
13. Shortest Paths

Motivation, Universal Algorithm, Dijkstra’s algorithm on distance graphs,
[Ottman/Widmayer, Kap. 9.5.1-9.5.2 Cormen et al, Kap. 24.1-24.3]
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River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a river
bank. The available boat can carry two people. At no time may at any place
(banks or boat) be more cannibals than missionaries. How can the
missionaries and cannibals cross the river as fast as possible? 16

K K K

M M M
B

16There are slight variations of this problem. It is equivalent to the jealous husbands
problem.

269



Problem as Graph

Enumerate permitted configurations as nodes and connect them with an
edge, when a crossing is allowed. The problem then becomes a shortest
path problem.
Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer
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The whole problem as a graph
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Another Example: Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8
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Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8
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Route Finding

Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z
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3
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7

1

4 5
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4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
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Simplest Case
Constant edge weight 1 (wlog)
Solution: Breadth First Search

S

t
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Weighted Graphs
Given: G = (V,E, c), c : E → R, s, t ∈ V .
Wanted: Length (weight) of a shortest path from s to t.
Path: p = 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight: c(p) := ∑k−1

i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9
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Shortest Paths

Notation: we write
u

p
 v oder p : u v

and mean a path p from u to v
Notation: δ(u, v) = weight of a shortest path from u to v:

δ(u, v) =

∞ no path from u to v
min{c(p) : u p

 v} otherwise
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Observations (1)

It may happen that a shortest paths does not exist: negative cycles can
occur.

s u

v

w

t
1

1

−1

−1

1

1
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Observations (2)

There can be exponentially many paths.

s

t
(at least 2|V |/2 paths from s to t)

⇒ To try all paths is too ine�cient
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Observations (3)

Triangle Inequality
For all s, u, v ∈ V :

δ(s, v) ≤ δ(s, u) + δ(u, v)

s

u

v

A shortest path from s to v cannot be longer than a shortest path from s to v that
has to include u
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Observations (4)

Optimal Substructure
Sub-paths of shortest paths are shortest paths. Let p = 〈v0, . . . , vk〉 be a
shortest path from v0 to vk. Then each of the sub-paths pij = 〈vi, . . . , vj〉
(0 ≤ i < j ≤ k) is a shortest path from vi to vj .

u x y v
p p

q

p

If not, then one of the sub-paths could be shortened which immediately leads to
a contradiction.
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Observations (5)

Shortest paths do not contain cycles

1. Shortest path contains a negative cycle: there is no shortest path,
contradiction

2. Path contains a positive cycle: removing the cycle from the path will reduce
the weight. Contradiction.

3. Path contains a cycle with weight 0: removing the cycle from the path will not
change the weight. Remove the cycle (convention).
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Ingredients of an Algorithm

Wanted: shortest paths from a starting node s.
Weight of the shortest path found so far

ds : V → R

At the beginning: ds[v] =∞ for all v ∈ V .
Goal: ds[v] = δ(s, v) for all v ∈ V .
Predecessor of a node

πs : V → V

Initially πs[v] undefined for each node v ∈ V
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General Algorithm

1. Initialise ds and πs: ds[v] =∞, πs[v] = null for each v ∈ V
2. Set ds[s]← 0
3. Choose an edge (u, v) ∈ E

Relaxiere (u, v):
if ds[v] > d[u] + c(u, v) then

ds[v]← ds[u] + c(u, v)
πs[v]← u

4. Repeat 3 until nothing can be relaxed any more.
(until ds[v] ≤ ds[u] + c(u, v) ∀(u, v) ∈ E)
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It is Safe to Relax

At any time in the algorithm above it holds

ds[v] ≥ δ(s, v) ∀v ∈ V

In the relaxation step:

δ(s, v) ≤ δ(s, u) + δ(u, v) [Triangle Inequality].
δ(s, u) ≤ ds[u] [Induction Hypothesis].
δ(u, v) ≤ c(u, v) [Minimality of δ]

⇒ ds[u] + c(u, v) ≥ δ(s, v)

⇒ min{ds[v], ds[u] + c(u, v)} ≥ δ(s, v)
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Central Question

How / in which order should edges be chosen in above algorithm?
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Special Case: Directed Acyclic Graph (DAG)

DAG⇒ topological sorting returns optimal visiting order

s

v1

v2

v3

v4

v5

v6
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v8
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−1

2

−2

2

−2

2

3

−1

0

2

4

−1

−2

0

−4

3

−6

Top. Sort: ⇒ Order s, v1, v2, v3, v4, v6, v5, v8, v7.
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Special Case: Directed Acyclic Graph (DAG)
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Assumption (preliminary)

s

a

b

c

d

e
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2
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3

1

1

All weights of G are positive.
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Observation (Dijkstra)

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!
cannot be relaxed further
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Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a shortest
path from s is already known,
the set R = ⋃

v∈M N+(v) \M of nodes
where a shortest path is not yet known
but that are accessible directly from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2
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Induction

Induction over |M |: choose nodes from R
with smallest upper bound. Add r to M and
update R and U accordingly.

Correctness: if within the “wavefront” a node
with minimal weight w has been found then
no path over later nodes (providing weight ≥
d) can provide any improvement.

s

2

2

5

3

5

2

1

2
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Algorithm Dijkstra(G, s)
Input: Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output: Minimal weights d of the shortest paths and corresponding predecessor

node for each node.

foreach u ∈ V do
ds[u]←∞; πs[u]← null

ds[s]← 0; R← {s}
while R 6= ∅ do

u← ExtractMin(R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
R← R ∪ {v}
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Example

s
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1
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Example

s
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d
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2
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∞

∞

∞

∞

∞
s

M = {s}

R = {}

U = {a, b, c, d, e}
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Example
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Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

M = {s, a}

R = {b, c}

U = {d, e}

293



Example
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Example
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Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞
ss

a

b

2

3

a c
8

b d
4

d

e
5

7

e

6

M = {s, a, b, d, e}

R = {c}

U = {}

293



Example
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Implementation: Data Structure for R?
Required operations:

Insert (add to R)
ExtractMin (over R) and DecreaseKey (Update in R)
foreach v ∈ N+(u) do

if ds[u] + c(u, v) < ds[v] then
ds[v]← ds[u] + c(u, v)
πs[v]← u
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

MinHeap!
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DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap?

alternative (a): Store position at the nodes
alternative (b): Hashtable of the nodes
alterantive (c): re-insert node after successful relax operation and mark it
"deleted" once extracted (Lazy Deletion).17

17For lazy deletion a pair of egde (or target node) and distance is required.
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Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).
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