12. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting
[Ottman/Widmayer, Kap. 91 - 9.4,Cormen et al, Kap. 22]

227

Konigsberg 1736

KONINGSBERGA

228

[Multi]Graph

Cycles

m s there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an even
number of edges (each node is of an even
degree).

‘=" Is straightforward, “<" ist a bit more difficult but
still elementary.

230

(1)
Q}Qe

undirected directed
V ={1,2,3,4,5} V ={1,2,3,4,5}
E :{{1, 2}, {17 3}, {2, 3}, {2,4}, FE :{(1, 3), (2, 1), (2, 5), (3, 2),

{2,5},{3,4},{3,5}, {4,5}} (3,4),(4,2),(4,5),(5,3)}

231

Notation

A directed graph consists of a set V = {1, ...,v,} of nodes (Vertices) and
aset E CV xV of Edges. The same edges may not be contained more

than once.
M @

e—® %

loop

232

Notation

An undirected graph consists of a set V = {v,...,v,} of nodes a and a
set £ C {{u,v}|u,v € V} of edges. Edges may bot be contained more than

once.”®

undirected graph

>As opposed to the introductory example - it is then called multi-graph.
233

Notation

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise different nodes is called complete.

a complete undirected graph

234

Notation

A graph where V' can be partitioned into disjoint sets U and W such that
each e € E provides a node in U and a node in Wis called bipartite.

235

Notation

A weighted graph G = (V, F, ¢) is a graph G = (V, E)) with an edge weight
function ¢ : £ — R. ¢(e) is called weight of the edge e.

236

Notation

For directed graphs G = (V, E)

m w e Viscalled adjacenttov € V, if (v,w) € E

m Predecessors of v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: N*(v) := {u € V|(v,u) € E}

237

Notation

For directed graphs G = (V, E)

m In-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = [N T (v)|

el

deg™ (v) = 3, deg™ (v) = 2

deg™ (w) =1, degt(w) = 1

238

Notation

For undirected graphs G = (V, E):

m w e Viscalled adjacenttov € V, if {v,w} € FE

m Neighbourhood of v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

Ny Qo

deg(v) =5 deg(w) =2

239

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds
1. Yperv deg™ (v) = e degt (v) = |E|, for G directed
2. Y ,ey deg(v) = 2|E|, for G undirected.

240

Paths

m Path: a sequence of nodes (vy, ..., vy1) such that for eachi € {1...k}
there is an edge from v; to vy .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): =%, ¢((vi, vit1)) (bzw.
25:1 c({vi, Uz’+1}>)

m Simple path: path without repeating vertices

241

Connectedness

m An undirected graph is called connected, if for eacheach pairv,w € V
there is a connecting path.

m A directed graph is called strongly connected, if for each pair v,w € V
there is a connecting path.

m A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

242

Simple Observations

m generally: 0 < |E| € O(|V]?)

m connected graph: |E| € Q(|V])

m complete graph: |E| = MIVI=D (yndirected)

m Maximally [E| = |V]? (d|rected)|E| = VYD (yndirected)

243

Cycles

m Cycle: path (v, ..., vk1) With v = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does not use
an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

244

Representation using a Matrix

Graph G = (V, E) with nodes v; ..., v, stored as adjacency matrix
Ag = (ai)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge from v;
to Vj.

O OO OO
OO = O
_ O O O =
OO = O =
—_ o = O O

Memory consumption O(|V|?). Ag is symmetric, if G undirected.

245

Representation with a List

Many graphs G = (V, E) with nodes vy, ..., v, 123 45
provide much less than n? edges. Represen- ol [of [o
tation with adjacency list: Array A[1], ..., A[n], l l
A; comprises a linked list of nodes in Nt (v;). 2 2 3
P11
3 4 5
I o
4 5

Memory Consumption O(|V| + | E]).

246

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v € V O(n) O(deg’v)

find v € V without neighbour/successor ©(n?) ©(n)
(u,v) € E7? O(1) O(degtv)
Insert edge o(1) ©6(1)
Delete edge O(1) O(deg’v)

247

Depth First Search

248

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

\ \
4 4

AN

~
N

\ \
4 4

Order a,b,c, f,d,e, g, h,i

Adjazenzliste

b | cld g
v |
ci|l fll e h

e o e @

S e O e S

249

Colors

Conceptual coloring of nodes

m white: node has not been discovered yet.

m grey: node has been discovered and is marked for traversal / being
processed.

m black: node was discovered and entirely processed.

250

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V, E), Knoten v.

v.color < grey
foreach w € N*(v) do

if w.color = white then
. DFS-Visit(G, w)

v.color < black

Depth First Search starting from node v. Running time (without recursion):
O(deg™ v)

251

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘7 v.color < white

foreach v € V do

if v.color = white then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + Lyev(deg™(v) + 1)) = (V] + | E]).

252

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

m White node: new tree edge

m Grey node: Zyklus (“back-egde”)

m Black node: forward- / cross edge

253

Breadth First Search

e} Bergstation

8
('f‘
440/

OHolderlinsteig ee/"i‘ s
/ ’}00
Halderlinstr. %0
0
Englisch-
viertelstr. 208
703
1
' ORI
& NP <
¢ © & &

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

>e » Adjazenzliste

T allbflcldlelf
ooyl |
> > blcl| flelod
T) |
d f
)
o—0 0 :

Order a,b,d,e,c, f, g, h,i

(Iterative) BFS-Visit(G, v)

Input: graph G = (V, E)
Queue Q <+ 0

v.color < grey

enqueue(Q,v)
while Q #) do
w <+ dequeue(Q)
foreach c € N (w) do
if c.color = white then
c.color < grey

~enqueue(Q, ¢)

w.color < black

Algorithm requires extra space of O(|V]).

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v € V do
‘ v.color < white

foreach v € V do

if v.color = white then
. BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: ©(|V| + | E|).

257

Topological Sorting

ko>

i

Function

3 -

A

1

2 TOTAL
3 Arleen
4 Hans

5 Mike

6]Selina
7

8

9 Al

10

11

12

13

14

B 5 &’

Evaluation Order?

%] o] : B ol Now
= Rernee* T Funcons~ | Manager] o | o | G, B8 el shet
B C D E F G
Task 1 Task 2 Task 3 Task 4 Total Note
8 8 16 16
4 5 5]
T 3 2 3 :x\\
7 5 % 18
6 5 8 2 2%
Durchschnitt 18

1.5

258

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping
ord: V = {1,...,|V|}
such that
ord(v) < ord(w) V (v,w) € E.

Identify ¢ with Element v; := ord’ (7). Topological sorting = (v,

.. 7U\V\>-

259

(Counter-)Examples

0 e >
@ D o> D
H—@ arend > ot (i)

Cyclic graph: cannot be sorted topo- A possible toplogical sorting of the graph:
logically. Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,

260

Observation

Theorem 7

A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.
Proof “=": If G contains a cycle it cannot permit a topological sorting,
because in a cycle (v;,,...,v;,,) itwould hold that v;, < -+ <w;,, < ;.

261

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n+ 1)

1. G contains a node v, with in-degree deg™ (v4) = 0. Otherwise iteratively
follow edges backwards - after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) - 1.

262

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
1. Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

2. If no node with in-degree 0 found after n stepsm, then the graph has a
cycle.

3. Set ord(v,) + d.

4. Remove v, and his edges from G.

5. 1fV #0,thend «+ d+ 1, go to step 1.
Worst case runtime: O(|V]?).

263

Improvement

ldea?
Compute the in-degree of all nodes in advance and traverse the nodes
with in-degree 0 while correcting the in-degrees of following nodes.

264

Algorithm Topological-Sort(G)

Input: graph G = (V, E).
Output: Topological sorting ord

Stack S «+ 0
foreach v € V do A[v] < 0
foreach (v, w) € E do A[w] < A[w] +1 // Compute in-degrees
foreach v € V with A[v] = 0 do push(S,v) // Memorize nodes with in-degree 0
1< 1
while S # () do
v < pop(S); ord[v] «i; i < i+ 1 // Choose node with in-degree 0
foreach (v,w) € E do // Decrease in-degree of successors
Alw] Alw] — 1
L if Ajw] =0 then push(S,w)

if i = |V| + 1 then return ord else return “Cycle Detected”

265

Algorithm Correctness

Theorem 8

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime O(|V| + |E)).

Proof: follows from previous theorem:
1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] < i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

266

Algorithm Correctness

Theorem 9
Let G = (V, E) be adirected graph containing a cycle. Algorithm TopologicalSort
terminates within ©(|V| + |E|) steps and detects a cycle.

Proof: let (v;,,...,v;,) be a cycle in G. In each step of the algorithm remains

Alv;;] > 1forallj =1,...,k Thus k nodes are never pushed on the stack und

therefore at the end it holdsthat: <V +1 — k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already ©(|V| + | E]).

267

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting

