
12. Graphs

Notation, Representation, Graph Traversal (DFS, BFS), Topological Sorting
[Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22]

227

Königsberg 1736

228

[Multi]Graph

A

B

D

C

edge

node

229

Cycles

Is there a cycle through the town (the graph)
that uses each bridge (each edge) exactly
once?
Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an even
number of edges (each node is of an even
degree).
‘⇒” is straightforward, “⇐” ist a bit more di�cult but
still elementary.

A

B

D

C

230

Notation
1

2 3

4 5
undirected

V ={1, 2, 3, 4, 5}
E ={{1, 2}, {1, 3}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}}

1

2 3

4 5
directed

V ={1, 2, 3, 4, 5}
E ={(1, 3), (2, 1), (2, 5), (3, 2),

(3, 4), (4, 2), (4, 5), (5, 3)}
231

Notation

A directed graph consists of a set V = {v1, . . . , vn} of nodes (Vertices) and
a set E ⊆ V × V of Edges. The same edges may not be contained more
than once.

1 2

3 4 5

loop

232

Notation

An undirected graph consists of a set V = {v1, . . . , vn} of nodes a and a
set E ⊆ {{u, v}|u, v ∈ V } of edges. Edges may bot be contained more than
once.15

1

2

3 4

5

undirected graph

15As opposed to the introductory example – it is then called multi-graph.
233

Notation

An undirected graph G = (V, E) without loops where E comprises all
edges between pairwise di�erent nodes is called complete.

1

2

3 4

5

a complete undirected graph

234

Notation

A graph where V can be partitioned into disjoint sets U and W such that
each e ∈ E provides a node in U and a node in W is called bipartite.

235

Notation

A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge weight
function c : E → R. c(e) is called weight of the edge e.

0

1

2

3

4

5

2

1.5

4

1

4

3

236

Notation
For directed graphs G = (V, E)

w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E
Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}

N−(v) N+(v)

v

p1

p2

p3

s1

s2

237

Notation

For directed graphs G = (V, E)
In-Degree: deg−(v) = |N−(v)|,
Out-Degree: deg+(v) = |N+(v)|

v

deg−(v) = 3, deg+(v) = 2

w

deg−(w) = 1, deg+(w) = 1

238

Notation

For undirected graphs G = (V, E):
w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E

Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops: increase
the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

239

Relationship between node degrees and number of
edges

For each graph G = (V, E) it holds
1. ∑

v∈V deg−(v) = ∑
v∈V deg+(v) = |E|, for G directed

2. ∑
v∈V deg(v) = 2|E|, for G undirected.

240

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each i ∈ {1 . . . k}
there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.
Weight of a path (in weighted graphs): ∑k

i=1 c((vi, vi+1)) (bzw.∑k
i=1 c({vi, vi+1}))

Simple path: path without repeating vertices

241

Connectedness

An undirected graph is called connected, if for eacheach pair v, w ∈ V
there is a connecting path.
A directed graph is called strongly connected, if for each pair v, w ∈ V
there is a connecting path.
A directed graph is called weakly connected, if the corresponding
undirected graph is connected.

242

Simple Observations

generally: 0 ≤ |E| ∈ O(|V |2)
connected graph: |E| ∈ Ω(|V |)
complete graph: |E| = |V |·(|V |−1)

2 (undirected)
Maximally |E| = |V |2 (directed),|E| = |V |·(|V |+1)

2 (undirected)

243

Cycles

Cycle: path 〈v1, . . . , vk+1〉 with v1 = vk+1

Simple cycle: Cycle with pairwise di�erent v1, . . . , vk, that does not use
an edge more than once.
Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops
have length 1)

244

Representation using a Matrix

Graph G = (V, E) with nodes v1 . . . , vn stored as adjacency matrix
AG = (aij)1≤i,j≤n with entries from {0, 1}. aij = 1 if and only if edge from vi

to vj .

1 2

4

3

5

0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1

Memory consumption Θ(|V |2). AG is symmetric, if G undirected.

245

Representation with a List

Many graphs G = (V, E) with nodes v1, . . . , vn

provide much less than n2 edges. Represen-
tation with adjacency list: Array A[1], . . . , A[n],
Ai comprises a linked list of nodes in N+(vi).

1 2

4

3

5

1 2 3 4 5

2

3

4

2

4

5

3

5

Memory Consumption Θ(|V |+ |E|).

246

Runtimes of simple Operations

Operation Matrix List

Find neighbours/successors of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour/successor Θ(n2) Θ(n)

(u, v) ∈ E ? Θ(1) Θ(deg+ v)

Insert edge Θ(1) Θ(1)

Delete edge Θ(1) Θ(deg+ v)

247

Depth First Search

248

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h e

d f i

e

249

Colors

Conceptual coloring of nodes
white: node has not been discovered yet.
grey: node has been discovered and is marked for traversal / being
processed.
black: node was discovered and entirely processed.

250

Algorithm Depth First visit DFS-Visit(G, v)

Input: graph G = (V, E), Knoten v.

v.color ← grey
foreach w ∈ N+(v) do

if w.color = white then
DFS-Visit(G, w)

v.color ← black

Depth First Search starting from node v. Running time (without recursion):
Θ(deg+ v)

251

Algorithm Depth First visit DFS-Visit(G)

Input: graph G = (V, E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
Θ(|V |+ ∑

v∈V (deg+(v) + 1)) = Θ(|V |+ |E|).

252

Interpretation of the Colors

When traversing the graph, a tree (or Forest) is built. When nodes are
discovered there are three cases

White node: new tree edge
Grey node: Zyklus (“back-egde”)
Black node: forward- / cross edge

253

Breadth First Search

254

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

255

(Iterative) BFS-Visit(G, v)
Input: graph G = (V, E)

Queue Q← ∅
v.color ← grey
enqueue(Q, v)
while Q 6= ∅ do

w ← dequeue(Q)
foreach c ∈ N+(w) do

if c.color = white then
c.color ← grey
enqueue(Q, c)

w.color ← black

Algorithm requires extra space of O(|V |).
256

Main program BFS-Visit(G)

Input: graph G = (V, E)

foreach v ∈ V do
v.color ← white

foreach v ∈ V do
if v.color = white then

BFS-Visit(G,v)

Breadth First Search for all nodes of a graph. Running time: Θ(|V |+ |E|).

257

Topological Sorting

Evaluation Order?
258

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping

ord : V → {1, . . . , |V |}

such that
ord(v) < ord(w) ∀ (v, w) ∈ E.

Identify i with Element vi := ord1(i). Topological sorting =̂ 〈v1, . . . , v|V |〉.

259

(Counter-)Examples

1

2

3 4

5

Cyclic graph: cannot be sorted topo-
logically.

Unterhose Hose

Socken Schuhe

Unterhemd Pullover

Mantel

Uhr

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

260

Observation

Theorem 7
A directed graph G = (V, E) permits a topological sorting if and only if
it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological sorting,
because in a cycle 〈vi1 , . . . , vim〉 it would hold that vi1 < · · · < vim < vi1 .

261

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be sorted
topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n + 1):

1. G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2. Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

262

Preliminary Sketch of an Algorithm

Graph G = (V, E). d← 1
1. Traverse backwards starting from any node until a node vq with

in-degree 0 is found.
2. If no node with in-degree 0 found after n stepsm, then the graph has a

cycle.
3. Set ord(vq)← d.
4. Remove vq and his edges from G.
5. If V 6= ∅ , then d← d + 1, go to step 1.

Worst case runtime: Θ(|V |2).

263

Improvement

Idea?
Compute the in-degree of all nodes in advance and traverse the nodes
with in-degree 0 while correcting the in-degrees of following nodes.

264

Algorithm Topological-Sort(G)
Input: graph G = (V, E).
Output: Topological sorting ord

Stack S ← ∅
foreach v ∈ V do A[v]← 0
foreach (v, w) ∈ E do A[w]← A[w] + 1 // Compute in-degrees
foreach v ∈ V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree 0
i← 1
while S 6= ∅ do

v ← pop(S); ord[v]← i; i← i + 1 // Choose node with in-degree 0
foreach (v, w) ∈ E do // Decrease in-degree of successors

A[w]← A[w]− 1
if A[w] = 0 then push(S, w)

if i = |V |+ 1 then return ord else return “Cycle Detected”

265

Algorithm Correctness

Theorem 8

LetG = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G)
computes a topological sorting ord for G with runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1. Decreasing the in-degree corresponds with node removal.

2. In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3. Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

266

Algorithm Correctness

Theorem 9

LetG = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort(G)
terminates within Θ(|V |+ |E|) steps and detects a cycle.

Proof: let 〈vi1 , . . . , vik
〉 be a cycle in G. In each step of the algorithm remains

A[vij] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.
The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).

267

	Graphs
	graphs
	Representation of graphs
	Graph Traversal
	Topological Sorting

