meyer Winter 2017

Introduction to Programming

ETH Ziirich

Date: 6.2.2017

Family name, firSt NAImIE:ueeiieieiiiiii e e e

Student IUIMDET: ..o

I confirm with my signature, that I was able to take this exam under regular circum-
stances and that I have read and understood the directions below.

SIZNATUTE! eeiiiiiiiiiiei it

Directions:

Exam duration: 120 minutes.

Except for a dictionary you are not allowed to use any supplementary material.
Use a pen (not a pencil)!

Please write your student number onto each sheet.

All solutions can be written directly onto the exam sheets. If you need more space for
your solution ask the supervisors for a sheet of official paper. You are not allowed to
use other paper.

Only one solution can be handed in per question. Invalid solutions need to be crossed
out clearly.

Please write legibly! We will only correct solutions that we can read.
Manage your time carefully (take into account the number of points for each question).
Please immediately tell the exam supervisors if you feel disturbed during the exam.

All program elements should be given in the programming language used in the course:
Eiffel. All programming-language-related questions refer, unless otherwise noted, to
Eiffel.

Good luck!
Question | Number of possible points | Points
1 10
2 16
3 16
4 10
5 18
Total 70

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

1 Multiple Choice (10 points)

For each statement about Eiffel and its methodology, decide if it is true or false and put a
checkmark in the corresponding box. Each correct answer is worth 0.5 points. An incorrect
answer or no answer is worth 0 points.

Example:
T F
a. 2x4=8 0 0O 0 points
b. “Rosti” is a kind of sausage. X O 0 points
c. C is an object-oriented programming language. O X 0.5 points

. A feature is a query in case it modifies an object.

. A name clash is acceptable since Eiffel supports feature overloading.

. For any object o, the feature call o.is_equal (o) always returns True.

. An object may be deferred or effective.

g/ojogojo +#A
g/go|jog|jgjo +#

1
2
3
4. Binary search trees provide log-time (O(log n)) access in the worst case.
5
6

. A postcondition must hold before and after the execution of any feature that
s available to the clients of the class.

[

7. A creation procedure has to ensure that after its execution, the new instance O O
will satisfy the invariant of the class.

8. A procedure that is exported to NONE can be used as creation procedure. o O
9. Polymorphism is the capability of objects to change their types at run time. 0O O

10. If a routine redefinition contains a new postcondition, this condition has to O [O
hold in addition to the inherited postcondition.

11. If C is a deferred class, then no entity with static type C can exist in a O [O
program.

12. A loop invariant is allowed to be violated between the execution of any two 0O [J
instructions in the loop body.

4
O

13. Calling routine r can result in infinite recursion only if the body of r contains
a call to r.

14. An empty precondition is equivalent to the precondition False.

15. A deferred class can inherit from an effective class.

16. An expanded class C can have an attribute of type C.

17. A deferred class can have attributes.

18. Void references can be the target of a successful call.

19. A class can always call all features of its immediate parent classes.

g/go|jo|jg|o|o|g
o/go|jo|jg|g|o|lg

20. Different generic derivations of the same generic class always conform to each
other.

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

2 Inheritance and Polymorphism (16 Points)

EMPLOYED_
CONSULTANT

PROGRAMMER

Figure 1: BON Diagram

This part is based on the following classes:

class
PERSON

create
make

feature
name: STRING

feature
make (a_name: STRING)
require
a_name /= Void and then not a_name.is_empty
do
name = a_name
ensure
name = a_name
end
end

deferred class
EMPLOYEFE

inherit

PERSON

feature

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Exam
Winter 2017

work
deferred
end
end

class
CONSULTANT

inherit
PERSON
rename
make as make_person
end

create
make

feature
consulting_topic: STRING

feature

make (a_name: STRING; a_consulting_topic: STRING)

do

make_person (a_name)

consulting_topic := a_consulting_topic

end

consult (a_person: PERSON)
do

print (name + ” consults ” + a_person.name + ” on ” + consulting_topic

+ ”. 97)
end

prepare
do

print (name + ” prepares topic ? + consulting_topic + . ”)

end
end

class
MANAGER

inherit
EMPLOYEE
rename
work as manage,
make as make_employee
end
create
make

feature
subordinate: EMPLOYEE

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

feature
make (a_name: STRING; a_subordinate: EMPLOYEE)
do
make_employee (a_name)
subordinate := a_subordinate

print (”Subordinate: ” + subordinate.name + . *)
end

manage
do
print (name + ” issues a task for ” + subordinate.name + .)
subordinate.work
end
end

deferred class
IT_PERSON

inherit
EMPLOYEE
redefine
make
end

feature
discuss_tech (a_colleague: IT-PERSON)
do

print (name + ” discusses with ” + a_colleague.name + .)
end

make (a_name : STRING)
do
precursor (a-name)
print (a_name + » ?)
end
end

class
EMPLOYED_CONSULTANT

inherit
CONSULTANT
rename
prepare as study
select
make_person
end

EMPLOYEE
rename
make as make_employee,
work as study
end

ETHZ D-INFK Introduction to Programming — Exam

Prof. Dr. B. Meyer

Winter 2017

create
make
end

class
PROGRAMMER
inherit
IT_PERSON
rename
work as code
redefine
discuss_tech
end
create
make_c_programmer, make_eiffel_programmer

feature
programming_language: STRING

feature
make_c_programmer (a-name: STRING)
do
make (a_name)
programming_language := ? C”
print ("programs in C.)
end

make_eiffel_programmer (a_name: STRING)
do
make (a-name)
programming_language := ” Eiffel”
print (?programs in Eiffel. ”)
end

code
do
print (name + ” writes some code. ”)
end

discuss_tech (a_colleague: IT_PERSON)
do
precursor (a_colleague)

print (It is all about ” + programming_language + .)

end
end

class
TESTER

inherit
IT_PERSON
rename
work as test,

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

make as make_it_guy
end

create
make

feature
colleague: I'T_PERSON

feature
make (a_name: STRING; a_colleague: IT_-PERSON)
do
make_it_guy(a_name)
colleague := a_colleague
print(”has colleague ” + colleague.name + .)
end

test

local
working_colleague : IT_ PERSON

do
working_colleague := colleague
if attached { TESTER} colleague as tester then

working_colleague = tester.colleague

end
working_colleague.work
print (name + ” tests work from ” + working_colleague.name + . »)

end

end

Tasks Indicate, for each of the code fragments below, if it compiles by checking the cor-
responding box. If the code fragment does not compile, explain why this is the case and
clearly mark the line that does not compile. If the code fragment compiles, specify the text
that is printed to the console when the code fragment is executed.

Given the following variable declarations:

person: PERSON

employee: EMPLOYFEE

it_person: IT_PERSON

manager: MANAGER

programmer: PROGRAMMER

testerl: TESTER

tester2: TESTER

consultant. CONSULTANT

employed_consultant: EMPLOYED_CONSULTANT

Example 1:

create programmer.make_eiffel_programmer(” Eric”)
programmer. code

Does the code compile? X Yes J No
Output/error description
Eric programs in Eiffel. Eric writes some code.

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

Example 2:
create programmer.make_java_programmer(” Jason”)

Does the code compile? [Yes X No
Output/error description
Unknown identifier “make_java_programmer”.

Task 1

create it_person.make(”Igor”)
create programmer.make_eiffel_programmer(” Eric”)
it_person.discuss_tech(programmer)

Does the code compile? [Yes J No
Output/error description

Task 2

create programmer.make_eiffel_programmer(” Eric”)

employee := create { MANAGER}.make-manager(”Max”, programmer)
manager := employee

manager.manage

Does the code compile? [Yes O No
Output/error description

Task 3

create programmer.make_c_programmer(” Chris”)
it_person := create { PROGRAMMER}.make_eiffel_programmer(” Eric”)
it_person.discuss_tech(programmer)

Does the code compile? [Yes J No
Output/error description

Task 4

create {EMPLOYED_CONSULTANT} employee.make(”Steve”,” Data Model”)
create person.make(” Hector”)
employee.work

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

Does the code compile? [Yes J No
Output/error description

Task 5

it_person := create { PROGRAMMER}.make_c_programmer(” Chris”)
it_person.code

Does the code compile? [Yes J No
Output/error description

Task 6

create programmer.make_eiffel_programmer(” Eric”)
create testerl.make(” Ted”, programmer)

employee := create { MANAGER}.make(”Max”, testerl)
employee.work

Does the code compile? [Yes 0 No
Output/error description

Task 7

create programmer.make_c_programmer(” Arnold”)
create testerl.make(” Robert”, programmer)
create tester2.make(” Delores” tester!)

tester?.test

Does the code compile? [Yes 0 No
Output/error description

ETHZ D-INFK Introduction to Programming — Exam

Prof.

Dr. B. Meyer Winter 2017

3

Specifying Software through Contracts (16 points)

Your start-up company is designing a new webshop framework and you are tasked with
the back-end of the software. You decided to employ Design-by-Contract to achieve high
correctness for your software.

Here are some facts:

A fresh session starts with an empty basket with neither payment method nor a ship-
ping address specified.

Only positive quantities of items can be added to the basket.
Only existing items in the basket can be removed.

You can only check out if the payment method was selected and the shipping address
has been set.

Upon login, the payment method and shipping address are set to the preferred one if
they are not yet set.

Upon checkout, if there is at least one product in the basket which costs more than
100, mark in the session that the next order will be discounted. Also, upon checkout,
empty the basket.

Task The following classes ITEM and SESSION are the heart of the webshop. Please

fill in the missing contracts (preconditions, postconditions, and class invariants), so that all

facts from the informal specification above as well as other necessary properties are reflected.
Please note:

The number of dotted lines is not indicative of the number of missing contract clauses.

You need to write True at places where you think no explicit contract is necessary:
leaving a contract empty gives you 0 point for that section.

Don’t forget to express all consistency constraints in the invariants. For instance,
you should describe the interrelation between the attribute total and the content of
attribute items

The system is not void safe. You need to handle Void references where it makes sense.
Besides other features, you can assume the following features to be available in class

HASH TABLE:

class
HASH_TABLE |G, K —> detachable HASHABLE)

feature

for_all (test: FUNCTION [ANY, TUPLE [G,K|, BOOLEAN]): BOOLEAN
—— Is ‘test’ true for all key—value pairs?

there_exists (test: FUNCTION [ANY, TUPLE [G,K], BOOLEAN)): BOOLEAN

—— Is ‘test’ true for at least one key—value pair?

10

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

e The following features from class CUSTOMER may be useful:

class CUSTOMER
feature
preferred_payment: PAYMENT_METHOD
—— The preferred payment method

address: ADDRESS
—— The address of the customer

—— Other features omitted.
end

Listing 1: Class ITEM

class
ITEM

inherit
HASHABLE

create
make

feature

make (a_name: STRING; a_price: INTEGER)

require

do
—— Implementation omitted.
ensure

feature —— Access

price: INTEGER
—— Current price of the item.

name: STRING
—— Name of the item

11

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

feature —— Inherited
hash_code: INTEGER
—— Hash code value
do
—— Implementation omitted.
end
is_equal (a_other: like Current): BOOLEAN
do
—— Implementation omitted.

end

invariant

Listing 2: Class SESSION
class

SESSION

create
make

feature

make
require

do
—— Implementation omitted.
ensure

12

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

feature —— Access

items: HASH_TABLE[INTEGER, ITEM)
—— Items in the basket, table from {ITEM} to {INTEGER}

total: INTEGER
—— Current total price of all items in the basket.

discount_next_order: BOOLEAN
—— If true, make a discount on the next order (should be set to true

—— upon checkout if there is at least one product costing more than 100)

payment_method: PAYMENT_METHOD
—— The payment method selected by the customer.

shipping-address: ADDRESS
—— Shipping addresses

feature —— Basic operations
add_item (a_quantity: INTEGER; a_item: ITEM)
—— Add ‘a_quantity’ ‘a_item’s to the basket.
require

do
—— Implementation omitted.
ensure

remove_item (a_quantity: INTEGER; a_item: ITEM)
—— Remove ‘a_quantity’ ‘a_item’s from the basket.
require

do
—— Implementation omitted.

13

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

ensure

check_out
—— Check out the basket.
require

do
—— Implementation omitted.
ensure

set_payment_method (a_payment_method: PAYMENT_METHOD)
—— Set the payment method
require

do

—— Implementation omitted.

14

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

ensure

set_shipping_address (a_address: ADDRESS)
—— Set the shipment address

require
do
—— Implementation omitted.
ensure
end

log_in (a-customer: CUSTOMER)

—— ‘a_customer’ has logged in

require
do
—— Implementation omitted.
ensure
end

15

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

feature —— Extra space for features that you might need to create for writing the
contracts

16

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

4 Recursion: Catalan Numbers (10 points)

A Catalan number is a natural number, which is part of a sequence that occurs in many
interesting counting problems.
You can compute a Catalan number using the following formula:

C() = 1, Cn+1 = chcn,l for n 2 0
=0

By applying the formula above, you can see that the first few Catalan numbers for
n=0,1,2234567,..are 1,1,2,5, 14,42, 132,429, ...

Task Your task is to implement the recursive function catalan_number, that computes
Catalan number C,,.

class CATALAN
catalan_number (n: INTEGER): INTEGER
—— Compute Catalan’s number C,,.
require

n_non_negative: n >= 0
local

do

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

end

18

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

5 Data Structures: Bounded Priority Queue (18 points)

A mobile network operator wants to introduce a new near-realtime monitoring system to
track the 100 most valuable customers. To this end, you are feeding a slightly modified
bounded priority queue with a stream of revenue data such that the queue contains, at any
time, the revenue data of the currently top 100 customers.

A typical way to implement a priority queue is by using a min-heap data-structure. A
min-heap is a complete binary tree in which the value of a node is smaller than all the values
in its subtrees.

Heaps may be represented in a very efficient way (as an implicit data structure) using
an array alone, without requiring pointers between elements. The first element will contain
the root. The next two elements of the array contain its children. The next four contain the
four children of the two child nodes, etc. Thus the left child of a node at position n would be
at position 2n and the right child is always right next to the left child. This allows moving
up or down the tree by doing simple index computations. Figure 2 shows an example binary
heap and its corresponding array representation.

After an element is inserted or replaced, the heap property needs to be reestablished by
the internal operations sift_down and sift_up, respectively.

In the following implementation, the feature process is called for each revenue in the
stream of customers’ revenues. This feature conditionally inserts or replaces a customer’s
revenue in the queue, if:

e the queue is not full, OR

e the queue is full but the revenue under processing is larger than any of the revenues
in the heap (and thereby evicting the smallest revenue)

| 3| 9| a|26]11]18]20]35]46]12]15][30]19]26]|

Figure 2: Example of a priority queue implemented using a binary heap, and its respective
array representation.

19

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

Task Your task is to complete the implementation of features parent_index, left_child_inder,
right_child_index, and an efficient, non-recursive version of sift_down.

Listing 3: Class BOUNDED_PRIORITY_QUEUE

class
BOUNDED_PRIORITY_QUEUE |G —> COMPARABLE)

create
make

feature { NONE}
heap: ARRAY[G]
mazx_size: INTEGER
count: INTEGER

feature { NONE} —— Initialization

make (n: INTEGER)
—— Allocate heap space.
do
create heap.make(1l, n)
count := 0
max_size ‘== n
end

feature —— Processing of new elements

process (v: like item)
—— Conditionally insert/replaces the item v in the queue.
do
if count < max_size then
count := count + 1
heap.force (v, count)
sift_up
elseif v > heap.item (1) then
heap.put (v, 1)
sift_down
end
end

feature { NONE} —— Private access parent/children indices
parent_index (i: INTEGER): INTEGER

—— Get index of parent of entry at position i
do

left_child_index (i: INTEGER): INTEGER
—— Get index of left child of entry at position i

20

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

right_child_indez (i: INTEGER): INTEGER
—— Get index of right child of entry at position i
do

feature { NONE} —— Heap internal operations
sift_down
—— Sift top element down until the heap property holds again

—— Efficient, non—recursive implementation required!
local

21

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

22

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Winter 2017

sift_up
—— Sift last element up until the heap property holds again
local
i, 2 INTEGER
up, down: like item
stop: BOOLEAN
do
from
1:= count
down := heap.item (1)
until
stopor 1 =1
loop
J := parent_index (i)
up := heap.item (j)
if up > down then
heap.put (up,)
1=
else
stop = true
end
end
heap.put (down, 1)
end

end

23

	Multiple Choice (10 points)
	Inheritance and Polymorphism (16 Points)
	Specifying Software through Contracts (16 points)
	Recursion: Catalan Numbers (10 points)
	Data Structures: Bounded Priority Queue (18 points)

