ETHZ D-INFK Introduction to Programming — Exam

Prof.

Dr. B. Meyer Summer 2013

Introduction to Programming

ETH Zurich

Date: 19.08.2013

Family name, firSt NAIIE:uueeiieiiiiiiiie e

Student IUMDET: ...

I confirm with my signature, that I was able to take this exam under regular circum-
stances and that I have read and understood the directions below.

SIZNATUTE: .eviiiiiiiiieiiiiie e e

Directions:

Exam duration: 120 minutes.

Except for a dictionary you are not allowed to use any supplementary material.
Use a pen (not a pencil)!

Please write your student number onto each sheet.

All solutions can be written directly onto the exam sheets. If you need more space for
your solution ask the supervisors for a sheet of official paper. You are not allowed to
use other paper.

Only one solution can be handed in per question. Invalid solutions need to be crossed
out clearly.

Please write legibly! We will only correct solutions that we can read.
Manage your time carefully (take into account the number of points for each question).

Please immediately tell the exam supervisors if you feel disturbed during the exam.

Good luck!
Question | Number of possible points | Points
1 10
2 14
3 12
4 13
5 16
Total 65

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

1 Multiple choice (10 points)

Put checkmarks in the checkboxes corresponding to the correct statements. There is at
least one correct answer per question. A correctly checked or unchecked box is worth 0.5
points. An incorrectly checked or unchecked box is worth 0 points. Completely unanswered
questions are worth 0 points.

Example:

Which of the following statements are true?

a. The sun is a mass of incandescent gas. X 0.5 points
b. 2x4=38 O 0 points
c. “Rosti” is a kind of sausage. X 0 points
c. C is an object-oriented programming language. J 0.5 points

1. Objects and classes.

a. A program can create an unlimited number of objects of a certain type. O
b. Creation procedures can be made accessible to only a limited number of O
clients.

c. In Eiffel any function can be a creation procedure as well. (|
d. A generic class C [G] represents one type. O
e. The public interface of a class includes all the features that are available to [

all clients.

2. Control structures and recursion.
a. If we know that a loop decreases its variant and that it never goes below 5, [

then we know that the loop terminates.

b. The loop invariant may be violated during the loop initialization (before
entering the loop itself).

c. The loop invariant tells us how many times the loop will be executed.

d. In Eiffel a procedure is always allowed to call itself on the same object.

e. A loop can always be rewritten as a finite sequence of conditional statements
and compound statements.

O

ooo

3. Inheritance and polymorphism.
a. All classes in Eiffel implicitly inherit from class OBJECT.
b. At runtime a variable can be attached to an object, whose dynamic type
inherits from the variables’s static type.
¢. At runtime a variable can be attached to an object, whose dynamic type is [
the same as the variables’s static type.
d. At runtime a variable can be attached to an object, whose dynamic type is [
an ancestor of the variables’s static type.
e. For an object obj, the feature call o0bj.is_equal(0bj) can return False. O

oo

4. Design by Contract.
a. In a creation procedure the class invariant of the created object holds at the
beginning and at the end of the procedure body.
b. A class invariant can be violated without consequences in the body of a
routine.
c. The invariant provided by a class is and-ed with those of its ancestors.
d. A function redefining another function can provide a precondition that is
stronger than the one given by the original function.
e. A procedure redefining another procedure can provide a postcondition that is [
weaker than the one given by the original procedure.

o 0O

oo

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

2 Inheritance and Polymorphism (14 Points)

Classes SCIENTIST, COMPUTER_SCIENTIST, BIOLOGIST, and PET shown below are
part of an application for managing scientists’ social life on the web.

COMPUTER_SCIENTIST BIOLOGIST

Figure 1: BON Diagram

deferred class
SCIENTIST

feature { NONE} —— Initialization

make (a_name: STRING)
—— Initialize Current with ‘a_name’.
require
a_name_exists: a_name /= Void and then not a_name.is_empty
do
name := a_name
ensure
name_set: name = a_name
end

feature —— Access

name: STRING
—— Current’s name.

feature —— Basic operations

introduce
—— Print info about self.
do
10.put_new_line
print ("My name is ” + name + 7?3 7)
end
end

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

class
COMPUTER_SCIENTIST

inherit
SCIENTIST
redefine
introduce
end

create
make

feature —— Basic operations

introduce
—— Print info about self.
do
Precursor
print (I am a computer scientist.”)
end
end

class
BIOLOGIST

inherit
SCIENTIST
rename
introduce as express
redefine
express
end

create
make_with_pet

feature { NONE} —— Initialization

make_with_pet (a-name: STRING; a_pet: PET)

—— Initialization for ‘Current’.

require
name_exists: a_name /= Void and then not a_name.is_empty
pet_exists: a_pet /= Void

do
make (a_name)
pet := a_pet

ensure
name_set: name = a_name
pet_set: pet = a_pet

end

feature —— Access

pet: PET
—— Current biologist’s pet.

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Exam
Summer 2013

feature —— Basic operations

express
—— Print info about self.
do
Precursor
print (I am a biologist. ”)

print (I have a pet. Its name is ” + pet.name + ”.”)

end
end

class
PET

create
make

feature { NONE} —— Initialization
make (pet_name: STRING)

—— Initialization for ‘Current’.
require

pet_name_exists: pet_-name /= Void and then not pet_name.is_empty

do

name = pet_name
ensure

pet_name_set: name = pet_name
end

feature —— Access

name: STRING
—— Current pet’s name.

feature —— Basic operations

introduce
—— Print info about self.
do
10.put_new_line

print ("My name is ” + name + ” and I tend to be afraid.”)

end
end

Indicate, for each of the code fragments below, if it compiles by checking the correspond-
ing box. If the code fragment does not compile, explain why this is the case and clearly
mark the line that does not compile. If the code fragment compiles, specify the text that is
printed to the console when the code fragment is executed.

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

Given the following variable declarations:

a_scientist: SCIENTIST
a_computer_scientist. COMPUTER_SCIENTIST
a_biologist: BIOLOGIST

Example 1:
(create { PET}.make (*‘Bob”)).introduce
Does the code compile? X Yes O No
Output/error description My name is Bob and I tend to be afraid.
Example 2:
Bob.introduce

Does the code compile? [Yes X No
Output/error description The code does not compile, because ”Bob” is an unknown (not
declared) identifier.

Task 1

create a_scientist.make (‘‘ Theo”)
a_scientist.introduce

Does the code compile? [Yes J No
Output/error description

Task 2

create a_computer_scientist.make (*‘Heidi”)
a_computer_scientist.introduce

Does the code compile? [Yes J No
Output/error description

Task 3

a_scientist := create { COMPUTER_SCIENTIST}.make (‘Helen’)
a_scientist.introduce

Does the code compile? [Yes O No
Output/error description

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

a_scientist := create { COMPUTER_SCIENTIST}.make (*‘Hal”)
a_computer_scientist := a_scientist
a_computer_scientist.introduce

Does the code compile? [Yes J No
Output/error description

Task 5
create a_biologist.make_with_pet (‘‘Reto”, create { PET}.make (*‘ Toby’))
a_biologist.express

Does the code compile? [Yes 0 No
Output/error description

Task 6

create a_biologist.make_with_pet (‘“Kandra”, create { PET}.make (*“Tom”’))
a_computer_scientist := a_biologist
a_computer_scientist.introduce

Does the code compile? [Yes J No
Output/error description

Task 7

a_biologist := create { BIOLOGIST}.make_with_pet (‘“Elmo”, create { PET}.make (¢
Hez”))
a_scientist := a_biologist
a_scientist.pet.introduce

Does the code compile? [Yes J No
Output/error description

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

3 Specifying Software through Contracts (12 points)

The city Lake is a home to many libraries. Each of these libraries owns books and provides
a book lending service to the public. Each book belongs to one library. The number of
books a reader can borrow from a library is not limited, and a book can be lent to only one
reader at a time.

Listings 1 through 3 show code snippets of the three classes LIBRARY, READER,
and BOOK from the software system used to manage these libraries. Your task is to add
contracts to the snippets, so that the informal description above and in the feature comments
is reflected in the class interface.

Please note:

e You should read through all the feature comments first.

e The Eiffel compiler ensures that entities of type attached T are never Void. For
example the attribute books: attached ARRAYED_SET [attached BOOK] can never
receive Void or contain Void elements, and therefore contracts like books /= Void are
unnecessary, and should not be written for such entities.

e That the explicit use of attached and detachable and the corresponding rules apply
to this problem only. (Also, in standard Eiffel, types are attached by default, so
attached is normally not specified. It is included in this example for clarity.)

e You need to write True at places where you think no explicit contract is needed:
leaving a precondition, postcondition, or class invariant empty gives you 0 point for
that section.

e The number of dotted lines is not indicative of the number of missing contract clauses.

e The following features from class ARRAYED_SET may be useful:

class ARRAYED_SET [G]

feature
has (v: G): BOOLEAN

—— Does current include ‘v’?

is_subset (other: like Current): BOOLEAN
—— Is current set a subset of ‘other’?

—— Other features omitted.
end

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

Listing 1: Class LIBRARY

deferred class
LIBRARY

feature —— Book

books: attached ARRAYED_SET [attached BOOK]
—— Set of books the library owns.

has_book (a_book: attached BOOK): BOOLEAN
—— Does the library own ‘a_book’?
require

deferred
ensure

acquire (a_book: attached BOOK)
—— Add ‘a_book’ to the library.
require

deferred
ensure

borrower (a_book: attached BOOK): detachable READER
—— Reader who has borrowed but not yet returned ‘a_book’.
—— Return Void if none.
require

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

deferred

ensure

feature —— Operation
lend (a_book: attached BOOK; a_reader: attached READER)
—— Lend ‘a_book’ to ‘a_reader’.
—— Applicable only to books owned by ‘Current’.
require

deferred
ensure

recover (a_book: attached BOOK)
—— Recover ‘a_book’ from its borrower.
—— Applicable only to books owned by ‘Current’.
—— This is the reverse operation of ‘lend’.
require

deferred
ensure

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Exam

Summer 2013

—— Other features omitted.

invariant

deferred class
READER

feature —— Access

Listing 2: Class READER

borrowed_books (a_lib: attached LIBRARY): attached ARRAYED_SET [attached

BOOK]

—— Set of books borrowed from ‘a_lib’.

—— Return empty set if ‘Current’ has not currently borrowed

—— any book from ‘a_lib’.

require

deferred
ensure

—— Other features omitted.

invariant

11

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

Listing 3: Class BOOK

deferred class
BOOK

feature —— Access

library: detachable LIBRARY assign set_library
—— Library to which the book belongs. Immutable once set.

feature{LIBRARY} —— Set
set_library (a-lib: attached LIBRARY)
—— Set ‘library’ to ‘a_lib’.
require

deferred
ensure

—— Other features omitted.

invariant

12

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

4 Recursion (13 points)
Task 1

The function n_th_element (see below) should implement a recursive algorithm that, given
a list a, computes the n-th element of a sorted list (in ascending order) that contains the
same elements as the list a. Note that list ¢ does not need to be sorted. See the example in
task 2 to get an idea of what the correct output of function n_th_element should look like.
Complete the implementation by filling in the missing expressions. Note that the expected
implementation uses recursion.

n_th_element (a: ARRAYED_LIST [INTEGER]; n: INTEGER): INTEGER
require
a /= Void and 1 <= n and n <= a.count
local
i, element, pivot: INTEGER
not_greater, greater: ARRAYED_LIST [INTEGER)
do
print ("n =" + n.out + ?%N”)
pivot := a [n]

—— Split up the elements of list ‘a’, such that ‘not_greater’ contains all elements
—— that are less than or equal to ‘pivot’ (except for the pivot itself),

—— and ‘greater’ contains all elements that are greater than ‘pivot’.

create not_greater.make (0)

create greater.make (0)

from

1:=1
until

a.count < 1
loop

element := a [i]

if element <= pivot and i /= n then
not_greater.extend (element)

elseif pivot < element then
greater.extend (element)

end
ti=1+1
end
(P) then
ReSULt t= (1ot)
LSl (.) then
ReSULt i= (Lo
..)
elSeif (L) then
RESULE i= (oo
..)
end

end

13

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

Task 2

In the following code snippets, function n_th_element is called with different inputs. Write
down the output that is printed to the console for each snippet once function n_th_element
has been properly implemented. Note that the function n_th_element prints out the argument
n in each call.

Assume that variable a was declared as follows:

local
a: ARRAYED_LIST [INTEGER)

Example

create a.make (0) —— Create an empty list.
a.extend (1)

a.extend (2)

a.extend (—2)
print (Presult = ” + n_th_element (a, 1).out)

Output:
n=1

n=1
result = -2

Snippet 1
create a.make (0)

a.extend (0)
print (Presult = ” + n_th_element (a, 1).out)

Output:

14

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Exam
Summer 2013

Snippet 2

create a.make (0)

a.extend
a.extend

print (Presult = ” + n_th_element (a, 5).out)

Output:

15

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

5 Data Structures (16 points)

In this task you are going to implement several operations for a generic class SET [G].

A set is a collection of distinct objects. Every element of a set must be unique; no two
members may be identical. All set operations preserve this property. The order in which
the elements of a set are listed is irrelevant (unlike for a sequence or tuple). Therefore the
two sets {5,10,12} and {10,12,5} are identical.

There are several fundamental operations for constructing new sets from given sets.

e Union: The union of A and B, denoted by A U B, is the set of all elements that are
members of either A or B.

e Intersection: The intersection of A and B, denoted by AN B, is the set of all elements
that are members of both A and B.

e Relative complement of B in A (also called the set-theoretic difference of A and B),
denoted by A\B (or A — B), is the set of all elements that are members of A but not
members of B.

The Jaccard index (or coefficient) measures similarity between sample sets, and is defined
as the size of the intersection divided by the size of the union of the sample sets (see Figure 2).
If both sets are empty the Jaccard coefficient is defined as 1.0.

AN B
J(A,B) = |AUB:

Figure 2: Jaccard index definition for non-empty sets A and B.

Your task is to fill in the gaps of class SET [G] below. Please note:
e Your code should satisfy the contracts and provide new contracts where necessary.
e The set should never contain Void elements.

e The number of dotted lines does not indicate the number of missing contract clauses
or code instructions.

e The implementation of class SET [G] is based on an arrayed list. The arrayed list is
set up to use object comparison, so features like has and prune use object equality
instead of reference equality when comparing elements from the set. The following
features of class ARRAYED_LIST may be useful:

class ARRAYED_LIST |G

feature
has (v: G): BOOLEAN

—— Does current include ‘v’?

start
—— Move cursor to first position if any.

extend (v: G)
—— Add ‘v’ to the end.

prune (v: G)
—— Remove first occurrence of ‘v’, if any, after cursor position.

—— Move cursor to right neighbor.

—— Other features are omitted.
end

16

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Exam
Summer 2013

class

SET [G]

create
make_empty

feature { NONE} —— Initialization

make_empty
—— Create empty Current.
do
create content.make (0)
content.compare_objects
ensure
empty_content: content.is_empty
end

feature —— Access

count: INTEGER
—— Cardinality of the current set.
do
Result := content.count
end

is_empty: BOOLEAN
—— Is current set empty?
do

end

has (v: G): BOOLEAN
—— Does current set contain ‘v’?7
require

17

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

add (v: G)
—— Add ‘v’ to the current set.
require

ensure

end
remove (v: G)
—— Remove ‘v’ from the current set.
require

ensure

18

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

duplicate: like Current
—— Deep copy of Current.
do
create Result.make_empty
across content as c
loop
Result.add (c.item)
end
ensure
same_size: Result.count = count
same_content: across content as ¢ all Result.has (c.item) end
end
feature —— Set operations.
union (another: like Current): like Current
—— Union product of the current set and ‘another’ set.
require

ensure

19

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

intersection (another: like Current): like Current
—— Intersection product of the current set and ‘another’ set.
require

ensure

end
difference (another: like Current): like Current
—— Set—theoretic difference of the current set and ‘another’ set.
require

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

ensure

end
feature —— Set metrics.
jaccard_index (another: like Current): REAL 6/
—— Jaccard similarity coefficient between current set and ‘another’ set.
require

ensure

21

ETHZ D-INFK Introduction to Programming — Exam
Prof. Dr. B. Meyer Summer 2013

feature { NONE} —— Implementation

content: ARRAYED_LIST[G]
—— Items of the set.

invariant
content_exists: content /= Void
content_object_comparison: content.object_comparison

non_negative_cardinality: count >= 0

end

22

	Multiple choice (10 points)
	Inheritance and Polymorphism (14 Points)
	Specifying Software through Contracts (12 points)
	Recursion (13 points)
	Data Structures (16 points)

