
11. Hashing

Hash Tables, Pre-Hashing, Hashing, Resolving Collisions using Chaining,
Simple Uniform Hashing, Popular Hash Functions, Table-Doubling, Open
Addressing: Probing [Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al,
Kap. 11-11.4]

194

Motivating Example

Gloal: E�cient management of a table of all n ETH-students of
Possible Requirement: fast access (insertion, removal, find) of a dataset
by name

195

Dictionary

Abstract Data Type (ADT) D to manage items12 i with keys k ∈ K with
operations

D.insert(i): Insert or replace i in the dictionary D.
D.delete(i): Delete i from the dictionary D. Not existing⇒ error
message.
D.search(k): Returns item with key k if it exists.

12Key-value pairs (k, v), in the following we consider mainly the keys
196

Dictionaries in Python

fruits = {
"banana": 2.95, "kiwi": 0.70,
"pear": 4.20, "apple": 3.95

}

fruits["melon"] = 3.95
fruits["banana"] = 1.90
print("banana", fruits["banana"])
print("melon in fruits", "melon" in
fruits)print("onion in fruits"
, "onion" in fruits)
del fruits["strawberry"]
for name,price in fruits.items():

print(name,"->",price)

dictionary

insert
update

find

remove
iterate

197

Dictionaries in Java

Map<String,Double> fruits =
new HashMap<String,Double>();

fruits.put("banana", 2.95);
fruits.put("kiwi", 0.70);
fruits.put("strawberry", 9.95);
fruits.put("pear", 4.20);
fruits.put("apple", 3.95);
fruits.put("banana", 2.90);
Out.println("banana " + fruits.get("banana"));
fruits.remove("banana");
for (String s: fruits.keySet())

Out.println(s+" " + fruits.get(s));

dictionary

insert

update
find

remove
iterate

198

Motivation / Use
Perhaps the most popular data structure.

Supported in many programming languages (C++, Java, Python, Ruby,
Javascript, C# ...)
Obvious use

Databases, Spreadsheets
Symbol tables in compilers and interpreters

Less obvious

Substrin Search (Google, grep)
String commonalities (Document distance, DNA)
File Synchronisation
Cryptography: File-transfer and identification

199

1. Idea: Direct Access Table (Array)

Index Item
0 -
1 -
2 -
3 [3,value(3)]
4 -
5 -
...

...
k [k,value(k)]
...

...

Problems
1. Keys must be non-negative integers
2. Large key-range⇒ large array

200

Solution to the first problem: Pre-hashing

Prehashing: Map keys to positive integers using a function ph : K → N

Theoretically always possible because each key is stored as a
bit-sequence in the computer
Theoretically also: x = y ⇔ ph(x) = ph(y)
Practically: APIs o�er functions for pre-hashing. (Java:
object.hashCode(), C++: std::hash<>, Python: hash(object))
APIs map the key from the key set to an integer with a restricted size.13

13Therefore the implication ph(x) = ph(y)⇒ x = y does not hold any more for all x,y.
201

Prehashing Example : String

Mapping Name s = s1s2 . . . sls to key

ph(s) =
ls−1∑
i=0

sls−i · bi
 mod 2w

b so that di�erent names map to di�erent keys as far as possible.
b Word-size of the system (e.g. 32 or 64)

Example (Java) with b = 31, w = 32. Ascii-Values si.

Anna 7→ 2045632
Jacqueline 7→ 2042089953442505 mod 232 = 507919049

202

Implementation Prehashing (String) in Java

phb,m(s) =
(
l−1∑
i=0

sl−i+1 · bi
)

mod m

With b = 31 and m = 232 we get in Java14

int prehash(String s){
int h = 0;
for (int k = 0; k < s.length(); ++k){

h = h * b + s.charAt(k);
}
return h;

}
14Try to understand why this works

203

Lösung zum zweiten Problem: Hashing
Reduce the universe. Map (hash-function) h : K → {0, ...,m− 1} (m ≈ n =
number entries of the table)

Collision: h(ki) = h(kj).
204

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2) (collision).
A hash function should map the set of keys as uniformly as possible to the
hash table.

205

Resolving Collisions: Chaining

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19 , 43
Direct Chaining of the Colliding entries

15

43

2 12

5

19

55

hash table

Colliding entries

0 1 2 3 4 5 6

206

Algorithm for Hashing with Chaining

insert(i) Check if key k of item i is in list at position h(k). If no, then
append i to the end of the list. Otherwise replace element by i.
find(k) Check if key k is in list at position h(k). If yes, return the data
associated to key k, otherwise return empty element null.
delete(k) Search the list at position h(k) for k. If successful, remove the
list element.

207

Worst-case Analysis

Worst-case: all keys are mapped to the same index.
⇒ Θ(n) per operation in the worst case.

208

Simple Uniform Hashing

Strong Assumptions: Each key will be mapped to one of the m available
slots

with equal probability (Uniformity)
and independent of where other keys are hashed (Independence).

209

Simple Uniform Hashing

Under the assumption of simple uniform hashing:
Expected length of a chain when n elements are inserted into a hash table
with m elements

E(Länge Kette j) = E

(
n−1∑
i=0
1(ki = j)

)
=

n−1∑
i=0
P(ki = j)

=
n∑
i=1

1
m

= n

m

α = n/m is called load factor of the hash table.

210

Simple Uniform Hashing

Theorem 5
Let a hash table with chaining be filled with load-factor α = n

m
< 1.

Under the assumption of simple uniform hashing, the next operation
has expected costs of ≤ 1 + α.

Consequence: if the number slots m of the hash table is always at least
proportional to the number of elements n of the hash table, n ∈ O(m)⇒
Expected Running time of Insertion, Search and Deletion is O(1).

211

Advantages and Disadvantages of Chaining

Advantages
Possible to overcommit: α > 1 allowed
Easy to remove keys.

Disadvantages
Memory consumption of the chains-

212

An Example of a popular Hash Function

Division method
h(k) = k mod m

Ideal: m prime, not too close to powers of 2 or 10
But often: m = 2k − 1 (k ∈ N)
Other method: multiplication method (cf. Cormen et al, Kap. 11.3).

213

Table size increase

We do not know beforehand how large n will be
Require m = Θ(n) at all times.

Table size needs to be adapted. Hash-Function changes⇒ rehashing
Allocate array A′ with size m′ > m

Insert each entry of A into A′ (with re-hashing the keys)
Set A← A′.
Costs O(n+m+m′).

How to choose m′?

214

Table size increase

1.Idea n = m⇒ m′ ← m+ 1
Increase for each insertion: Costs Θ(1 + 2 + 3 + · · ·+ n) = Θ(n2)
2.Idea n = m⇒ m′ ← 2m Increase only ifm = 2i:
Θ(1 + 2 + 4 + 8 + · · ·+ n) = Θ(n)
Few insertions cost linear time but on average we have Θ(1)

Jede Operation vom Hashing mit Verketten hat erwartet amortisierte
Kosten Θ(1).
(⇒ Amortized Analysis)

215

Amortisierte Analyse

General procedure for dynamic arrays (e.g. Java: ArrayList, Python: List)

The data structure provides, besides the data array, two numbers: size of
the array (capacity m) and the number of used entries (size n)
Double the size and copy entries when the list is full n = m ⇒ m← 2n.
Kosten Θ(m).
Runtime costs for n = 2k insertion operations:
Θ(1 + 2 + 4 + 8 + · · ·+ 2k) = Θ(2k+1 − 1) = Θ(n).

Costs per operation averaged over all operations = amortized costs = Θ(1)
per insertion operation

216

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s : K × {0, 1, . . . ,m− 1} → {0, 1, . . . ,m− 1}
Key table position along a probing sequence

S(k) := (s(k, 0), s(k, 1), . . . , s(k,m− 1)) mod m

Probing sequence must for each k ∈ K be a permutation of
{0, 1, . . . ,m− 1}

Notational clarification: this method uses open addressing(meaning that the positions in
the hashtable are not fixed) but it is a closed hashing procedure (because the entries
stay in the hashtable)

217

Algorithms for open addressing

insert(i) Search for kes k of i in the table according to S(k). If k is not
present, insert k at the first free position in the probing sequence.
Otherwise error message.
find(k) Traverse table entries according to S(k). If k is found, return
data associated to k. Otherwise return an empty element null.
delete(k) Search k in the table according to S(k). If k is found, replace
it with a special key removed.

218

Linear Probing

s(k, j) = h(k) + j ⇒ S(k) = (h(k), h(k) + 1, . . . , h(k) +m− 1) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Key 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

219

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average! (here
without derivation).

Disadvantage of the method?

Primary clustering: similar hash addresses have similar probing sequences
⇒ long contiguous areas of used entries.

220

Quadratic Probing

s(k, j) = h(k) + dj/2e2(−1)j+1

S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod m.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 55515 219

221

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average (here without deriva-
tion)

Problems of this method?

Secondary clustering: Synonyms k and k′ (with h(k) = h(k′)) travers the
same probing sequence.

222

Double Hashing

Two hash functions h(k) and h′(k). s(k, j) = h(k) + j · h′(k).
S(k) = (h(k), h(k) + h′(k), h(k) + 2h′(k), . . . , h(k) + (m− 1)h′(k)) mod m

m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.

Keys 12 , 55 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

12 555 15 2 19

223

Double Hashing

Probing sequence must permute all hash addresses. Thus h′(k) 6= 0 and
h′(k) may not divide m, for example guaranteed with m prime.
h′ should be as independent of h as possible (to avoid secondary
clustering)

Independence largely fulfilled by h(k) = k mod m and
h′(k) = 1 + k mod (m− 2) (m prime).

224

Uniform Hashing

Strong assumption: the probing sequence S(k) of a key l is equaly likely to
be any of the m! permutations of {0, 1, . . . ,m− 1}
(Double hashing is reasonably close)

225

Analysis of Uniform Hashing with Open Addressing

Theorem 6
Let an open-addressing hash table be filled with load-factor α = n

m
<

1. Under the assumption of uniform hashing, the next operation has
expected costs of ≤ 1

1−α .

Without Proof, cf. e.g. Cormen et al, Kap. 11.4

226

	Hashing
	Hash Functions and Tables
	Chaining Collisions
	Hash Functions
	Dynamic Table Size
	Open Addressing

